
A4,

AL. 
kni - -,*--.- -

- ~ ~ ~ ~ ~ ~ ~ 1 7 yo1ry$ 9§ ;~-~~~

dV4

.... ...



CONNECTIONIST
MODELS
Proceedings of the 1990 Summer School

Edited by:

David S. Touretzky (Carnegie Mellon University)
Jeffrey L. Elman (University of California, San Diego)
Terrence J. Sejnowski (Salk Institute and

University of California, San Diego)
Geoffrey E. Hinton (University of Toronto)

(M63h.Koufmann Publishers, Inc.
2929 Campu Drive, Suite 260
San Mateo, California 94403 91-06864

01 8 05 o5



Sponsoring Editor Bruce M. Spatz
Production Editor Sharon E. Montooth
Cover Designer Victoria Ann Philp
Typesetter Technically Speaking Publications

Library of Congress Cataloging-In-Publication Data

Connectionist models : proceedings of the 1990 summer school / edited
by David S. Touretzky ... [et al.].

p. cm.
Proceedings of the Connectionist Models SWmmer School held at the

University of California at San Diego.
Includes bibliographical references and Index.
ISBN 1-55860-156-2
1. Connection machines--Congresses. 2. Neural networks (Computer

science)--Congresses. I. Touretzky, David S. II. Connectionist
Models Summer School (1990 : University of California, San Diego)
OA76.5.C61938 1991
006.3--dc20 90-21144

CIP

ISBN 0-55860-156-2
MORGAN KAUFMANN PUBLISHERS, INC. I6cesso For
2929 Campus Drive, Suite 260 IZIS GIIArt
San Mateo, California 94403 DTIC TAB C]
©1991 by Morgan Kaufmann Publishers, Inc. Unaxounoed
All rights reserved. I rkf .,pt
Printed in the United States.

No part of this publication may be reproduced, stored in a ,k1,,MM1W
retrieval system, or transmitted in any form or by any means- W_
electronic, mechanical, photocopying, recording, or otherwise- Avalability Codes
without the prior written permission of the publisher. Avail and/or

ABCDEFGHIJK-RP-932 10

IneWawl



CONTENTS

Part I MEAN FIELD, BOLTZMANN, AND HOPFIELD NETWORKS
Deterministic Boltzmann Learning in Networks with Asymmetric Connectivity ... ....... 3

C. C. Galland and G. E. Hinton
Contrastive Hebbian Learning in the Continuous Hopfield Model ..... ............. 10

1. R. Movellan
Mean Field Networks that Learn to Discriminate Temporally Distorted Strings ... ....... 18

C. K. I. Williams and G. E. Hinton
Energy Minimization and the Satisfiability of Propositional Logic ..... ............. 23

G. Pinkas

Part II REINFORCEMENT LEARNING
On the Computational Economics of Reinforcement Learning ................. .... 35

A. G. Barto and S. P. Singh
Reinforcement Comparison ........ .. .............................. 45

P. Dayan
Learning Algorithms for Networks with Internal and External Feedback .... .......... 52

J. Schmidhuber

Part III GENETIC LEARNING
Exploring Adaptive Agency I. Theory and Methods for Simulating the Evolution of Learning 65

G. F. Miller and P. M. Todd
The Evolution of Learning: An Experiment in Genetic Connectionism ............. ... 81

D. I. Chalmers
Evolving Controls for Unstable Systems ...... ... ........................ 91

A. P. Wieland

Part IV TEMPORAL PROCESSING
Back-Propagation, Weight-Elimination and Time Series Prediction . . . ......... 105

A. S. Weigend, D. E. Rumelhart, and B. A. Huberman
Predicting the Mackey-Glass Timeseries with Cascade-Correlation Learning ... ........ 117

R. S. Crowder, III
Learning in Recurrent Finite Difference Networks ..... .................... .. 124

F. S. Tsung
Temporal Backpropagation: An Efficient Algorithm for Finite Impulse Response Neural
Networks ......... ... ..................................... 131

E. A. Wan

iii



Part V THEORY AND ANALYSIS
Optimal Dimensionality Reduction Using Hebbian Learning .. .. .... ..... ... 141

A. Levin
Basis-Function Trees for Approximation in High-Diitncnsional. Spaces .. .. ..... ... 145

T. D. Sanger
Effects of Circuit Parameters on Convergence of Trinary Update Back-Propagation .. .. .... 152

R. L. Shimabukuro, P. A. Shoemak?r, C. C. Guest, and M. 1. Carlin
Equivalence Proofs for Multi-Laye r Perceptron Classifiers and the Bayesian Discriminant
Function. .. .. .... ... . ..... . ... .... ..... ... .... 159

1. B. Hampshire, 1I and B. Pearlmnutter
A Local Approach to Optimal Queries. .. .. ..... .... ..... ... . ... 173

D. Cohn

Part VI MODULARITY
A Modularization Scheme for Feedforwavd Networks .. .. ... . . .... ....... 183

A. Ossen
A Compositional Connectionist Architecture .. .. .... .... . .... ... . .. 188

1. R. Chen

Part V.II COGNITIVE MODELING AND SYMBOL PROCESSING
From Rote Learning to System Building: Acquiring Verb Morphology in Children and
Connectionist Nets .. .. .... ............ ... ....... 201

K. Plunket t, V. Marchman, and S. L. Knudsen.............
Parallel Mapping Circuitry in a Phonoilogical Model. .. .. .. . ... . .. . ...... 220

D. S. Touretzky
A Modular Neural Network Model of the Acquisition of Category Names in Children . . .. 228

P. G. Schyns

A Computational Model of Attentional Requirements in Sequence Learning. .. .. .. ... 236
P. 1. Jennings and S. W. Keele

Recall of Sequences of Items by a Neural Network. .. .. .... .... ..... ... 243
S. Noiji, D. Parisi, G. Vallar, and C. Burani

Binding, Episodic Short-Term Memory, and Selective Attention, Or Why are PDP Models Poor
at Symbol Manipulation?'.. .. .. ... . ..... ..... .... ..... ... 253

R. Goebel
Analogical Retrieval Within a Hybrid Spreading-Activation Network .. .. ..... ... 265

TJ E. Lange, E. R. Me~z, C. M. Wharton, and K. . Holyoak
Appropriate U-jeS of Hybrid Systems .. .. ..... ..... .... ..... ... 277

D. E. Rose
(:ogiiltive Map Consti iction and Use: A Parallel Distributed Processing Approach .. .. .. 287

PL. Chrisley

Part, VrIN SPEECH AND VISION
Unsupervised Discover of Speech Segments Using Recurrent Networks 3103

A. Doutriaux and D. Zipser
Featura Extracticn Using an Unsupervised Neural Network .. .. .. ... . ..... .. 310

iv



Motor Control for Speech Skills: A Connectionist Approach .. .. .... . .... ... 319
R. Laboissiare, J-L. Schwartz, and G. Bailly

- Extracting Features From Faces Using Compression Networks: Face, Identity, Emotion, and
-Gender Recognition Using Holons. .. .. .. . .... ... . ..... . .. . ... 328

G. K. Cot trell
-The Development of Topography and Ocular Domidnance .. .. .. .... ... . .... 338

G. 1. Goodhill
On Modeling Some Aspects of Higher Level Vision .. .. .. . ..... . .... ... 350

D. Bennett

Part IX BIOLOGY
Modeling Cortical Area 7a Using Stochastic Real-Valued (SRV) Units .. .. .. .... ... 363

V. Gullapalli
Neuronal Signal Strength is Enhanced by Rhythmic Firing. .. .. ..... . .. . ... 369

A. Hei rich and C. Koch

- Part X VLSI IMPLEMENTATION
An Analog VLSI Neural Network Cocktail Party Processor. .. .. .... . .... ... 379

- A. Heirich, S. Watkins, M. Alston, P. Chau
A VLSI Neural Network with On-Chip Learning....... ..... . . . ... .. .. .. . .. 3.7

- ~. e-. Day, and D. S. Cam poree

Index. .. .. . .. . ..... . .. . . .... ... . ..... . .. . .... 401

v



Foreword

The forty papers in this volume exemplify the tremendous breadth of research under Way in tile field uf
connectionist modeling. The interests of the summer school students and fac.ulty range frum theurctical anal)sis uf
networks to empirical investigations of learning algorithms, from speech and image procesing to ,ognitive
psychology, and from computational neuroscience to VLSI design. The papers selected for the proccedings offer an
intense, pithy snapshot of the state of the art in 1990.

When the first Connectionist Models Summer School was held at Carnegie Mellon in 19U6, ne of its goals %as
to help promising young graduate students at institutions with few faculty working in the neurai ::ts area. The 1986
summer school attendees were in a sense pioneers. At that time neural nets had nut yet attained tl,:ir present status as
a "hot" research topic; the Rumelhart and McClelland PDP books weren't even in print yet. Spiri., ran high during
the event, lasting friendships were formed, and some interesting research was done on site.

By the time of the second summer school in 1988, the field had advanced markedly. That )ear we -%a% three
U.S. neural net conferences and half a dozen workshops. The first neural net journal appeared, and a secund %as
announced. The raw pioneering spirit of the first summer school was perhaps diminished somewhat, but in
compensation, the level of sophibtication of the students was learl) increased, and the enthusiasm le- el %as as high as
ever. After the event was over, we found that the students had been holding extra sessiuns in their ruums after iner,
continuing sometimes until well pasi midnight.

We decided that the next summer school should be held on the west coast. Since Ten) Sejnowski was moving
to UCSD, La Jolla was the obvious --hoice of venue. Jeff Elman kindly volunteered to serc as organizer for the 1990
event. The rest of us (Sejnov, ski, Touretzky, and Hinton) were his advisory committee, and collaborated in the
production of this proceedings. Eac-h student was awigned one of us as his or her editor, based either on a draft paper
submitted prior to the summer school or our knowledge of the student's interests. The paper., the) submitted werc
then revised in response to detailed comments. The quality of the results is extremely high.

At the completion of this )ear's summer school we decided it had been as successful as its predecessurs, but it
had more of a workshop flavor and less that of a tutorial. The faculty of past summer sc.hools found the workshup
aspects much to their liking, but the .hange this )ear %as really a reflection of the advan.ed nature of the students,

ho are already pursuing interesting research on a %& ide % ariet) of topics. They are among the best and the brightest in
the neural nets game. Pictures of some of the attendees, taken by Timor Ash, appear at the back of the proceedings.

We would like to thank UCSD, the Office of Naval Research, the McDonnell-Pew Foundation, and the
MacArthur Foundation for sponsorng this eent. Their generous support was imporan: to making the summer s.huul
a success. We are also grateful to Marilee Bateman and Sondra Buffett of UCSD for excellent administrative support,
and to the grad students at UCSD for providing hospitit) to the stadens and fac.ult). Kim Plunkett did )euman dut
in helping coordinate the logistical arrangements. W\. would also like to thank Bruce Spatz and Sharon Montoth at
Morgan Kaufmann for helping to make these proceedings possible.

Finally, we express our dcep appreciation to the faculty of the summer school. The faculty's dcdication and
commitment to the scientifi, training of graduate students was apparent throughout. Without their partiopatiun, thc
CMSS would not exist.

DAVID S. TOURII/.KY JEFFREY 1 E.MAN
Carnegie Mellon University of California, San Diego

TERRENCE J. SEj.OWSKI GEOFFREY E. IIlNTON
The Salk Institute, and University of Toronto
University of California, San Diego
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Deterministic Boltzmann Learning in Networks with Asymmetric
Connectivity

Conrad C. Galland Geoffrey E. Hinton
Physics Dept. Computer Science Dept.

University of Toronto University of Toronto
Toronto, Canada Toronto, Canada

MSS IA7 MSS 1A4

Abstract weight, and it can be applied readily to networks with
4 large degrees of feedback. Ilowever. based on the orig-
The simplicity and localit% of the -con- ina theor% (Ilinton and Sejnow'ski, 1986) symmetrical
trastive lebb s6 napse" (CIIS) used in Rultz- connecta it- appears necessar for the CIlS to perform
mann machine learning makes it an attractic gradient descent, and there is no evidence of such de-
model for real biological synapses. The slow tailed symmetry in the CNS.
learning exhibited by the stochastic Boltz-
mann machine can be greatly improved by
using a mean field approximation and it has 2 DETERMINISTIC BOLTZMAN
been shown (Ilinton, 1989) that the CIIS also LEARNNG IN SYMMETRIC
performs steepest descent in these determin- NETWOR1'S
istic mean field networks. A major weakness
of the learning procedure, from a biological A mean field approximation (Glauber, 18-63; Ilopfield,
perspective, is that the derivation assumes 19S4) was used by Peterson and Anderso, (19S7) to
detailed symmetry of the connectivity. Using replace the stochastic units of the original Boltzmann
networks with purely asymmetric connectiv- machine with deterministic analog units, resulting in a
ity, we show that the CIIS still works in prac- significant improvement in learning efficiency. Details
tice provided the connectivity is grossly spit- of basic DBM theory can be obtained from Ifinton
metrical so that if unit i -ends a connection to (199). In brief, a DBM with unit states in the range
unit j. there are numerous indirect feedback [-1, 11 has mean field free energy
paths from j to i. .olong as the network
settles to a stable ate, we show that the
CIIS approximates steepest descent and that
the proportional error in the approximation F E
can be expected to decrease as the size of the - T !of -
network increases. icL

1 INTRODUCTION _ _ (1)

The learning procedures used tQ train cnnectni.t .-herc E and H are the mean field energ and entropy.
networks are often criticized for haa ing onl% superfi The DBM settles to a lov; temperature minimum. F',
cial relevance to real neural systems. The most widely where the states of the units are given by
used procedure. bar-k-propagation, requires an elabo-
rate apparatus to correctly determine and distribute
the necessary error gradient information to the dif- y, = tanh( W-y.1r) (2)
ferent weights of the net. When the sort of complex T

feedback wiring common in real neural sstems is in-
corporated. the learning b umes een nure in ,!i-d DeaikJ symmetry 4 the %cighs - a,;stmcd such that
(Pineda, 1987) and no attempt is made to justify it U721 = -%,.
biologically. Treating the weights as indlependent. the tetal deriva-

The MIlS. on the other hand. ijl. the er-rct er. tl,.- f F" with rr:,,'t 1-. a particular weight is given
ror derivativ" usin. ,nly information local t- ,-ach ty

3



4 Galland and Hinton

completely asymmetric connectivity, where only one
dF* OP + OF* Oyk of wij and wji is allowed to exist, the anti-symmetric
dw = t9 Wij L k Ow3) and symmetric parts are of equal magnitude. Simu-

lations demonstrate that deterministic networks with
The first term represents the effect of a weight change randomly asymmetric connectivity typically settle to
on the free energy with all unit states held constant. a stable state, and that the anti-symmetric part of the
The second term represents the effect on F* of a weight matrix affects which state is settled to.
weight change via the resultant changes in the equi-
librium states of the units. However, at the minimum, 3.1 THE CHS IN NETWORKS WITH
OF*/Oyk = 0 for all k, so that the second term van- ASYMMETRIC CONNECTIVITY
ishes, leaving In networks with detailed symmetry of the connecliv-

dF* ily, the CHS, coupled with weight decay, will automat-
wi= YiYj (4) ically symmetrize initially asymmetric weights due to

the inherent symmetry of the learning procedure (Ilin-

ton, 1989). It is not equally 4,,parent why the CIIS
If the probability of an output vector, O, given an should do anything sensible when applied in asymmet-
input vector, 1n, is defined as rically connected nets.

-_F= , IT Consider the free energy of an asymmetrically con-
P(OpI) -eF/T (5) nected network with the energy term defined using just

the symmetric part of the weight matrix:

where ivp is the minimum free energy settled to
with Ia and Op clamped (positive phase) and F* the F -1 Z (yiyjwij + yiyjwji) - TH (8)
minimum free energy with just I, clamped (negative 2 i<j
phase), then the CItS can be seen to change each
weight in proportion to the gradient oflogP-(Op#I,). In the calculation of F, all asymmetric weights that
Assuming T = 1, come from permanently clamped units, like the inputs,

can simply be treated as symmetric, so that wij = wji.
For all other connections, only one of wij and wj{ is

Awij = C(yty + - yy) = OlogP-(OpIa) non-zero, and the contribution to the energy term is
Owij (6) thus half that of the effectively symmetric weights.

This follows from the fact that an asymmetric con-

where ytand y," refer to the states of unit i at the min- nection of weight wij can be thought of as having a

imum settled to in the positive and negative phases. symmetric part of 1w,,, as well as an anti-symmetric
Hence, by making c small enough, the CHS will ap- part of equal magnitude.

proximate gradient descent in the objective function Th( dynamics of this network will typically consist of
G. settling to a stable state where equation (2) holds for

each non-clamped unit, and we designate the free en-
ergy of the network at this point as F*. However, this

G P+(I,, Op) log P+(O]Ia) (7) stable state will no longer be at a minimum of the free
af P-(OpIIa) energy, so that OF*/Oyi 96 0. Expressed another way,

at the fixed point (assuming T = 1)

3 ASYMMETRIC NETWORKS
O9E Oil

aE LI-1(9)
The assumption that wij = wji is not necessary in or- Oyi Oyi
der to define an energy function over the network. The
symmetry is required to allow each unit to compute the However, we can say that
derivative of a global quadratic energy function from
locally available information. Without symmetry, the OE OH
natural dynamics of the activity levels do not consist - 10)
of following the gradient of the energy function. y. Oyi

Hlopfield (1982) points out that nets with asymmetric The left-hand side of equatiun (10) represents the ac-
weights such that w,, $0 w,, can be described as hay- tual total input to unit i, and it can be considered
ing a symmetric part, which defines the energy func- the unit's estimate of the true OE/Oy, derivative. Fig-
tion, plus an anti-symmetric part, which can be con- ure 1 shows the true values and unit estimates of this
sidered as noise during settling. However, in nets with derivative for a simple network.



Deterministic Boltzmann Learning in Networks with Asymmetric Connectivity 5

OE 1 We would like to determine how the error between the
j = Twiyi true and CIS estimated gradients scales with increas-

ing fan-in. Following all weight changes in either the

5- = 0 positive or negative phase, the resultant change in the
Oy. free energy due to the first term in equation (11) is of

order

I E ,IjsI k, (y3y~ ~~+f) (13)
- = i j)W +M

Og where f, is the symn.etric weight fan-in, u is the total
- Wij number of unclamped units, and k, is some constant.

Using equation (12), the change in the free energy due
to the random effects of the weight changes via the

Figure 1: The true, OE, and estimated, 'E-, values second term of equation (11) is of order
of the energy derivative for two asymmetrically con-
nected units. IAFrrl = k2 (IAyil) (IwijI) %'f VU (14)

where (IAydi) is the expected value of the change in
We will use the F* of an asymmetrically connected net the stable state activities of the units as a result of all
to define the probability of an input vector given an the weight changes, and k2 is some constant.
output vector as in equation (5), and then investigate
how close the CHS approaches gradient descent in the In order to maintain the same degree of "hardness" in
objective function with the probabilities so defined, the network as the fan-in increases, it is necessary to
Proceeding as in equation (3), the total derivative of keep constant the expected value of the magnitude of
F* with respect to a particular weight is given by the total input to a unit. It would then be expected

that (IwijI) would scale as 1/V/T] where f is the total
fan-in, and that (yy?) would be scale independent.

dF* OF* +E OF* 1yk Thus, we obtain

syy+ (8E ON1 .? 1k11)I lsl = kl'( If. + f3,)u

I/A,,,I = k2(IAyJI)
where s is 1 for a symmetric weight and for an asym-

metric weight. The difference between the true and In symmetric networks, the effects of changes in the
estimated energy derivatives is zero for a symmetric stable state values of the units can be neglected be-
network, and the IS predicted weight changes per- cause the stable state is a local minimum of the free
form exact gradient descent. For an asymmetric net- energy. This is not the case for asymmetric nets, and
work, this difference is not zero, and the second term the difficult question of how (IAyil) scales must be ad-
in equation (11) is ignored by the CHS. The larger the dressed. There are three plausible regimes:
proportion of weights that can be considered symmet-

rical, the smaller this difference will be, and the closer o If (jAyij) does not depend on the number of con-
the tIS will come to performing gradient descent. For nections, then (assuming L is constant)
a given fan-in, f0, of truly asymmetric connections, f
the difference between the true and estimated values IAF 1r
of the energy derivatives for a particular unit can be r = cAFerrI __( ____)____ c_________
expected to scale as IF sI (2fa + f)V1Ui (1f +

. If (lAyi]) scales as VT, then
OE OEk

oyk =k(Iw I)v7 (12) r 1

where k is a proportionality constant, and (Iwijl) is
the expected value of the magnitude of the weights. * If (lAy) scales as f, then
The V7a term arises because the various wijyj terms VJT 1
can be expected to be random in sign, and hence to r c' - c-
sum as in a random walk. VIVI VI
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Figure 2: The network architecture for the asymmet- Figure 3: Graph showing the number of training
ric 4-bit shifter is shown including possible hidden-to- epochs required to perfectly learn the task in various
hidden, hidden-to-output, and output-to-hidden con- sized shifters. Since the number of possible input vec-
nections for three of the hidden units. 24 hidden units tors increases dramatically with the size of the shifter,
are used in the 8-bit shifter, and 40 in the 16-bit the number of presentations per epoch is much higher
shifP for the larger networks.

The success of the OHS in simulations of asymmetric phase, only the inputs are clamped. This is repeated
networks suggests that, for certain architectures, the for each case, with the weights changed after each pre-
errcneous side-effects can indeed be neglected. The sentation. This "on-line" training technique was used
second regime seems most likely, and its scaling predic-
tion is consistent with performance results in networks ordet aod the ii ca ses t
of increasing size. As detailed in the next section, sim-

* ulations have also shown that, in the networks tested, As can be seen from figure 3, the CHS successfully
* the CHS consistently chooses a trajectory in weight trained various sized, asymmetrically connected, shift-
* space that has a strongly positive cosine with the true detecting networks. The learning performance was

gradient which can be computed by taking into ac- compared with that obtained in symmetrical networks
count the second term of equation (11). of roughly the same complexity in terms of the num-

ber of weights and units. Since each pair of units is
effectively connected by two weights in the symmetric

4 SIMULATION RESULTS case, the architecture of the symmetric shifters had
the same number of units in the same basic arrange-

The CHS was applied to asymmetrically connected ment as the corresponding asymmetric nets, but with
networks to solve the shifter problem. This is a non- half of all the possible hidden-to-hidden and hidden-
trivial second order problem that cannot be solved to-output symmetric connections chosen at random.1
without a hidden layer. The network architecture is Figure 3 shows how the difference in learning perfor-
showa in figure 2. There is full connectivity from the mance decreases with increasing network size, suggest-
input to the hidden layer, and for every pair of non- ing a decrease in the proportional error of the gradi-
input units, i and j, exactly one of wij and wji is ent approximation as proposed in the previous section.
chosen at random to exist. This extensive asymmet- The error bars were obtained by running repeated ex-
ric connectivity permits many possible closed loops in- periments on networks with different random connec-
volving the hidden and output layers. tivity patterns. Details of the simulations are given in
The task is to detect the sense of a shift between two the Appendix.
binary vectors where the second vector is generated 'It is difficult to decide whether to compare with a sym-
by shifting the first a single "pixel" to the right or left metric net having the same number of effects, as we have' using wraparound. In the positive phase, a binary vec- mti e aigtesm ubro feta ehv
urhp ichosen, or the same number of degrees of freedom. In fact,
tor and its left or right shifted image are clamped on increasing the number of hidden-to-hidden connections in
the inputs, with the output unit being correspondingly the symmetric net significantly slows learning, and it is
clamped 'off' for left and 'on' for right. In the negative fastest with no such connections at all.
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(a)

(b)=.- -- P ,. , , .

Figure 4. The true and estimated dF*/dzv, gradients are displayed, in arbitrary order, for an asymmetric 4-bit
shifter late in learning, in (a) the positive and (b) the negative phases. The top and bottom rows of each pair
represent the true and CHS estimated values respectively. The size and colour of each square represent the
magnitude and sign of the gradient for each weight averaged over all cases.
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tien to recurrent neural networks. Phys. Rev. Lett.,

5 DISCUSSION 18, 2229-2232.

We have shown that the CHS is able to solve a dif- APPENDIX
ficult second order problem in asymmetrically con- Table 1 shows typical learning schedules used to train
nected networks. By removing the strict requirement the various shifter networks, where c is the learning
of detailed symmetry, the CHS becomes considerably rate given in equation (6). On-line learning was used
more attractive as a possible model of real biological exclusively, with no storage of gradients across cases,
synapses. and all weights were initialized to random values be-

For asymmetrically connected networks, the anti- tween -0.5 and 0.5.
symmetric part of the weight matrix affects the set- The 1000 training cases used in the 16-bit shifter were
tling of the network and, hence, the required gradi- randomly selected from the much larger set of all pos-
ents. Although the CHS only performs exact gradient sible shifted vectors. Since the details of the connec-
descent for a symmetric net, the effects of the random tivity were determined randomly, there were occasions
changes in the stable state activities of the units can when particular networks required slightly different
be neglected in problems that have a significant num- learning schedules, but the values given in the table
ber of effectively symmetric weights. Further research ern sc esul
is needed to establish the magnitude of this unwanted were generally successful.
effect, and precisely how it depends on the architecture A four step annealing schedule was usually employed,
of the network and the nature of the problem. where T = 15, 5, 1 and 0.5. An initial T = 25 step was
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Table 1: Learning Schedules for the Shifter Networks

Network learning number
type schedule of cases

4-bit 24
symmetric c = 0.01

to completion
asymmetric c = 0.005

to completion
8-bit 504

symmetric c = 0.005 for 40 epochs,
0.001 to completion

asymmetric e = 0.005 for 40 epochs,
0.001 to completion

16-bit 1000
symmetric c = 0.002 for 50 epochs,

0.001 for 5 epochs
1 0.0005 to completion

asymmetric c = 0.001 for 60 epochs,
1 0.0005 to completion I

found helpful in the 16-bit symmetric network. At
each temperature, the network was settled to a stable
state using a synchronous, discrete time approxima-
tion of the set of differential equations

dy 1-w= -Yi + tanh( 1 yjwij) (15)

This was accomplished by damping each unit so that,
after each synchronous update, the unit activities
would be given by

yi(t) = (1 - a) tanh 1 Y1 (t - 1)W~i)

+ yi(t - 1) (16)

for a between 0 and 1. 12 synchronous updates were
employed at each temperature in all the 4- and 8-bit
shifters, with a = 0.5. The 16-bit shifters required 14
synchronous updates with an a of 0.6. The 4-bit sym-
metric shifters generally required fewer updates and
less damping than the comparable asymmetric nets,
but this difference largely disappeared in the larger
networks.
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Abstract of activations in a clamped and a free running phase.
This modification of the Hebbian learning, first ap-

This paper shows that contrastive ttebbian, plied by Hopfield to improve the storage capacity of
the algorithm used in mean field learning, can discrete content addressable memories without hidden
be applied to any continuous Hopfield model. units [5], appears in the Boltzmann learning algorithm
This implies that non-logistic activation func- [1] and its mean field approximation [11][3]. This pa-
tions as well as self connections are allowed, per shows that Hinton's observation that CHL depends
Contrary to previous approaches, the learn- on a performance measure [3] can be generalized to
ing algorithm is derived without consider- any case of the continuous Hopfield model. Contrary
ing it a mean field approximation to Boltz- to previous approaches, the derivations do not pre-
mann machine learning. The paper includes sume the existence of Boltzmann machines approxi-
a discussion of the conditions under which mated with mean field networks. The paper includes
the function that contrastive Hebbian mini- a discussion of the conditions under which the function
mizes can be considered a proper error func- that CHL minimizes can be considered a proper error
tion, and an analysis of five different train- function, an analysis of undesirable effects that may
ing regimes. An appendix provides complete occur in CHL learning, and a classification of training
demonstrations and specific instructions on regimes that minimize these effects.
how to implement contrastive Hebbian learn- The paper is divided in two sections and one appendix.
ing in interactive activation and competition Section 1 describes the dynamics of the activations in
models (a convenient version of the continu- interactive networks. Section 2 shows how to modify
ous Hopfield model). the weights for the stable states of the network to re-

produce desired patterns of activations. The original
contribution in this paper are:

1 INTRODUCTION
e To show that CHL works with any continuous

In this paper we refer to interactive activation net- Hopfield network and thus that self-connections
works as the class of neural network models which have as well as non-logistic activation functions are al-
differentiable, bounded, strictly increasing activation
functions, symmetric recurrent connections, and for
which we are interested in the equilibrium activation f li ng atherincp e nvoved inemenstats rthertha thetraectriesto chiee tem. field learning algorithm can be derived indepen-states rather than tie trajectories to achieve them. dently of the Boltzmann Machine.
This type of network is also known as the continuous
Hopfield model [6]. Some of the benefit5 of interactive * To show that except for the case where there are
activation networks as opposed to feed-forward net- no hidden units, the function that CIIL minimizes
works are their completion properties, flexibility in the is not a proper error function but that in practice
treatment of units as inputs or outputs, appropriate- there are training regimes that make it work as
ness for solving soft-constraint satisfaction problems, such.
suitability for modeling cognitive processes [91, and the
fact that they have an associated energy function that For completeness we present some of the classical
may be applied in pattern recognition problems [13]. proofs provided in Hopfield [6]. The appendix con-
Contrastive Hebbian Learning[7] (CIIL), which is a tains mathematical details and specific comments on
generalization of the Hebbian rule, updates the %ei l.ts how to implement Contrastive Hebbian Learning in
proportionally to the difference in the crossproducts interactive networks.

10
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2 STABILITY OF ACTIVATIONS in the appendix a version of Hopfield's proof and show
that stability in a global minimum can also be achieved

Since interactive networks have recurrent paths, it is in with the following equation, typically used in interac-
principle possible that their activations never stabilize. tive activation networks [8][9] [10]
Fortunately, if some simple conditions investigated by
Hopfield [6] are met, we can guarantee that the acti - d ai
tions will settle, and that at equilibrium they wiP dt = A ((-ai + fdneti)) (5)
at a minimum of an Energy function. .Xotice that if we apply either equation 4 or 5, on equi-

Let the activation vector aT = [al, ...an], be wr, . !ii -'im (when the derivatives are zero),
by bounded, monotonically increasing, dilleie.. b-' f '(6i) = neti (6)
activation functions f,(.)- Let W = hr ...w] be t.. where () represents equilibrium. These properties
matrix of connections, where the w" = [wj,i, ...w, , will be used to derive the learning algorithm in the
are bounded, fan-in weight row vectors. Let dO/dt i,: next section.
derivatives with respect to time, neti = at wi, .,
rest = f(0). Define a continuous Hopfield Ener!,
function [6] 3 CONTRASTIVE LEARNING

Learning is viewed as the modification of connections
F=E+S (1) between units so that the stable states of the network

where reproduce desired patterns of activations. We will see
that CHL minimizes a contrastive function j 2 and

n n Wthen we will discuss the conditions under which mini-
E 2 atW a 2--aiwijaj (2) mization of J guarantees learning.

1 j=1 Define a pattern p as the pair p = {a(+,a°(+)},
and where I stands for input set, 0 for output set, and (+)

indicaes that the a.tivation of these units are fixed
S n la, by the pattern. In cojinectionist terms aO(+) is the
E = Z'f(a) da (3) teacher vector. We will say that p has been learned if
i=1 rest clamping the input units to a'(+) then

io(-) = aO(+) (7)

It can be shown that E, which re. -,a the constraints where Ao(-l denotes the activation of the output set
imposed by the weights in the network, tends to drive when inputs are clamped and outputs are free. Note
activations to extreme values I On the other hand, S that in this form of supervised learning we are only
i . a penalty function that tends to drive the activations interested in the outputs obtained after equilibrium is
to a central value (the resting point). In principle we achieved and not in the trajectories followed to equi-
are interested in activation states that minimize E for librium.
they are maximally harmonious with the information
encoded in the weights. As we will study later, varying
the relative importance of E vs. S as the activations
settle may help achieve maximally harmonious (mini- J = P(+) - ft(- (8)
mum E) states. In the appendix it is shown that if the where 5(+) and P) respectively are the values of the
activation functions are the standard (0-1) logistic, F energy functions at equilibrium when the inputs and
becomes the Helmholtz free energy function as defined energ c at equlibiu when the inputs and

noutputs are clamped (+), and when the inputs are
in [L]. clamped and outputs are free (-). Notice that /(-)

has the same free parameters that F(+), the activa-
Ilopfield [6] sholwed that if the netvrk is governed by tions of the hidden units, plus some additional free
the set of differential equations parameters, the activations of the output units. As-

sume that, over the working region of activation states,
F has a unique minimum.3 . Thus, since the mini-

df['l(ai) = A (-f'i(ai)+ neti) 1...n (4) mum is unique F+ > F(- and if J = 0, then

dt 2Based on different arguments, Hinton [3] showed that

and the weights are symmetric, the activations stabi- CIL minimizes the equivalent of J when the activation is
lize in a minimum of F. For completeness, I present logistic.

3This assumption, which is shared with Boltzmann
'If self connections are alloled, minima in E may also learning, Mean Field Learning, and the Almeida-Pineda

occur for intermediate activation values. algorithm is discussed in section 4.
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o-) = aO(+). This makes J a potential candidate smaller than zero and that when J = 0 the activa-

for learning by gradient descent on weight space. In tions in the free and clamped phase are equal. In this
particular, following the derivations detailed in the ap- case, J is a proper error function. In the appendix it
pendix, we have is shown that if there are no hidden units CIIL is in

fact equivalent to backpropagation learning.
However, if there are multiple minima in F, we can

at -ai etk i , j (9) no longer guarantee that a local minima in the free

=wi- =  - ne~t -) ; i # i (9) phase will have lower energy than a local minima in
k= W the clamped phase. One way to avoid this problem
nE 1.2ak is to use training regimes that maximize the prob-

wi  - i netk(-i) ; i=j (10) ability that the activations in both the free-running
k=1 and the clamped phase equilibrate in the same region

of attraction of F(-) space. A way to visualize how

as n Gak CHL works is to imagine the energy surface over ac-
' " = Ef;I(ak) ),.- (11) tivation space as a membrane with several minima.

aW' 1  k=1j CIL pushes down the minimum corresponding to the

clamped case and pulls up the stable states for the
And following equation 6 it is easy to see that free phases. If both stable states are in the same at-

OF tractor, after several learning trials, both minima con-
- =-aia; i j (12) verge. What follows is a brief analysis of five different

training regimes:
_ _ _ 1. .

-a i = j (13) e Case 1: Activations are reset to random numbers
after each learning phase. In this case, the start-

(14) ing points for the clamped and free phase are dif-
making ferent and, very likely the stable states will also be

m i apart. Under this condition, CIlL learning does

. a 3 a a+ (15) not work well.

* Case 2: First settle for the clamped phase, and
which shows that the contrastive Hebbian learning rule then, without resetting activations, free the output

()(+ OC a~units and settle again. This procedure guarantees
Awi c - , a (16) that P() > (-) and that when P(+) = PH the

descends in the 3 function. activations on the free and clamped phases are the
same. Gradient descent on J assures that when
the minima for the clamped phase is achieved, if

4 DISCUSSION the output unit activations are free, they will not
change. This fbrm of learning, which can be used

We have seen that CHL minimizes the contrastive for recognition of familiar patterns, is very rapidly
function achieved with CILL (it just takes about 3 trials to

J = PM -- ) (17) "recognize" the XOR or the 4-3-4 encoder pat-
terns). Unfortunately, if we just clamp the input

so that after each learning step, the difference in en- units without information about the teachers, in
ergy at equilibrium between the clamped and free general the activations will not converge to the
states becomes smaller. At this point we will study the desired minima.
conditions under which J can be considered a propererror function. *Case 3: Settle during the free phase and then,

without resetting activations, clamp the output
units and resettle again.

An important property of error functions is that they This scheme minimizes the probability that the
decrease as the difference between the obtained and clamped and free phases tnd up in different re-
the desired states decreases. CIIL guarantees that the gions of attraction. In general this procedure
difference between energies ;n the clamped and free works well and achieves learning speeds cornpara-
phases will become smaller but as we will see this ble to backpropagation. There are two phienom-
does not always guarantee that the difference between ena though that sometimes occur [3]. Occasion-
the clamped and free state activations will decrease. ally the network may settle in a different attractor
If both F(+) and F (- ) have a unique minimum (e.g. than the one to which it had converged in previ-
when there are no hidden units) and since in the (- ous trials. This may result in a sudden change in
) phase there are more free parameters to minimize activations and and a temporary "unlearning" of
F than in the (+) phase it follows that J cannot be the weights. In figure I it can be seen a typical
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Figure I. Typical learning curve for the XOR problem. Figure 2. Contour curves of the free energy function as

learning curve with these temporary unlearning of learning progresses. Note that although initially there is a
the patterns. It is our experience that as learning unique minimum, eventually an spurious local minimum is

progresses these sudden jumps to other minima generated.
tend to diminish. Another problem is that if the ue oiytegi rsapeso h ciathe clamped and free phases stabilize in different tfunc n moif theno starnes of the activa-n
regions, the energy of the clamped phase may be- tronctins. sasl the sttlig o theaivfatons
come lower than the energy in the free phase. If poed.Uulyw tr ihlwgi fa c
this happens, learning usually deteriorates, mak- tivation functions) and progressively increase it.
ing it advisable to start with a different set of The rational for this procedure is as follows: De-
weights. Figure 2 shows the energy functions gen- creasing the sharpness of the activation functions
erated after training a simple network, with an is equivalent to weighting more heavily the S part
input unit, a hidden unit and an output unit, to of the free energy as defined in equation 1 '. Fig-
learn the 1-1-1 encoder problem. It can be seen ure 3 shows the effect of sharpening on the er-
that as learning progresses a minimum is created ror function learned for the 1-1-1 encoder problem
at the desired state (output unit activation =1) mentioned in Case 3. For large decay values (low
but that a spurious local minimum is also cre- gain) the spurious local minima dissapear. Ide-
ated. If in some trial the activations equilibrate ally, we start settling the activations with appro-
in that local minimum abrupt distortions in the priately large decay values that get rid of the spu-
learning curve and temporary unlearning of the rious local minima but allow the global minimum
desired activations may occur 4. to survive. Then we let the activations settle to-
Case 4: Sharpening Schedules 5. wards this global minimum and slowly guide them

away from rest values by progressively decreasing
As we previously mentioned if there is a unique decay (increasing gain). Peterson and Anderson
global minimum of PH- and of PM+, and the ac- [11] and Peterson and Ilartman[12] call this pro-
tivations settle into this minimum then the con- cedure annealing for it is a mean field approxi-
trastive function J can be considered a proper er- mation to annealing schedules of discrete Boltz-
ror measure. One way of decreasing the likeli- mann machines. I have decided to use the term
hood of settling into spurious local minima is the sharpening schedules as defined in (2] to clarify
use of sharpening schedules. Sharpening sched- the fact that sharpening does not have anything

to do with increasing the randomness of the net-
"Since the networks wve are considered so far are deter- work as one would expect of aninealinig schedules

ministic, the settling state is determined by the final state.
However, slight weight modifications made by the learning
algorithm may be sufficient to make the actii6ations settle 'In the intera.tive- acti'6atiun and compectition model
in completely different attractors j10] this is controlled by a the decay parameter. If logistic

'I thank Conrad Gahland for showving me the role that act'%ationr, are usi.d, sharpening is achieied b controlling
sharpening schedules play in contrastive Hlebbian learning, the gain of the activation functions.
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Decay =0.01 Decay = 0.5 tinuous state hidden Markov model ( a diffussion
- - -process). The activation settling algorithm can

be seen as an approximation to gradient descent
of the expected value of the Ilopfield energy func-
tion F. The appropriate learning algorith should

v use the difference in the equilibrium expected val-
: ues of the activation crossproducts in the clamped

and free running phase.
.. A nice property shown in the appendix is that

if logistic noise is added to the net input, the
limiting behavior of interactive networks as the

-1 Output 1 -1 Output 1 sharpness of the activation functions increases is
given by the discrete Boltzmann machine. This

Decay = 4.0 Decay 8.0 property may be used to implement both Boltz-
-1 mann machines and continuous interactive net-

works with the same program.
,, In spite of its problems and the fact that more

research is needed before using it for large scale
0 problems, CIlL is a promising, simple to imple-

,, ,- ment learning method that works for a wide vari-
ety of interactive architectures. In Table 1 appear
the results of simulations using CIIL with the ac-

1 tivation update rule of the Interactive Activation

Output Output 1 and Competition model. (10].

Figure 3: The energy function for different degrees of 5 APPENDIX
sharpening. In this case sharpening is controlled by a de-
cayparameter. Note how for low sharpening levels spurious 5.1 S AND THE MEAN FIELD ENTROPY
minima disappear TERM

The entropy term of the energy function proposed by
7. Although sharpening schedules are not strictly Ilinton [3] for the Mean F-eld Algorithm is
necessary for CttL to work, there are reasons to n
believe that they improve learning performance. - (ai logai + (I - a,) log (I - ai)). (18)

Case 5: Annealing schedules: In search of i=j

the continuous Bolizmann machine. Annealing
schedules are another method for avoiding spu- If we use the standard logistic (0-1) activation func-

rious minima. Annealing schedules progressively tion,

decrease the randomness of the activations as set- 1
tling progresses. This may be achieved in interac- 1 + e -z l T

tive networks by injecting some form of noise (e.g. whose inverse is
logistic noise)to the net input of each unit. The T -loisi nos)_lg (20)
standard deviation of the noise distribution plays 0 I T (
a similar effect to the temperature parameter in then
discrete Boltzmann machines. Case 1 in this dis- = -
cussion can be viewed as a particular case of an- T log - dy (21)

nealing schedule in which the standard deviation 1

of noise is very large for the initial cycle (produc-
ing a random starting point) and then goes to zero = TZ ((y log y + (I - y) log (1 - y)) - logO.5) (22)

on the next cycle (making the network determin-
istic). Using slowly decreasing annealing sched-
ules may improve the likelihood of settling in the 5.2 S AND THE INTERACTION
best minimum and avoiding spurious ones. It can ACTIVATION AND COMPETITION
be shown that this settling method defines a con- MODEL

The term "'sharpening" is not without prvbknis either The activation update rule of the interactive acti'ation
for it conceals the fact that sharpening is a mean field ap- and competition model (IAC) as defined in [9] is
proximation to true annealing. Another possible term is
"mean field annealing" but this may be confused with the Aa, = A ((max - a,) net, - (a, - rest) decay) , net > 0
true annealing method as discussed in case 5. (23)
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Aaj = A ((ai - min) neti - (a, - rest) decay) ; net < 0 Regarding S, since the derivative of the integral of a
(24) function is the function itself

which can be derived from equation 5 applied to the as
following activation function 1/= fi'I(ai) (36)

max neti + rest decay , andai = neti + decay ; net > 0 (25) OF OE OS
net' + decay -a + a= -net + f' (a ) (37)

amin neti - rest decay

neti - decay ; net < 0 (26) If we make
where max is the maximum value of the activation, = A (-ai + f(netk))(38)
rest the activation when the net input is zero, min the t

minimum value of the activation, and decay a positive then, applying the chain rule,
constant. And applying equation 3, it is easy to see dF OF dak
that - . (39)

S = i s,(27) -

i=1 =~-EA (-net + f'(ak)) (-ak + f(netk)) (40)
with k=1

Si = decay((max - rest) log (ax - rest (28) but since fk is monotonic, (-net + fT '(ak)) has the

= max - ai] same sign as (-f(netk) + ak), making
- (ai - rest)); ai >: rest (29) dF <0(1

dt -

Si = decay((min - rest) log ( a_ - min (30) Since F is bounded and on each time step F decreases
rest - min) then

+ (ai - rest)); ai < rest (31) lim dF =0  (42)
t-"O dt

with the decay parameter assuming the same function and since equation 39 shows that
than gain in the logistic model. dF dak OF

;0 0 0,...,n
5.3 HOPFIELD'S PROOF OF THE dt dt a (43)

STABILITY OF ACTIVATIONS then

Ilopfield showed that if the network is regulated by lim -=0 ;k=I,-,n (44)
equation 4 it will stabilize. This is done by showing which tells us that the activations will tend to equilib-
that the tlopfield model has an associated Lyapunov rium as time progresses and that on equilibrium they
function. Here, a similar argument is used to show are in a minima of F.
that using equation 5 the network also stabilizes. To
facilitate the calculation of the derivatives of E, we
collapse into Q the part of F that does not depend on 5.4 SMOOTHING NET INPUTS VS.ah, ACTIVATIONS

E .n n(3 Equation 4 can be discretized as
E = - akwkai Afi'1 (at,)) = A (-fi 1 (a(o) + nets(t)) (45)

k=i I=1
n or

= ( + ai(Z akwik (33) f('1 (as(t+i)) = (1 - A)fj'l(as(t)) + Aneti(t) (46)

equivalently, equation 5 would be discretized as

+ Q) (34) ai(,+1) = (1 - A)ai(t) + AI(nti(Z)) (47)

Equation 46 is an exponential smoothing of the net
input. The activation function is then applied to

and considering that the weights are symmetric, this smoothed net. Another possibility, represented
in equation 47, is to apply the activation function to

OE 1 5 the instantaneous net input and then to exponentially
7=- 2aiwi+2Zakwik =-ncti (35) smooth these activations.



16 Movellan

5.5 THE DERIVATIVES OF THE 5.7 INTERACTIVE NETWORKS WITH
EQUILIBRIUM POINTS OF F LOGISTIC NOISE APPROXIMATE

BOLTZMANN MACHINES AS THE
First consider the weights that connect different units. SHARPNESS OF THE ACTIVATION
Extracting the cross products with a wij term. We FUNCTIONS INCREASES
have

1 1 As sharpening increases, the activation function con-
1 25jwqj1 j + E akwkiaz (48) verges to a threshold function

k=1 1=1 ai = max; nets > 0 (55)
and considering that wij is the only weight depending ai = min; neti < 0 (56)
on woi1.on 1 %. 2w 0 where max is the upper bound of the activation, minat =  I -(25,j + 2w,,, + 2w,, 2, 1 (49) the lower bound, and net, has an added logistic noise

20, a,__.j component (o-) with variance T
2

r
2

Wk(ak-+ aL-)) (50) et = a!w,+o (57)
k=1 a wi Owii

k.I i j~k.,#j.. It follows that

Reorganizing terms considering that the weights are Prob(a, = max) = Prob(net, > 0) (58)
symmetric,

at 1 = 1- Prob( <-aT w,) (59)
= -- 26j + 2 I, Z w ll) (51) 1atwi 2 k=1 owij =1 I + 1 ~ ' -jI (60)

which easily leads to equation 9. Similar arguments 1 + e(aY wIT
can be applied to derive equation 10. Eq:.ation 11 is 1
easy to obtain by applying the chain rule and the fact 1 + e-(aT w)/T

that the derivative is the inverse of the integral, which defines a Boltzmann machine.

5.6 CONTRASTIVE HEBBIAN AND 5.8 SKETCH OF THE MAIN ROUTINES
BACKPROPAGATION LEARNING OF A CONTRASTIVE HEBBIAN
ARE EQUIVALENT WHEN THERE PROGRAM
ARE NO HIDDEN UNITS 1. Get a training pattern.

The backpropagation weight update equation is 2. Reset activations to rest and net inputs to zero.
Awij o if(ai)(tj - aj) (52) 3. Clamp inputs to desired pattern.

where wi2 is the weight connecting input unit i with 4. Settle activations according to equations 23 and
output unit j, ft the derivtv ofthe activation func- 24. The program may provide some facility for
tion, and tij the teacher for output unit The con- sharpening schedules (changing the decay or gain
trastive Hebbian weight update is parameter through settling), and annealing sched-

A aj - a-) (53) ules (changing the standard deviation of noise
Since the input units are clamped in both phases, they added to the net inputs).
are not influenced by the output units and the equilib- 5. Collect cross products of activations multiplied by
rium point of the activations would be the same as in a negative constant.
jackpropagation. Taking this into consideration and 6. Clamp also the output units to the desired pat-
reorganizing terms we have tern.

Awi1 c +)( (+)- -  (54' 7. Settle activations according to equations 23 and

where a(+) is the same as the teacher, and (+) the 24.
clamped input. Since the derivative of the activation 8. Collect cross products of activations multiplied by
function is always positive (for strictly increasing ac- a positive constant.
tivation functions), the cosine of the angle between
the update vectors in backpropagation and contrastiVc Termination of settling ma) be done after a fixed num
HIebbian is positive and therefore they both minimize ber of iterations (let us say 30), or after the changes
the same error function. Since there are no hidden in activations are smaller than a certain criteria (eCg
units, the error function has a unique minima and thus biggest activation change is smaller than 0 01) Bel-
the final learned solutions will be equivalent in both low is an example of a settling c.cle using the update
backpropagation and contrastive Ilebbian. function of the IAC model [9].
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Abstract INTRODUCTION

Neural networks have been successful at phoneme dis-
crimination tasks, but many researchers currently feel

Neural networks can be used to discriminate that the best way to deal with longer duration events
beteea erksimilares an d t hey d criine is to use a ntural network as a front-end to a hiddenbetween very similar phonemes and they can markov model. The difficult task of matching models
handle the variability in time of occurrence to data across temporal distortions is then handled by

by a temporal integration (Lang, Hinton and the hidden markov recognizer which efficiently consid-

Waibel, 1990). So far, however, neural net- ers all possible matches.

works have been less successful at handling Despite their powerful matching and learning proce-
longer duration events that require sL dures, HMM's have a serious drawback: They implic-
thiig equivalent to "time warping" in oi,.. itly assume that the ensemble of input strings is gen-
to match stored knowledge to the data. We erated by a stochastic finite-state automaton and this
present a type of mean field network (MFN) strongly limits the types of structure that they can
with tied weights that is capable of approx- efficiently represent. Suppose, for example, that 20
imating the recognizer for a hidden markov independent binary constraints operate between the
model (HMM). In the process of settling to a first and second half of a string and that as a result of
stable state, the MFN finds a blend of likely all these separate corstraints the mutual information
ways of generating the input string given its between the two halvL' is 20 bits.' To model these
internal model of the probabilities of transi- 20 constraints, a hidden markov generator would need
tions between hidden states and the probabil- at least 220 hidden states because the only way that
ities of input symbols given a hidden state. the first half of a string can constrain the second half
This blend is a heuristic approximation to is via the hidden state of the generator as it finishes
the full aet of path probabilities that is im- generating the first half.
plicitly represented by an HMM recognizer. In a hidden markov generator, 220 hidden states im-
The learning algorithm for the MFN is less plies 220 hidden nodes. In a neural net that uses dis-
efficient than for an HMM of the same size. tributed representations, 220 hidden state vectors only
However, the MFN is capable of using dis- requires 20 binary hidden units. So if the mutual infor-
tributed representations of the hidden state, mation between the first and second half of each string
an thsan ak ItM weponentllyn mories is genuinely componential, a neural network can be
produced by a generator that itself has corn- exponentially more efficient in representing the con-

ponential states. We view this type of MFN straints. In effect, the only way that a HMM can
deal with a set of independent constraints is to useas a way of allowing more powerful repre- the cross-product of the HMM's that would be needed

sentations without abandoning the automatic th crprodct ofthe s tat would be d
parameter estimation procedures that have to capture each constraint separately, so it is unable to
allowed relatively simple models like HMM's take advantage of the fact that the constraint structure
to outperform complex A! representations on 'As a concrete example, we might suppose that the first
real tasks. half of a sentence is s'ngular or plural, active or passive,

past or present tense, abstract or concrete, etc. etc. and
that the second half "agrees" with the nrst half along all
these dimensions.

18
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can be factorized. THE LEARNING PROCEDURE FOR

Our aim is t, develop a neural n,'work alternative to THE MEAN FIELD MODULES
HMM's that can take advantaL t constraints which
can be factorized by using sepa .e hidden units to We assume familiarity with mean field networks and
enforce separate constraints. To ,,iiie~e this we have just give a brief overvJew here. Hopfield (1984) or Ifin-
been forced to use a matching procedure that is only a tun (1989) give more detailed descriptions. Mean field
heuristic approximation to the recognition procedure networks use real-valued analog units with a logistic
used in an HMM, and a learning procedure that is con- activation function that can be viewed as a deterrnin-
siderable slower than the HMM learning procedure for istic approximation to the stochastic binary units used
a comparably sized network. E%entually, we hope to in Boltzmann machines. Mean field networks use a
show that these disadvantages are more than offset by parallel updating algorithm to settle to a local min-
the ability of the reural network to use a small repre- imum of the mean-field free energy (Iopfield, 1984).
sentation that captures the componential structure of The mean field equivalent of simulated annealing is to
the constraints efficiently. In this paper, however, we increase the gain of each unit as the network settles.
only show that the neural network can use distributed With low gains, the network will typically settle to a
representations to capture the componential structure state in which the units have intermediate activity lev-
and can generalize at least as icll as a comparably els and, using an independence assumption, this state
sized HMM. can be viewed as representing a high entropy blend of

many possible binary states. In the model we describe,
each such binary state in the blend represents a possi-
ble way of aligning the model of a word, stored in the
tied weights, with the input data.

PREVIOUS APPROACHES USING The input/output learning rule for MFN's (Peterson
NEURAL NETS and Anderson, 1987) is based on an approximation

of the Boltzmann machine learning procedure (Ack-
Icy, Iinton and Sejnowski, 1985). The replacement
of stochastic binary units by deterministic real values

Bridle's alpha-net (Bridle, 1989) is a translation of a units permits much faster learning. Below we present a
IIMM into a recurrent neural net framev uzk. He shows different learning rule for use when the task is the clas-
how to implement the forward pass calcuLi, ons of a sification of temporally distorted strings (which might
IIMM-based recogniser (using "sigma-pi" units with a correspond to vector-quantised time-slices of speech
linear output) and lie presents a gradient-based ha0T- data) into one of N possible "word" models (word is
propagation training method. in quotes as the entity may actually be a phoneme or

some other unit - word is used for convenience only).
As Bridle points out, this implementation of a IIMM
in a neural network points the way forward to other Each ..., h,.,5 i4s own meat ,.eli niciule which com-
methods of constructing and training networks which putes a s , indicatin, '.ow Uk I- it v< i that that
offer more general non-linear structures going beyond model could ha:ve gener ' the I. ,t]. stiAng pre-
IIMM methods. Watrous (Watrous et al., 1990) and sented. Each module ha.. weight cc. rair'. as shown
Kuhn (K'uhn et al., 1989) have investigated training in Fig. 1 that permit dynamic ni..,c . r 'n a sim-
recurrent networks for some problems in speech recog- ilar manner to HIMMs. Te. tl. voi . cksified
nition such as phoneme discrimination, using the back- as belonging to the model thdt pr-. -Act, the highest
propagation learning rulk. Others such as Williams score. The score q,(y) for modulf i when presented
and Zipser (1988) and Oleeremans et al. (1989) have with string y is
looked at tasks which involve learning finite state au-
tomata with recurrent nets, but from the viewpoint of qi(y) = e (1)
predicting the next symbol given left context. How-
ever, to date the issues of "time-warping" have not where F* represents the free energy of the module at
been directly addressed by this work. a minimum of free energy. This minimum is attained

by performing the mean field equivalent of simulated
These recurrent nets allow a "frame-by-frame" pro- annealing from a high temperature to T = 1.
cessing of the incoming data. An alternative to this is
to "spatialize" time by laying out the data in an in- With activities of the units in the range [0, 11, a mean
put buffer - the method used in this paper. This has field module has free energy
a number of disadvantages, but does mean that all of 1
the input data is readily available, whereas in recur- F 2 E ppp,,+7'fp, lnp,+(1-p,)ln(1-p,)]
rent nets the information on the important properties ij!ii
of the input must be extracted and stored in the states (2)
of the hidden units. where pi is the activation of the unit i. At a minimum
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Figure 1: Part of a MFN showing some of the weight constraints (not all weights to the symbol units are shown)

of F the activities obey where bim is the Kronecker delta.

ior((3) This gradient can then be used by steepest ascent tech-
niques or more sophisticated line-search/conjugate-

J gradient methods to maximize B. This learning pro-
where o-(x) is the logistic function a(x) cedure has the flavour of a rule that maximizes the

wi. mutual information between the input vectors and the
At the minimum, the derivative of F with respect to classification, as it maximizes the r,(y)'s which take
a particular weight at T 1 is given by (Iinton, 1969) into account the scores of the other modules, rather

aF* >than just maximizing the score of the correct class. In
m - < PjPk >m (4) fact, if the qi(y)'s represent the probability of mod-

0wj- ule i producing string y, then the algorithm exactly
where < >m indicates that we are considering module maximizes the mutual information.
m. The learning rule for each module is based on in-
creasing the normalized score for those occasions when THE TASK USED IN THE
the module is the correct generator of the string, and SIMULATIONS
decreasing it otl:erwise. Define the normalized score
to be t e qi(y) To test the learning algorithm shown above, two word

Nq(Y) (5) models were set up using IIMMs with componential
structure. IIMMs were used because it is easy to gener-

Then the objective function to be maximized by the ate and test data with IIMMs, and because the Baum-
training is Welch training algorithm (Baum et al., 1970) is opti-

B = In ri(y) (6) mal as a discriminant training procedure for data gen-
,Jeamples erated by HMMs (Brown, 1987). This means that we

where i indexes the correct word class. Differentiating can fairly compare learning by IIMMs and the neural

with respect to weight wik in module m, we get networks.

OB Good datasets for discriminant tasks must have sim-
.k= < pjpk >" [6ira - (7) ilar zero order statistics (symbol frequencies), other-
examples wise good discrimination can be achieved by IIMMs
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with just one unit which simply detects the symbol First order Marko- models gave 28 errors on the test
frequencies, even though the generating IIMMs had data. Nine state IIMMs trained by the Baum-Welch
many more states. The data we used was generated algorithm gave an average of 18.25 errors and six-state
by the "cross-product" of two three state IIMMs. The IIMMs gave an awcrage uf 64.68 error. with a standard
state transition diagram for the three state IIMMs is deviatiun of 8.70 on 16 runs, with a best performance
shown in Fig. 2 of 52 errors.

-G RESULTS AND DISCUSSION

2 Networks with six units in each hidden slice were

trained on the task. Two slightly different architec-
tures were tried. In one, the hidden units were parti-
tioned into two fully connected groups of three units
each, and the symbol units were fully connected to all
units. In the other, there was no such split, all six
hidden units being fully connected. The training was
carried out with a conjugate-gradient with restarts al-
gorithm, stopping when the number of errors on the
cross-validation set began to increase.

state transition The results of the simulations were 29 and 41 errors on
the test data for two runs with the split weights, and

diagram 31 errors for a run with fully connected weights. These
are significantly better than the results of the six state
JIMMs, indicating that componential structure is be-

Figure 2: State transition diagram for the three state ing discovered by the networks. Further proof of this
HMMs was found by analysing the unit activities. In some of

the split networks each group of three units was found
One three state IIMM called the ABC model produced to develop a distributed coding of one of the compo-
symbols "a", "b" and "c" with high probability in nent generators' state. For the network without a split,
states 1, 2 and 3 respectively. The ACB model pro- the activities of the hidden units show that the state
duced "a", "c" and "b" in states 1, 2 and 3 respectively, of one of the components is represented by the activ-
The probability of producing the correct symbol was ities of all six units, the other generator's state being
0.94, and the probability of producing the other sym- indicated by small modulations in these activities.
bols was 0.03 . The transition from the start state to
each of the generating states was equiprobable, so that It is hard for the MFN learning rule to compete
strings generated were equally likely to begin with "a", with the Baum-Welch algorithm when learning to dis-
"b" or (cc"). criminate data generated by non-componential IIMMs.

This is partly because the MFN learning rule is a step-
To make componential data, one dataset was produced size dependent method of gradient ascent, rather than
from the cross-product of two ABC models, and the a re-estimation algorithm.
other dataset was produced from two ACB generators.
The symbols output by the cross-product HIMMs are With sequences generated by two three-state IIMMs,
related to the two component IIMMs by the following the potential benefits of MFNs are small because 3 + 3
code is not much smaller than 3 x 3. We are working on

further simulations with data generated by pairs of
four-state IIMMs, which should show the advantages

genl output : a a a b b bc c c of the MFNs more clearly. It is also possible to de-
gen2 output : a b c a b c a b c sign stochastic networks with architectures similar to

that of Fig. 1 that will produce data which cannot be
combined output : 1 2 3 4 5 67 8 9 generated by IIMMs of polynomially related size.
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Abstract 1 Introduction

The problem of satisfiability in propositional calculus
sym- is to decide whether there exists a truth assignment

metric weights (like Htopfleld nets and Boltz- (a model) for the variables of a given propositional
man Machines), use gradient descent to find well formed formula (WFF), such that the formula is
a minimum for quadratic binary functions evaluated to be true. In many cases it is not enough
called energy functions. We show an equiv- just to decide whether a WFF is satisfiable or not. A
alence between the problem of satisfiability truth assignment that satisfies it is also lesired. It is

in propositional calculus and the problem wrtl- n en that a tsfe probls i re It is

of minimizing those energy functions. The well-knowvn that any of the problems in A~P can be
ofqianeiin thse ene ftonsa- Treduced to the satisfiability problem and that satisfia-equivalence is in the sense that for any sat- bility is .A(1- complete (Carey, Johnson 79).
isfiable Well Formed Formula (WFF) we can

find a quadratic function that describes it, Apart from its theoretical importance, satisfiability
such that if "true" and "false" are mapped to has its direct applications. In the area of Al for ex-
"one" and "zero", respectively, then the set of ample, logic is used to represent knowledge, and in-
solutions that minimize the function is equal ference mechanisms are used to draw conclusions from
to the set of models (truth assignments) that this knowledge. Inferring what must be the truth val-
satisfy the WFF. We also show that in the ues of the atomic propositions for a knowledge base
same sense every quadratic energy function to be consistent lets one further decide whether novel,
describes some satisfiable WFF. Algorithms compound WFFs logically follow from the knowledge
are given to transform any propositional Well base or contradict it. Thus, a connectionist system
Formed Formula into an energy function that that solves satisfiability can be used as the engine of a
describes it and vice versa. Using Sigma-Pi theorem prover.
units we define high order energy minimiza- In this paper we prove an equivalence between the
tion models that are stable, and we show satisfiability problem and the problem of energy min-
equivalence between those high order mod- imization. The equivalence means that in order to
els and quadratic ones. In fact we show that decide whether a WFF is satisfiable and to find a
Sigma-Pi units are not needed if additional truth assignment that satisfies it, we can find a global
simple hidden units are added into the net- t
work. An algorithm to convert high order minimum to some "quadratic binary" energy function

such that the values of the variables of this functionenergy functions into low order functions is when the minimum is reached can be translated into

used as a powerful tool to implement a satisfi- whe th m i i es the can be also, iny

ability problem solver on a connectionist net- a model that satisfies the original WFF. Also, any
work. The results give better understanding connectionist quadratic energy minimization problem
of the role of hidden units and of the limita- may be described as a satisfiable WFF that is satisfied
tions and the capabilities of these interactive for the same models that cause the function to reach
connectionist models. The techniques devel- global minima. Algorithms will be given for converting

fnetoristheosetisThiithprobes mayl- any satisfiability problem into an energy minimizationoped here for tie satisfiability probleni may O
opedhereproblem and vice versa.be applied as well to a wide range of other

problems. Finding minima for a "quadratic binary" function is
the essence of some connectionist models used for
parallel constraint satisfaction (Ilopfield 82),(llopfield
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84), (Hinton, Sejnowski 86). They are characterized by We denote that a model t satisfies p by 'p(n) = 1.
recurrent network architecture, symmetric weight ma- The problem of satisfiability of a WFF 'p is to find an
trix (with zero diagonal) and a quadratic energy func- 2 (if one exists) such that w(2) = 1.
tion that should be minimized (Lyapunov function).
Each unit asynchronously computes the gradient of
the function and adjusts its activation value, so that 3 Equivalence between WFFs
energy decreases monotonically. The network eventu-
ally reaches equilibrium, settling on either a local or a We call the atomic propositions that are of inter-
global minimum. We call this family of models "energy est for a certain application "visible variables". We
minimization" models. It has been demonstrated by can add additional atomic propositions called "hidden
Ilopfield and Tank (Hopfield, Tank 85), that certain variables" without changing the set of relevant models
complex optimization problems can be approximated that satisfy the WFF. The set of models that satisfy 'p
by this kind of network, and some of the work done projected onto the visible variables is then called "The
in connectionist reasoning and knowledge representa- set of visible satisfying models" (2 1 (30)p(!, ) = 1).
tion has used these energy minimization models. (For Two WFFs each with n visible variables are equivalent
examples see: (Ballard 86), (Touretzky, Hinton 88), if the set of visible satisfying models of one is equal to
(Derthick 87)). the set of visible satisfying models of the other.

There is a direct mapping between these models and Formally:
quadratic energy functions, and most of the time we V1(X1 ... x,, t ... tk) - 'P2(Xl... X, t' ... t',) if for

will not distinguish between the function and the net- every model ! of z,..., xn, tl ... , t, that satisfies 'P1,
work that minimizes it. Thus, the equivalence between there exists some truth assignment ' of t, .... t', such
energy minimization and satisfiability means that ev- that W2(XI --. t' ... 40 is satisfied and; for every

erything that can be stated as satisfiability of some modelt ofx1 ,... ) X ,.. ,tk, that satisfies 'P2, there

WFF and nothing more can also be expressed in these exists a truth assignment 1 of the hidden variables of
connectionist models. The techniques described are t, ... ,tk such that ,((xI ,...,xn,ti, .. . , tk) is satis-

used in this paper for the direct implementation of a fled.
satisfiability problem solver on connectionist networks, Next we will see that every WFF 'p is equivalent to a
however they may also be used for the application of WFF P in a conjunction of triples form.
logic reasoning, construction of arbitrary associative
memories, and other applications. 4 Conversion of a WFF into

2 Satisfiability and models of Conjunction of Triples Form (CTF)

propositional formulas A WFF 'p is in CTF if W = A 'i i and every Pi is a
sub-formula of at most three variables.

A Well Formed Formula (WFF) is an expression that
combines atomic propositions (variables) and connec- EXAMPLE 4.1 (AV(BV("C)))A(TV((-E)A(-',B)))A
tives (V, A,,", -4, (,)). A model (or a truth assignment) ((-,T) -- C) is in CTF.
is a vector of binary values that assigns "one" ("true")
or "zero" ("false") to each of the variables. A WFF 'p Every WFF can be converted into an equivalent WFF
is satisfied by a model 2 if its characteristic function in CTF. Intuitively, if a sub-formula has more then 3
H p evaluates to "one" given the vector t. variables, we generate a new hidden variable for every

binary logical connective (eg: V,A,--). We "name"
The characteristic function is defined to be: H, : 2'" - the binary logical operation with the new hidden vari-
{0, 1) such that: able using the logical connective "if and only if" (+-+).

We perform this operation on the parse tree of the
SH (S, ... , Xn) = Xi sub-WFF bottom up, except from the top most binary

connective, each time we generate a new sub-formula
* H(.,p)(l,..., x.) =1 - HP(xl,..., x.) of only two binary connectives (the original and the

+-*). The new hidden variables that we create are used
to refer branches of the parse tree that were converted

* H(W1VvP2 )(xl,... I,) = H'P1 (XI, Xn) before. The sub-formulas are connected with boolean
+ H P2(Xr,.... xn) - Hol (Xi, .. . xn) AND (A). Thus each sub-formula has three variables
X HW2(Xl'-, .X) at most and the conjunction of all sub-formulas is in

" H(lAP )(xl ... , ) = Hl (XZ,...,x) CTF. A formal algorithm and proof is given in (Pinkas

X V 90).

EXAMPLE 4.2 Converting ' = (((-(-'A)) A B)
" H('01- 2)(z,..., x) = l(.,-Vv2)(xl, ..., Xn) ((-C) -- D)) into conjunction of triples generates:
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From ((-,(-tA))AB) we generate. (((-,(-,A))AB)-*T). is represented by the symmetric network that appears
From ((-C) --+ D) we generate: (((-,C) -+ D)+-*T2). in figure 1.
For the top most connective (--+) we generate: (TI --
T2 ).
The conjunction of these sub-formulas is:
(((-(-A))A B)-TI) A ((("-C) - D) -T 2)A(T - T2).
It is in CTF and is equivalent to 'p.

R

5 Energy functions
2

A k-order energy function is a function E {0, 1}-
1Z that can be expressed in a sum of products form
with product terms of up to k variables'. We denote N
the sum of products form for a k-order energy function
by:
E '(xi,..., x)T

= F1<i1<i2<... <i<n Wii ....ik Xi, -"ik
+ .<,<...<k_,<fl, - "" ... -1 2

+ ,<i< wizx + w
Quadratic energy functions are special cases of energy
functions in the form :

E wijXizj + wliX + w. Figure 1: A quadratic network that represents the en-
l<i<j<n i<n ergy function E = -2NT- 2ST- 2WT+ 5T+ 2RN-

WN + W + S - R - N. T is a hidden unit
We can arbitrarily divide the variables of an energy

function into two sets (like we did to the WFs in Further, we can extend these interactive connection-
section 3): ist models to minimize also high order functions (Se-

1. Visible variables are usually of interest to an ob- jnowski 86). In the extended model the variables be-
server. An instantiation of these "external" vari- come nodes in a hyper graph and a weighted term

ables is considered to be an answer to the problem. wi ... i, zl ... x, becomes a weight -wil .....,ik of a sym-
metric hyper arc that connects the nodes: Z, . . i, .

2. Hidden variables are usually not of interest to an Each node is assigned a Sigma-Pi processing unit
external observer. (Rumelhart, Htinton, McClelland 86) that updates its

We call the set of minimizing vectors projected onto activation value using:

the visible variables, "the set of visible solutions" of ai = F(neti)
the minimization problem. where F is the activation rule (threshold, sigmoid,
(It I (3t)E(i,) = min,{{E(9,i')}). stochastic...) that is used in the model and

There is a direct mapping between the quadratic en- nets = - E Wi, .,...,, JJ xii

ergy functions described above and connectionist net- il..i...ik 1<j<k,i, i
works with symmetric weights that minimize them,
like Hopfield nets and Boltzman machines. Given a For example, the binary Hopfield model will set the
function we can create the network and given a net- activation to one if net, > 0, to zero if net, < 0 and
work we can generate the appropriate function. The will not change it if neti = 0.
variables of the function map into nodes in a graph. A Sigma-Pi unit of order k multiplies up to k inputs
Each node is assigned a neuron unit and is connected in each term it sums and considers the weight only if
by symmetric arcs to other units. Unit i is connected all these inputs are ones. We can show that in the
to unit j by a weight w iff the energy function includes extended model, like in the quadratic one, energy de-
a term of the form: -wx,x,. A unit i has a non zero creases monotonically and equilibrium is reached at
threshold w iff the energy function includes a term of either global or local minimum. (The high order en-
the form: wxi. ergy function is the Lyapunov). Note that the contin-

EXAMPLE 5.1 The energy function E = -2NT - uous case (when values are allowed to be between zero

2ST - 2WT+ 5T+ 2RN - WN + W + S - R - N and one), is also captured in the extended model. The
2ST_____- _ 2Nlack of terms with powers of variables (like wXY 2Z

'The name "multi linear functions" is sometimes used. or UY2) causes the minimizing solutions to be at the
corners of the unit hyper-cube.



26 Pinkas

EXAMPLE 5.2 The cubic energy function E = of Sigma-Pi units for additional simple units, and vice
-NSW + 2RN - WN + W + S - R - N is represented versa.
by the hyper graph of figure 2. The units N, S, W Note that we could have used a stronger definition for
are connected by a hyper-arc and therefore they are eqtitate ou ae ustron ge fntion forSigma-Pi units. equivalence of energy functions. The functions that

are generated by the transformations not only have
the same set of minima, but have the same energy as
the original function (up to a constant difference) for
all instantiations of the visible variables

R 6.1 Converting a high order energy function
into a lower order function

-2 Every k order energy function E can be transformed
into an equivalent (k - 1) order energy function by
adding extra hidden variables. Transformation is done

N" by replacing each of the k-order terms in E with a sum
of (k-i) order expressions:

* Any k-order term (a 1-=1 xi), with a NEGATIVE
coefficient at, can be replaced by a quadratic term
of the form : Fi 2aXiT- (2k-1)aT generating
an equivalent energy function with one additional
hidden variable, T.

" Any k-order term (a 1 I X,), with a POSITIVE
coefficient a, can be replaced by a term of order

Figure 2: A cubic network that represents E = (k -1) of the form : a - 1  (E .j 2aXiT) +
-NSW+2RN--WN+W+S-R-N using Sigma-Pi 2crXkT + (2k - 3)rT, generating an equiva-
units. lent energy function with one additional hidden

variable2 .
We'll see now that high order models are equivalent to
quadratic models and that there is a tradeoff between EXAMPLE 6.2 When term is negative:
the order and the number of hidden units. -3XYZU z -6XT - 6YT - 6ZT - 6UT + 21T.

6 The equivalence between high order EXAMPLE 6.3 When term is positive:

models and low order models XYZU ; XYZ- 2XT- 2YT- 2ZT + 2UT + 5T
-XY - 2XT - 2YT + 2ZT' + 3T

Infinitely many energy functions (networks) seem to -2XT - 2YT - 2ZT + 2UT + 57"
solve only a single minimization problem.
We call energy functions that have the same set of vis- EXAMPLE 6.4 The cubic energy function E =
ible solutions, equivalent. -NSW+ 2RN - WN+ W +S- R- N is equivalent to
Formally: El is equivalent to E2 (EI z E2 ) iff -2NT-2ST-2WT+5T+2RN-WN+W+S-R-N
{: I (3T1)E 1(-tJI) = minqi{E(9,t)}} ={ [ by using additional hidden variable T. The correspond-
(31t)E 2(-f, T,) = minIj{E2(0, )} ing networks appear in figure 2 and figure 1.

EXAMPLE 6.1 aXY + bYZ - XYZ - aXY + bYZ - 6.2 Eliminating hidden variables
2XT- 2YT- 2ZT + 5T for any a,b.

The symmetric transformation, from low order into
We will show now that any high order energy function high order energy, is also possible: Every k- order en-
is equivalent to a low order one with additional hidden ergy function with at least one hidden variable T, can
variables. An algorithm is given for the conversion of be transformed into an equivalent (possibly) higher or-
a high order energy function to a low order one. In der energy function that does not include T, using the
addition, another algorithm is given for transforming following method:
a low order energy function into a (possibly) higher
one by elimination of some or all of the hidden vari- 2WVe conjecture that the asymmetry between the pos-
ables. (Formal proofs are given in (Pinkas 90)). This itive and the negative transformations is a result of the
algorithms allow us to trade the computational power asymmetric encoding we used for true (1) and false (0).
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Assume T is a hidden variable to be eliminated. 7 Describing WFFs by energy
Let crT- l=1 Xji be a !1 + 1-order term that shares functions
an arc with T. We combine all these terms to form:

aj li? 1 Xy)T. An energy function E describes a WFF So if the set
We replace this term with a new term that is generated of visible satisfying models of p is equal to the set of
using the following procedure: visible solutions of the minimization of E.

Consider all instantiations • = (xi,,..., i,2 ), of the Formally: E describes 9o if(VY)(((3)(so( ,t) = 1) =
variables Xi,,... Xi, such that ((3=')E(e,i')) = min9{E(7)})).

P js = - fl zj, <0, where S is an assignment EXAMPLE 7.1 ((-,A) V (-B) V C) is described by
for the I variables xi,,..., xi, (called negative assign- AB - 2AT- 2BT- 2CT + 5T
ment). The minimizing set is:
If we clamp the visible variables using a negative as- {(0000,0001,0010,0011,0100,0101,1111)}
signment S, T will settle on the value one (generating and after projection onto the visible variables ABC,
negative energy). All other instantiations will cause T we get {(000,001,010, 011,100,101,111)} which is the
to settle on zero (generating zero energy). We will cre- set of all the models that satisfy the WFF.
ate now a new term (without T) that will generate the
same energy (9s) for the negative assignments, and Next we show that ifp(xi ... , x,,) is a satisfiable WFF
zero energy for all other assignments. of n variables then o is described by some n-order en-

For every instantiation , obtained by as- ergy function with no hidden variables (contradictions
can not be described by any energy function).signment 5, let the function L be:

L( Xi, if S(Xiy) = 1 8 The penalty function

Then, generate the term: The penalty E. of a WFF lp is a function Pw : V"
Af, that gives a penalty to every subexpression of the
WFF that is not satisfied. It looks at the conjunctive

newterm = z fL j L(X) terms in the upper level of the WFFs structure and
for every term (pi in V, A W'2 A ... (pt, it computes the

S such that fis < 0 j=1 characteristic of the negation of cp1:

• =,xl....x.) =1-H.,(xl,..., x.)
Replace the old term: ( = aIi X,,)T with the ( E(,x,)(x,...,x) =

newterm. * E(soiVso)(xl,...,zn)
The term [II= Lj(X) is one for assignment S and
zero for all other assignments. * ((JA )2)(X ... X ,)

The new term generates the same energy as the orig- X
inal term for all assignments of the visible variables = E~ 1 (x1 .... x,) + Ecp2 (x1 ..... x,)
(not including T). * E('P._tp2)(xl,..., Xf) = E((sol)vW2)(xI .... ,xn)

A more intuitive way to look at the penalty function
EXAMPLE 6.5 Let T be the hidden variable to be is to observe that if so =Ai=i Vi then:
eliminated, then: M
AB+TAC-TA+2TB-T = AB+T(AC-A+2B-1) Pso = Z(l - Ho)
The following assignments for (A, B,C) cause 1 to be i=1
less then zero:le(0,0,0) = -1; (o,0, 1 If all terms are satisfied, Pp gets the value zero, other-
A0,0,0) = -2; = -1; wise, the function computes the number of unsatisfied
A new = u3(1,0as =- terms. The function generated may be simplified to a
T yle new term equals:
-(1 - A)(1 - B)(1 - C) - (1 - A)(l - B)C - 2A(l - sum of products form of an energy function that has

B)(1 - C) - A(1 - B)C a maximum order of n.

= -ABC + AB + AC - A + B - 1 It is easy to see that ip is satisfied by t iff EL, is mini-
Therefore: AB + TAC - TA + 2TB - T mized by t and the global minimum is zero. Therefore,
,zt -ABC + 2AB + AC - A + B. every satisfiable WFF so has a function EV such that

Note that (1,0,0) uniquely minimizes both functions, Ecp describes .p.
but the energy of the two functions is equal for all The penalty function of a contradiction does not de-
assignments of the visible variables, scribe it and is always greater then zero. The set of
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minimizing solutions is never equal to the set of satisfy- = -ABT 1 + CDT2 + AB- AT - BT, - 2CT2 - 2DT2 -
ing models of a contradiction (the empty set). However TT 2 + 3T + C + D - T2
it is equal to the set of models that satisfy a maximal Converting into a quadratic function.
consistent subset (of triples). -2AT 3 - 2BT3 - 2T1T3 + CD- 2CT4 - 2DT4 + 2T 2 T4 +

We can also notice that if V is a conjunction of WFFs 5T3+3T4 +AB -AT -BTI - 2CT2 - 2DT -T 1 T2 +

each of maximum k variables, then V is described by 3T + C + D + T2

a k-order energy function. EXAMPLE 9.2 Our WFF is composed of a conjunction

of the following sub-formulas:EXAMPLE 8.1 EAA(BV(-.c))) N A S --+ W

-EA + E(Bv(-.c))NAS W

(1 - A) + H((-,B)Ac) N V (-W)
=(1-A) +(1- B)C= 1-A+C- BC S-N

NvR
Because a WFF in CTF is a conjunction of subexpres- We can compute the penalty function for each of the
sions each containing at most three variables, it may sub-formulas and then add them all:
be described by a cubic energy function. Since every NS - NSW +
WFF is equivalent to a WFF in CTF, we can con- RN +
dude that every WFF is described by a cubic energy W - WN +
function. S - NS +

We show now that all WFFs are described by 1-R-N+RN
quadratic energy functions, and that all energy func- = -NSW + 2RN - WN + IV + S - R- N + 1.
tions describe some WFFs. This cubic energy function is represented by the net-

work of figure 2. Its transformation to quadratic func-
tion generates: -2NT - 2ST - 2WT + 5T + 2RN -

9 Mapping from a satisfiability WN + W + S - R - N + I. This quadratic function
problem to a minimization problem describes the same knowledge base and is represented
and vice versa, by the network of figure 1.

The algorithm features in--remental updating of the9.1 Every WFF is described by some knowledge base: If we wish to add another piece of
quadratic energy function. knowledge, delete a WFF or update one, we make only

The following algorithm transforms a WFF into a local changes to the network and we do not have to re-

quadratic energy function that describes it by adding compute it all over again.

O(length(p)) hidden variables. EXAMPLE 9.3 Toadd the WFF: N - R to the knowl-

* Convert into conjunction of triples ( adding edge base of the previous example, we need only to
compute the penalty function for this WFF and add

O(length) p)) hidden variables) using the method it to the previous energy function. In the case of
of section 4. The variables added here reduce both N -- R we add N - NR to the previous function
the order and the fan-out of the connectionist net- and the result is: -2NT - 2ST - 2 VT + 5T + RN -
work that we generate. WN + W + S - R + 1. If we now wish to delete

* Convert a conjunction of triples into a cubic en- R -- (-IN), we subtract RN and we get the function.
ergy function and simplify it to a sum of products -21T- 2ST- 24T+ST- W. +1'+ S-R+1. The
form (using the penalty function of section 8). new knowledge base is represented by the network of

* Convert cubic terms into quadratic terms. figure 3.
(adding O(length(p)) hidden variables) using the
construction of section 6.1. 9.2 Every energy function describes some

satisfiable WFF.
EXAMPLE 9.1 Converting

= (((-i(-,A)) A B) -- ((- C) -- D)) to conjunction To complete the proof that satisfiability problems are
of triples generates: equivalent to energy minimization problems, we need
(((-(-A))AB)--T)A(((-C) - D).--T2 )A(TI -, T2). to show that for any energy function E with n visible
Eliminating +-+ and --- generates: variables and j hidden variables there exists a satisfi-
(T V(-'A) V(-'B))A((-T)V(AAB))A(T 2 V(-,C))A able WFF p, such that E describes p. We have shown
(T2 V (-D)) A ((-T 2) V CV D) A ((-,T 1) V T2) that any energy function ,o with hidden variables is
Generating the cubic energy function. equivalent to some other energy function ( possibly
(1-T)AB+T(1-A)+T(I-B)+(I -T)C+(I - of higher order) with no hidden variables at all. We
T2)D + T2(1 - C)(1 - D) + TI(l - T2) show now that for any k-order energy function E with
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9.3 Complexity

The algorithm to convert a WFF into a network of
simple units is an efficient one and generates a network
with economical size and fan-out.

We define the size of the generated network as the
number of hidden units, and we define the fan-out of
a variable to be the number of different multi-variable
terms shared by a variable.

N The conversion to GTF generates new variables pro-
portional to the number of connectives in the WFF.
The number of hidden variables that are generated
by the conversion of a cubic function into quadratic
function is also on the order of the number of binary
connectives. The reason for this is that a sub-formula
of 3 variables generates one cubic term that generates
in turn only one hidden unit. As a result we conclude
that the number of hidden units that are generated is
linear in the length of the original WFF.

Figure 3: The energy function -2NT- 2ST- 2WT+ The fan-out of all these hidden variables is bounded by
5T - WN + W + S - R + 1 captures the knowledge six for those generated for CTF and bounded by three
base after adding the WFF: N -- R and deleting R -- for those generated by conversion into a quadratic
(-N). function.

no hidden variables there exists a satisfiable WFF 10 Summary, applications and
such that E describes o. A method for constructing co conclusions
is given below:

We have shown an equivalence between the problem of
Method: Given E and n variables X = (xi, ... Xn)I satisfiability of propositional calculus and the problem
there are I f0, 1}n J= 2n possible instantiations. of minimizing connectionist energy functions.
Compute E(t) for all instantiations S(X') = (cf0,1} n
and find mint{E(!)} = minE Any propositional satisfiable WFF can be described by

an order n energy function with no hidden variables,Construct a boolean function: or by a quadratic energy function with additional hid-

1 i E'X' = minE den variables. Any quadratic (or higher order) energy
H1(i) 0 ohr ise function with some hidden variables is equivalent to aerwise possibly higher order energy function with no hidden

Build a WFF: (o = VnEs() 1(AL=1 L') that is variables, and every energy function describes some
V (A= - satisfiable WFF. We have presented algorithms to con-

characterized by Hg. vert a given WFF into a quadratic energy function

Where L' - Xi if S(Xi) = 1 that produces hidden variables with fan-out bounded
Ls  (-Xi) if S(Xi) = 0 by a constant. The number of hidden units that are

Io is a disjunction of terms. Each term is of the form. generated is linear in the length of the WFF. Using
is = (AnL gL) (This method proves existence of such this algorithm we can determine the topology and the
WFF although the algorithm is very inefficient). Note, weights of a connectionist network that represents and
that it is only the minima that cause a function to de- "solves" 3 a given satisfiability problem. What the en-
scribe a WFF. The exact energy surface is irrelevant ergy landscape looks like, and how easy is it for the
for this purpose. network to escape from local minima are areas for fu-

ture research.
EXAMPLE 9.4 E(X, Y) -XY + 1.5X Iigh order, stable connectionist models with Sigma-Pi
Trying all instantiations: units that minimize high order functions can be con-
E(l, 0) = 1.5; E(1, 1) = 0.5 structed. We have also identified procedures to trans-The characteristic function will be: form high order energy functions into quadratic energyT(, characteristic 1;cto wi(0ll) 1;: (functions and vice versa, (by adding or eliminating hid-H(0, 0) = 1; H(0, 1) = 1; g(1, 0) -- 0; H(1, 1) -- 0
The WFF that is described by E is therefore: (((-'X)A 3We assume that the model is capable of escaping from
(-Y)) V (("-X) A Y)) local minima.
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den variables). beliefs may be assigned a penalty (representing degree
As a result, we may conclude that these Sigma-Pi units of belief for example) and a total order of preference
are not needed, if we agree to add more hidden units between beliefs is determined. Contradicting WFFs
into the network. We can also eliminate hidden units compete among themselves and the netmwurk defeath
by adding Sigma-Pi capab. ities to some of the other some of .he beliefs in favor of others. At equilibrium,
units. providing a global minimum was found, the network

finds a consistent subset of beliefs such that the total
As a result of the equivalence relations defined both on fin alty is tminimi e.

energy functions and on WFFs, we can show that the penalty is minimized.
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Abstract is elaborated mathematically in the theory of learning

automata (Narendra and Thathachar, 1989). Embed-
Following terminology used in adaptive con- ding this idea within a framework for associative learn-
trol, we distinguish between indirect learning ing includes a role for stimulus patterns in eliciting ac-
methods, which learn explicit models of the tions (Barto, Sutton, and Brouwer, 1981; Barto and
dynamic structure of the system to be con- Anandan, 1985; Klopf, 1982). Extending reinforce-
trolled, and direct learning methods, which ment learning further, it is possible to specify the idea
do not. We compare an existing indirect of being "followed by a satisfactory state of affairs" in
method, which uses a conventional dynamic terms of the long-term consequences of an action, or
programming algorithm, with a closely re- of a policy for performing actions, instead of simply
lated direct reinforcement learning method short-term consequences. By combining methods for
by applying both methods to an infinite hori- adjusting action-selection rules with methods for es-
zon Markov decision problem with unknown timating the long-term consequences of actions, rein-
state-transition probabilities. The simula- forcement learning methods can be devised that are
tiois show that although the direct method applicable to control problems involving temporally
requires much less space and dramatically extended behavior (e.g., Anderson, 1987; Barto, Sut-
less computation per control action, its learn- ton, and Anderson, 1983; Barto, Sutton and Watkins,
ing ability in this task is superior to, or 1990, to appear; Hampson, 1989; Jordan and Jacobs,
compares favorably with, that of the more 1990; Sutton, 1984; Watkins, 1989; Werbos, 1987;
complex indirect method. Although these Witten, 1977a, b).
results do not address how the methods' Although control architectures based on reinforce-
performances compare as problems become ment learning can be quite complex, including com-
more difficult, they suggest that given a fixed ponents permitting off-line, look-ahead planning (Sut-
amount of computational power available per ton, 1990), reinforcement learning is usually regarded
control action, it may be better to use a as a very simple and direct method for adjusting be-
direct reinforcement learning method aug- havior. The utility of simple, direct learning methods
mented with indirect techniques than to de- as compared to the utility of more complex methods
vote all available resources to a computation- depends upon the particular algorithms in question,
ally costly indirect method. Comprehensive specific characteristics of the ensemble of tasks of in-
answers to the questions raised by this study terest, as well as a host of other factors influencing the
depend on many factors making up the eco- outcome of possible cost-benefit analyses. Are the per-
nomic context of the computation. formance improvements expected of a "sophisticated"

learning method going to be worth its additional com-
putational cost? What would happen if available com-

I INTRODUCTION putational power were used to implement many differ-
ent simple learning methods instead of a few complex

In its simplest form, reinforcement learning is based methods? Do conditions, in fact, favor learning at all
on the commonsense idea that if an action is fulluwed as opposed to a hand-crafted solution? Questions such
by a satisfactory state of affairs, or an improvement as these, vhich we regard as involving the computa-
in the state of affairs (as determined in some clearly tional economics of learning, cannot be answered in-
defined way), then the tendency to produce that ac- dependently of the relevant context, but they address
tion is strengthened, i.e., reinforced. This idea plays factors that play major roles in shaping biological sys-
a fundamental role in theories of animal learning and tents and that should play major roles in the design of

35
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artificial systems. Tile indirect method we implemented is that Sato,

The simulations described in this paper were moti- Abe, and Takeda (1988), which performs system iden-
vtedb simls dbut nevertheless unanswered, ques- tification and uses dynamic programming (DP) to es-vated by a simple, bu eeteesuaseeqe- timate optimal actions from the system model. The

tion about the relative efficiency of two approaches to direct method we implemented replaces th e DP coh-

learning how to solve a particular type of stochastic

control problem. Following terminology used in adap- ponent of the Sato et al. method with Watkins' Q-

tive control (e.g., Goodwin and Sin, 1984), we distin- Learning algorithm for incrementally approximating

guish between indirect learning methods, which learn the results of DP (Watkins, 1989). We call the re-
explicit models of the dynamic structure of the system sulting direct reinforcement learning algorithm the Ex-
telictoledels o dynmirect sructreotheste hi ploratory Q-Learning, or EQ, algorithm. We selected
to be controlled, and direct learning methods, which the method of Sato et al. for this study because itsdo not. 1 Indirect methods estimate unknown param- ato-eeto opnn sraiyaatbet i

eters describing the system to be controlled and de- action-selection component is readily adaptable to di-
fin a ontol ulein erm o thse stiate; tat s, rect methods. However, in fairness, we note that tihefine a control rule in terms of these estimates; that is, contribution of Sato et al. (1988) is a convergence the-

they employ a system identification procedure to form orem o f their al . (1988) is a conr the-
a moel f th sytem ogeherwitha cntro deign orem for their algorithm rather than a demonstrationa model of the system together with a control design of its efficiency, and here we do not prove a compara-procedure that is executed on-line to compute the cur- ble convergence result for the EQ algorithm (although

rent control rule from the current system model. 2 The such a result can be proved, as we will report in a

need for the repeated execution of this design proce- forthcoming article).

dure is what justifies the term indirect. Direct meth-

cds, on the other hand, estimate parameters that di- In this paper we do not address all of the issues that
rectly specify the control rule instead of the system to are critical in more elaborate applications of the learn-
be controlled. Although we knew that direct methods ing methods that we discuss. We assume that the
based on reinforcement learning require less computa- states of the Markov chain underlying the decision
tion for each control action than indirect methods, we problem are completely and unambiguously observ-
did not know, even for small artificial control prob- able, thereby eliminating from consideration the im-
lems, how the performance of such a direct method portant issues for control raised by incomplete state
would compare with that of a more conventional indi- information. We also assume that representation and
rect method in terms of the number of control actions storage of information is accomplished in simple look-
required for learning. up table form. More general representation and stor-

We compared two learning methods that are as similar age schemes involve the kinds of parameterized models
as possibled xto tatnisin retnds th e o isi and distributed representations that may make arti-as possible except that one is indirect and the other is ficial neural networks useful for these types of con-
a direct method utilizing reinforcement learning. We trol problems. We assume the reader can extrapolate
applied them to an infinite horizon Markov decision from what we present here to relate our observations
problem with unknown state-transition probabilities.

The imuatio reultssho tht alhouh th diect about the economic context of reinforcement learningThe simulation results show that although the direct to methods implemented by artificial neural networks.
method requires much less space and dramatically less
computation per control action, its learning ability in
this task is superior to, or compares favorably with, 2 INDIRECT AND DIRECT
that of the more complex indirect method. Because ADAPTIVE CONTROL
our simulation results comparing these methods were
obtained on a single small example of a Markov de-
cision problem, they do not address how the meth- For some approaches to adaptive control, the distinc-ods'perormncescomareas poblms ecom lager tion between indirect and direct methods amounts to
ods' performances compare as problems become larger ltl oeta h ifrnebtenepesn hand/r mre iffcul, toweer hes reult deon- little more than the difference between expressing tile
and/or more difficult. However these results demon- cotlrueitrmofhepaeesofheytmcontrol rule in terms of the parameters of tile system
strate that direct reinforcement learning methods are model on-line during learning (the indirect case) or off-
not necessarily less capable than much more complex line before the start of learning (the direct case). If the
indirect methods, and they raise questions, which we
discuss below, about the computational economics of computation required by the control design procedure
learning, is relatively simple, as it is in many adaptive control

methods, the distinction between direct and indirect
methods has minor impact on computational cost.

'This distinction parallels that between parametric and Here, however, we are interested in control tasks in
non-parametric approaches to pattern classification (e.g., hre h o w a betre e l cotl Ts
Duda and Hart, 1973). Watkins (1989) made a similar dis- which this computation can be extremely costly. This
tinction between model-based and primthve learning meth- occurs when the control objective is not to make the
ods, terminology we adopted in Barto and Singli (1990). controlled system closely follow a specified reference2A control design procedure is any method for deter- trajectory- the kind of task which is most widely stud-
mining a control rule based on a system model and perfor- ied in adaptive control but to control the system to
mance specifications. maximize a measure of long-term performance not in-
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volving a prespecified trajectory. For nonlinear sys- seres the system's state and selects an action from the
tems, solving these optimal control problems requires action set A = {1, ... ,K} (where we simplify slightly
extensive computation even if the system to be con- by not letting this set depend on the observed state).
trolled is completely known. In the general case, a If i is the observed state and action k is selected, the
search has to be conducted in the space of all possible state at the next time step will be j with probability
t:ajectories, which grows explosively as a function of p'. We further assume that under action k, a tran-
the number of control actions, system states, and the sition from state i to state j produces a payoff rk,
time-horizon of the task. For the problems in which wer

we are interested, here illustrated by Markov decision J
can implement a state feedback control law, called a

problems, this complexity can be dramatically reduced policy, to provide a control action at each time step as
by applying DP methods, but thle computational com- a function of the observed state. A stationary policy,
plexity (both space and time complexity) still remains denoted U = (u,... . , UN) E AN, specifies that the
a critical limitation. controller performs action ui when state i is observed.

If the system to be controlled is not completely known The stochastic system together with a stationary pol-
and the control design procedure is costly for all mem- icy U define a stationary finite state Markov chain with
bers of the class of system models under considera- probability p, of making a transition from state i to
tion, then the computational requirements become es- state j.
pecially severe. One strategy for such problems is to For any stationary policy U and state i, let vV denote
abandon the goal of performing learning on-line while the expected infinite-horizon discounted return, which
the system is being controlled. A separate system iden- we siplcte eturn fors te regivn poic

tification phase can be completed to a satisfactory de- Letting r(i) denote the payoff at time t, this is definedgree of accuracy, and then the control design procedure asflo:
gree as follows:can be executed once based on the resulting system

model. This is essentially the traditional non-adaptive vV = Eu [E'=oyt r(t)i(O) = i], (1)
approach in which system modeling and control are
considered as separate tasks. where i(O) is the system's initial state, -y, 0 < - < 1 is

a factor used to discount future payoffs, and Eu is the
For learning on-line during control, an indirect method expectation assuming the controller always uses policy
requires the repeated application of the costly design U. It is usual to call vV the value of i under policy
procedure (such as DP) during learning as the sys- U. The function assigning values to states is called the
tem model is updated. In such cases, therefore, direct value funcion corresponding to the given policy. The
methods can have significant advantages by eliminat- objective of the type of Markov decision problem con-
ing the need for the repeated application of the de- sidered here is to find a policy that maximizes the value
sign procedure. Unfortunately, for the optimal control of each state i defined by (1). A policy that achieves
problems in which we are interested, in the absence of this objective is an optimal policy which, although not
restrictive assumptions, there is no known way to pre- always unique, is denoted U* = (u*,...,u ). It can
compute an optimal control rule in terms of a system be shown that for the formulation given here, all opti-
model to form an easy-to-evaluate function of param- mal policies are stationary (e.g., Bertsekas, 1987).
eter estimates. Stated differently, except in special
cases, there is no known analytical way to circumvent Given a complete and accurate model of a Markov de-
the required search in the space of trajectories, cision problem in the form of knowledge of the transi-

tion probabilities, pA. and the payoff array, r for
It is possible, however, to reorganize this search by dis- all states i and j and actions k, it is possible to
tributing it differently over system states, control ac- solve the decision problem by applying one of vari-
tions, and time. This is the basis of direct approaches ous DP methods as described, for example, by Bert,
to adaptive optimal control, such as the EQ algorithm sekas (1987). Indeed, in the absence of assumptions
described below, which use incremental DP methods. other than those described above about the structure
The intuition underlying these approaches is that it of the decision problem, DP methods are the only ex-
is not worth the computational effort to perform ex- act methods applicable short of exhaustive searches
tensive long-term planning based on highly uncertain through the space of all policies. The method of Sato
information. et al. makes use of the DP algorithm called policy it-

eration, which computes a sequence of improving poli-
cies. At each iteration, the value function for the cur-

3 MARKOV DECISION rent policy must be computed either by a successive
PROBLEMS approximation method or by inverting an N x N ma-

3li more general formulations, each payoff rA' is gener-
A Markov decision problem is defined in terms of a ated by a random process that depends on i, I, and k, but
discrete-time stochastic dynamical system with finite we follow Sato et al. (1988) and restrict attention to the
state set {1, ... , N}. At each time step a controller ob- case in which the payoff process is deterministic.
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trix. The process converges to an optimal policy after difference methods," are related to methods proposed
a finite number of iterations. earlier by Klopf (1972), Witten (1977a, b), and Wer-

bos (1977). Werbos has discussed these methods in
terms of DP and calls them "heuristic dynamic pro-

4 INDIRECT AND DIRECT gramming' methods. Similar connections to DP were
LEARNING FOR MARKOV recently described by Watkins (1989), who uses the
DECISION PROBLEMS term "incremental dynamic programming." This gen-

eral class of methods is discussed in terms of DP by
When a complete model of the decision problem is un- Barto, Sutton, and Watkins (1990, to appear) and
available, it is necessary to learn about the problem Werbos (1987, 1988, 1989), who also provide references
while interacting with the system defining it. Indirect to related research by others.
learning methods are the most widely studied, They Another way of using a value model is illustrated by
rely on state-transition models formed by estimating Watkins' (1989) Q-Learning method, described below,
the state-transition probabilities for each control ac- which forms a different kind of value model to pro-
tion. These estimates can be formed while the con- vide a return estimate for each state/action pair. The
troller is interacting with the system by keeping track output of this value model for a state/action pair is
of the frequencies with which the various state tran- an estimate of the expected return assuming that the
sitions occur for the various control actions. Indirect given action is performed for the given state, and that
methods also require estimating the payoffs rk, for an optimal policy is used thereafter. Control deci-
each combination of current state, i, next state, J, and sions can be made according to how control actions
action, k.4 Indirect methods are based on the certainty are ranked by this value model given the current state.
equivalence principle of computing and using policies This method is related to the "action-dependent adap-
that would be optimal if the current transition proba- tive critic" mentioned by Werbos (1989) and to the
bility estimates were correct (Bertsekas, 1987). Most classifier systems described by Holland (1986).
of the methods for the adaptive control of Markov pro-
cesses described in the engineering literature are indi- When payoff values and control actions are continu-
rect (e.g., Borkar and Varaiya, 1979; Kumar and Lin, ous quantities, a value model can be constructed in
1982, Mandl, 1974, Riordon, 1969, Sato-Abe-Takeda, a form that permits the computation of the gradient
1982, 1985, 1988). of the estimated value with respect to control vari-

ables. The policy can then be adjusted via gradient
Although reinforcement learning methods can utilize ascent. Using an artificial neural network to repre-
models in a variety of ways, most such methods are sent the value model makes this approach attractive
classified as direct because they do not use state- because the value model's gradient can be computed
transition models. In a direct learning method, there efficiently by error back-propagation. This approach
is no possibility for performing any computation that was discussed by Werbos (1977) in relation to the dif-
explicitly requires "thinking about" state transitions ferential dynamic programming method of Jacobson
without actually causing the controlled system to ex- and Mayne (1970), and Jordan and Jacobs (1990) il-
ecute them. Ruled out, therefore, are any methods lustrated it using a version of the pole-balancing task
using conventional DP or heuristic search algorithms, with continuous control actions.
Most examples of direct methods for learning how to
solve Markov decision problems make use of stochas- Reinforcement learning methods have also been stud-
tic learning automata (e.g., Lakshmivarahan, 1981, ied that use both state-transition and value models
Narendra and Thathachar, 1989; Wheeler and Naren- (e.g., E1-Fattah, 1981; Sutton, 1990). Werbos (1987,
dra ,1986; Witten, 1977a, b). 1988, 1989) discusses gradient methods that make use

of system models.
Although direct reinforcement learning methods do
not use state-transition models, they can use value
function models, which we call value models in what 5 AN INDIRECT ALGORITHM
follows. The simplest methods use the value model's
output to evaluate and reinforce control actions as they We describe the algorithm proposed by Sato, Abe, and
are performed. The pole-balancing system of Barto, Takeda (1988) as an example of an indirect method
Sutton, and Anderson (1983) illustrates this approach. for learning to solve Markov decision problems with
After each control action, the value model is updated unknown transition probabilities. This algorithm is
based on the immediate payoff and the value estimate an extension of previous research by the same authors
of the next state using an "adaptive critic method." (Sato, Abe, and Takeda, 1982, 1985). In Section 6,
This class of value-estimation methods, developed by we combine a component of this algorithm with Q-
Sutton (1984, 1988), who also calls them "temporal Learning to produce a comparable direct method.

4More generally, if the payoff process is stochastic, the The method of Sato et al. explicitly estimates the un-
expected payoff values must be estimated. known state-transition probabilities by keeping counts
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of state transitions observed while controlling the sys- where a is a positive constant. The fractions in (3)
tern. Let n (t) be the number of times action k was cause the controller to sometimes prefer over ft, an
taken on a transition from state i to state j before action that has not been been performed for a long
time t. Then n(t) = Ej nk(t) is the number of times time.
action k was taken in state i, and ni(t) = ,k n k(t) is Sato et al. (1988) show that if E satisfies the condi-
the number of times state i occurred. The estimates at tions given by (2), then in the limit all actions are
time t of the unknown transition probabilities, which performed infinitely often for each state, as needed
constitute the state-transition model at time t, are for convergence of the state-transition model, and that
P,(t) = n1,(t)/n,(t). Sato et al. (1988) show that the policy converges to an optimal policy. Specifically,
if all state-transition probabilities are positive, then in they define the relative frequency coefficent to be
the limit these estimates converge, almost surely, to
the actual transition probabilities. They assume that f(t) 1 (t), (4)
the payoff array is known.

At each time t, an estimated optimal policy, U*(t), which gives the average number of optimal decisions
is computed using the policy iteration method of DP made before time t. Sato et al. (1988) prove that if
based on the current state-transition model and the all transition probabilities are positive and 0(n) = Oo
payoff array. The control action specified by this policy for all n, then
for the current state i, 0i, is used to bias the control
decision in favor of the estimated optimal action in a lim lim f *(t) = 1, almost surely,
manner described below. Because the state-transition 00-0 t-oo

model only changes by a small amount at each time whereas if O(n) satisfies (2), then
step, the policy iteration method converges after few
iterations if it starts with the estimated optimal policy lim f* (t) = 1, almost surely.
computed on the previous time step. t-00

An explicit mechanism is used to cause sufficient ex- 6 Q-LEARNING
ploratory behavior for the system identification pro-
cess to converge to the correct state-transition model. Q-Learning is a method proposed by Watkins (1989)
This mechanism works by sometimes forcing the con- QhLean i s a methodyroposedbytWatino989
troller to take an action that has not been taken for that can form the basis of a variety of direct reinforce-
a long time instead of the action currently estimated ment learning methods. It is an asynchronous Monte
to be optimal. This explicit tradeoff between estima- Carlo form of DP that does not require knowledge of
tion and control is implemented in the following way. the state-transition probabilities or the payoff array.

At each time step t, a quantity, c-(i), is maintained Q-Learning estimates what Watkins calls state-action
for each state i and action k to reflect the number of values: the state-action value of state i and action

times action k has not been performed in state i since k, denoted Qik, is the expected infinite-horizon dis-
t = 0. These quantities are computed iteratively by counted return if action k is performed in initial state
letting c -() = 0 for all i and k and using the follow- i and an optimal policy is followed thereafter. An op-'s l a e timal action for state i is therefore any action k that
ing update rule at each time step: maximizes Qk.

kix + O(n(t + 1) - n(t + 1)) Each time the controller takes an action, say action k

t +())if k uwt) from state i at time t, the current state-action value
c (t) otherwise, estimate for i and k, denoted Qik(t), is updated as

where u(t) is the action performed at time t. E is a follows:
positive function that is constant or satisfies the con- 'ik(t + 1) = (1 - ft) ik(t) + flf[r + 7 max j1 (t)], (5)
ditions 13 1A

0where j is the actual next state, - is the discount
mn a 0(n) = . (2) factor, and {3t} is a sequence of step-size parame-

n=1 ters. The state-action value estimates for states other
than i and actions other than k remain unchanged.

The values c'(t) are used to determine the controller's Watkins (1989) shows that these estimates converge
action at time t as follows. If i is the state at time t and to the true state-action values if each action is even-
fi, is the action estimated (via policy iteration) to be tually performed infinitely often from each state and
optimal for state i, then the action actually performed the sequence {3t) converges to zero in an appropriate
by the controller is the action k which maximizes manner.

c(t)/nk(t) + a if k = ui (3) Given estimated state-action values ik(t), the policy
c (t)/n (t) otherwise, that is optimal with respect to these estimates (i.e., a
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kind of certainty equivalence policy) is the policy that
selects for each state i the action

fi = arg maxQjk(t), (6)
SkEA

where ties among actions are resolved in some arbi-
trary way. Table 1: Transition Probabilities

If the estimation error of the state-action values is zero,
then the policy specifying i, for each state i as defined p 0 p13= 0.2 p' -02 pW03
by (6) is an optimal policy, but Q-Learning does not pi = 0.2 p 2 = 0.2 p = 0.2 p4 = 0.2 p = 0.2

require this policy to be followed during learning. For p3 = 0.1 p32 = 0.1 p3 = 0.1 p24 = 0.3 p = 0.4

performing Q-Learning, the policy actually followed I = 0.1 P 2 = 0.1 P1 = 0.2 p I = 0.3 p I = 0.3
by the controller is not important except that it must pP2 = .1 p2 = 0.1 P23 = 0.6 P24 = 0.1 2 =

allow sufficient exploration to permit convergence of p3i = 0.1 P% = 0.5 p23 = 0.2 1a4 = 0.1 P5 - 0.1

the state-action value estimates. However, for the con- P31 = 0.1 P32 = 0.4 Ph3 = 0.2 Ph = 0.2 p35 = 0.1
troller to improve its performance while performing Q- pai = 0.3 Pa2 = 0.2 P = 0.2 pa = 0.2 pa = 0.1

Learning, it must bias its policy toward the estimated P31 = 0.3 pa2 = 0.2 p 3 
= 0.1 P34 = 0.1 p35 = 0.3

optimal actions. Because this must be accomplished p4 = 0.2 p42 = 0.5 p43 = 0.1 P14 = 0.1 P45 = 0.1
while permitting sufficient exploration, the issues that p2, = 0.3 P 2 2 0.1 P = 0.1 P24 = 0.4 P2 = 0.1

arise are identical to those considered by Sato et al. p3 = 02 p .3 p 3 = 0.3 p = 0.1 pa = 0.1

(1988), and it is possible to combine Q-Learning with p. I = 0.2 2= 0.2 p = 0.2 p = 0.2
their method for determining control choices to pro- p = 0.2 P52 = 0.3 e53 = 0.2 P24 = 0.1 p5 = 0.2
duce a new direct reinforcement learning algorithm. p = 0.1 p52 = 0.4 1 .5 = 0.2 pt, = 0.1 p.s = 0.2.

This algorithm, which we call the Exploratory Q-
Learning, or EQ, algorithm, combines the exploration
strategy of Sato et al. with Q-Learning. Instead of
using policy interation at each step to estimate the
current optimal action, the EQ algorithm uses the ac-
tion, fi7, computed from the current state-action value
estimates according to (6). This action is then used in
(3) to determine the control decision, where ci(t) and
n (t) are computed exactly as in the method of Sato et
al. Using Q-Learning instead of policy interation leads
to great savings in both the space and time complexity
of each control step (detailed below). Although it is
possible to reduce the space complexity further by re-

placing the exploration method of Sato et al. with one
having less demanding space requirements, we retain =-

their method to facilitate comparison of the indirect r11  1 r2 -2 r'3 -4 r'= -1 rl= 3

and direct aspects of the algorithms. 1=-2 1=3-7 r3=2 44=8 4= -1
1 -3 r12 =6 T133 -1 r31= -2 r1= 4

r=7 r222 =-4 r23 =l r4=-2 r25 -8
7T SIMULATION RESULTS = --- 2 r23 1 T4=-2 r2 =5

r2 =s 4=-1 r3=-3 r2=-7 r50

Sato et al. (1988) present simulation results for their r = 3 r2 = 1 r = 2 r = 4 r5 =-42"32 2 2 3= - t = - 3s
method applied to a simple five state, three action, rsi = 3 r2 = 0 3 -1 r4 - 3 r3 =7

Markov decision probiem. The arrays of transition r3 =-6 r2 = r3 = -2 4 = 4 r5 = 0
probabilitie.z and payoffs are reproduced here in Ta- r41 = 5 r42 = -4 r43 = 3 r4 = 1 r = -6
bles I and 2. Recognizing that this problem is too r41 = 3 r42 = 2 r43 = -1 4 =-3 r2 = -5
small to allow strong conclusions to be drawn, and r4l = 4 r4 1 r43 = -6 r4 = 6 r4 = 2
that it was used by Sato et al. merely to illustrate their A1 2 r = 6 I~ = 2 4 - -1 r = 3

convergence result, we compared the performances of r = -5 r 2 = 1 r53 = -3 ri = 4 r5 = -4
the Sato et al. and EQ methods on this problem to ob- rS = -3 r2 = 5 ra = 2 3S = -1 ra = -5,
tamn a preliminary indicattun uf the relative efficiency
of directly comparable indirect and direct and learning
methods.

Figure 1 shows the evolution of the relative frequency
coefficient, f *(t), defined by (4), as a function of the
number control actions for both learning methods and
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Z .0 - 1.0 putation per control action for the two learning meth-----. - --- ods. Because the method of Sato et al. performs pol-

0. 0.s icy iteration after taking each action, whereas the EQ
method performs a single Q-Learning step, the EQ0.6 0C 0.( method requires much less computation per step. Al-

2:0.4 - 0.4 though policy interation can be approximated without
EO ' explitit matrix inversion at each iteration (e.g., Rior-

02Satotal. - - - SBIo,0B0. don, 1969), we assume that each application of policy1iteration requires at least one matrix inversion. As-
.o 00 o 0oo0 9ooo 0 3o00 6000 9000 suming that any practical matrix inversion algorithm

A numbeofcontrolactions B numbfof controlactions requires O(N 3 ) operations for an N x N matrix, the
time taken by policy iteration is O(N 3 + N 2K), where

1.o0 - 1.0 - N is the number of states and K is the number ofac-
• - tions. The time required for a Q-Learning step (i.e.,

C 08 ----- 0.0 - to apply (5))is just O(K). Hence, the savings for each
0 0Q control action using the EQ method is dramatic. For

0.6 o.6 example, for each action performed in the test prob-

"0.4 0.4 lem, the Sato et al. method requires a minimum of
o.E. -about 200 basic computational steps, whereas the EQ

02 - 2 a0 o.2 - - 20 method requires essentially 3, the number of actions
Stota. --- Satootal. (not counting the few computations required by each

0.00 000 600 001 method to implement their common action-selection

C nnbo of control actions D number of control a s process).
the relative frequency coefficient, Additionally, the EQ method is more space efficient

Figure 1: Graphs of hthan the method of Sato et al.: The latter method
f(t), as a function of the number of control actions requires O(KN 2) storage locations because it has to

performed for the algorithm of Sato et al. (dashed line) store the state-transition model and the payoff array,
and the EQ algorithm (solid line) for four choices for whereas Q-Learning requires O(KN) storage locations
0(n). Each graph is the average of five simulation ex- for the state-action value estimates. In fact, most of
periments made with different random number seeds. the space used by the EQ method is used to imple-
For all graphs, a = 1.0, 83 = 0.05, and 7 0.8. ment the action-selection process it shares with the
Panel A: G(n) = 0.1, Panel B: 0(n) = 0.05, Panel method of Sato et al. Preliminary simulations using Q-
C: 0(n) = 1/n, Panel D: 0(n) = 1/V-. Learning with less complex action-selection processes

have produced performance better than that of the EQ

for the four choices of the function 0 (indicated in method on this problem.

the figure caption) used by Sato et al. (1988). Each
graph is the average of five simulation experiments 8 DISCUSSION
made with different random number seeds. In all cases,
the action-selection strategies of the two methods were We were initially surprised by the results shown in Fig-
parameterized identically, so that the only difference ure 1. Even for the small test problem, we expected the
between the methods was the manner in which the es- simplicity of the EQ algorithm on a per-control-action
timated optimal action, fii, was computed at each time basis to extract a higher price in terms of the number
step The sequence {fOr) for the Q-Learning algorithm of control actions required for achieving a given level
was held constant at 0.05 throughout the simulations, of performance. Ignoring the per-control-action cost,
a value not explicitly optimized for this problem. how can any method perform better than one that per-

With the exception of the graphs in Panel D, the forms complete DP at each control step? The answer
graphs in Fig. 1 show that, in this learning task with lies in the consequences that each learning method has
the indicated parameter values, the EQ algorithm for the exploratory behavior of the controller. Both
achieves a higher level of performance after any given algorithms use the same mechanism for selecting ac-
number of control actions than does the algorithm of tions on the basis of the current estimate for the op-
Sato et al. Panel D shows somewhat better perfor- timal action (Oii), but differences in these estimatesmam.e for the method of Sato et al. Note that the EQ imply the selection of different actions. Because eachalgorithm achieves this performance level using only Q-Learning step depends on a very small sample fromthe actual payoff at each time step instead of k-lw a random process, the behavior produced by the EQedge of the entire payoff array required by th .lgo- algorithm is more variable than that produced by therithm of Sato et al. algorithm of Sato et al. in the initial stages of learning.This variability seems to produce more effective explo-
Not shown in the figure is the relative amount of com- ration for the te.5t problem in question, consistent wit,
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Witten's (1977b) observations on exploration in dis- 9 CONCLUSION
crete deterministic environments. Under conditions of
high uncertainty, theref,'re, it might be better to avoid The simulation results described in this paper show
complex long-term planning not only to save fruitless that although the direct EQ algorithm requires less
computational effort, but also to foster more effective space and much less computation per control action
exploratory behavior. than the indirect method of Sato et al., its learn-

Clearly, as control problems become more difficult due ing ability when applied to a test problem is supe-
to increases in the number of states and control ac- rior to, or compares favorably with, that of the more
tions, and increases in "depth" (i.e., increases in the complex indirect method. Using a certainty equiva-
degree to which the long-term consequences of control lence approach, indirect methods for learning to solve
decisions influence performance), one would expect in- Markov decision problems perform costly "pseudo-
creases in the utility of performing conventional DP optimization" on the basis of uncertain information.
based on a state-transition model. But because the Direct reinforcement learning methods, on the other
computational cost of this approach increases rapidly hand, keep closer touch to reality by directly using ex-
as problems become larger and/or deeper, the straight- perience with the system itself instead of with a system
forward extension of such an indirect method to more model.
difficult problems is not necessarily the best approach. However, because the comparative study presented in
As problems become more difficult, the effectiveness this paper involves only a single very small Markov de-
of various methods, and combinations of methods, will cision problem and a single pair of learning algorithms,
depend on details of the problems and the conditions the results merely provide one data point in the study
under which they must be solved, i.e, on a wide set of the relative advantages of direct and indirect learn-
of issues making up the economic context of the com- ing methods. Although we know how the relative num-
putation. For example, in applying the EQ algorithm ber of computations per control action increases with
and the algorithm of Sato et al. to several problems increasing problem size, we do not know what hap-
larger than the test problem described here (problems pens to the relative performance of these methods as
with 7 and 8 states), sometimes one algorithm and the task size increases. The utility of performing con-
then the other would perform better. We could dis- ventional DP based on a state-transition model surely
cern no clear relationship between the task and which increases with increasing problem size and difficulty,
algorithm would reach a higher level of performance but is it worth the greatly increasing computational
after a given number of control actions, except that cost?
in all cases the EQ algorithm required much less over-
all computation due to the small number of computa- A comprehensive answer to this question depends on
tional steps it required per control action. many factors making up the economic context of the

computation, but our results suggest that it can be
Experience does indicate, however, that neither the in- advantageous to distribute the required learning and
direct nor the direct methods described in this paper planning processes over system states, control actions,
efficiently scale up to large nonlinear problems with- and time in ways differing from that of conventional
out additional mechanisms. It seems clear that many indirect learning methods. The theory of reinforce-
types of models must be employed in a variety of differ- ment learning using incremental dynamic program-
ent ways to achieve effective learning performance on ming methods needs to be extended with these issues
complex tasks. Hence, we emphatically do not inter- in mind.
pret the results reported here as suggesting that state-
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Abstract since it implies that the algorithms are moving in the
correct direction, statistically at least. The surprising

Sutton [2] introduced a reinforcement com- part of his analysis was that, for the particular case
parison term into the equations governing Sutton considered, the comparison term may be elim-
certain stochastic learning automata, argu- inated from the analysis at an early stage. The result
ing that it should speed up learning, par- on stochastic gradient ascent is unaffected by its value.
ticularly for unbalanced reinforcement tasks. Sutton's simulations, however, demonstrated that dif-
Williams' subsequent extensions [3] to the ferent comparison terms perform very differently.
class of algorithms demonstrated that they Williams essentially looked at the first order term in
were all performing approximate stochastic the Taylor expansion of the function that relates the
gradient ascent, but that, in terms of expec- expected reinforcement to the weights determining the
tations, the comparison term has no first or- probability of performing the actions. Although the
der effect. comparison term vanishes from this, it would not be
This paper analyses the second order contri- expected to vanish from the second and higher order
bution, and uses the criterion that its modu- terms. Second order analysis should reveal for it both
lus should be minimised to determine an op- a rble, and, potentially, an optimal value.

timal value for the comparison term. This

value turns out to be different from the one
Sutton used, and simulations suggest at its 2 THEORY
efficacy.

2.1 WILLIAMS' ANALYSIS

1 INTRODUCTION Williams treats a very general problem. At any time,
each of n units receives an input x i E RP, 1 < i < n

Sutton [2] introduced the notion of reinforcement pre- from some environment, and uses its weight vector
diction as a way of speeding up the learning of a w' E RP to determine whether to fire or not, y, = 1
class of stochastic learning automata. Most previous or y, = 0 respectively. Before it chooses its action,
methods made assumptions about the independence and before the environment evaluates the combined
of the learning of the automata from all aspects of set of actions, each unit also chooses a reinforcement
their reinforcement history that were not 'compiled' comparison value b,,, 1 < i < n, 1 < j < p for each
into their current action probabilities. Sutton rca- component of each weight. The environment returns a
soned that comparing the current reinforcement with global reinforcement value r that is stochastically re-
some function of its frequency of delivery in the past lated to the quality u f the actions of the units, and each
might be helpful for determining whether or not their unit then updates its weight vector according to the
actions were making things worse or better. lie ex- reinforcement, its chosen action, and its reinforcement
pected particular utility for such comparisons in the comparison values.
difficult cases in which reinforcement delivery is un- A simple example of such a reinforcement learning sys-
balanced - for instance when all actions tend to berewarded or punished. tem is the two armed bandit problem, which we shall

return to later. For this, the automaton has no inputs,
Williams [3] analysed a related set of algorithms, wvhich but chooses, stochastically on the basis of a stored
includes Sutton's, and demonstrated that they were all %veight, to pull either the left arni (y =- 0) of the ban-
performing on-line, stochastic gradient ascent in the dit or the right arm (y = 1). The machine delivers
expected amount of reinforcement. This is reassuring, reinforcement of r = ±1 with diffe.rent pruIabilitias
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for the two arms, and the automaton has to learn, by reinforcement that will be received at the next time
changing the weight, which arm it is best to pull. step:

More formally, Williams proves that if: E[r'jw, x] =
6S[rlw]Awq = cij(r - bij)eij, (1) 6[rlw] + ,&[AwEIwx] +

where, [AwiAw w,x]2[rw
r is the reinforcement, 6w +w

bij are reinforcement baselines, which are
conditionally independent of the ac- Williams deals with the first order term, showing that
tions yj given the weights W and the the first term in the product is proportional to the
inputs x', second, and that b makes no contribution whatsoever.

aij is the learning rate parameter for wq, Setting .(z) = E[rlz], the second order term is:

- 61 Ig is the so-called eligibility Z '7i6
= wij of the weight wij, a mea- io

sure of how influential it [y = Clw, x]P[r = ple, x] x
was in choosing the ac-
tion, 'P

gi(= [yi =I w,x] (p-h(p)-. (3)
is the probability the it N  (P -inner -does (3)
unit emits action given Note that the inner sum does not depend on the value
its weights w i and its in- of i or j. Extracting the value b that minimises it,
put X. gives:

then: -=fr(y - .)21wx]

E(Awi 1 -Wl = ii W,] (2) V[ylw,x]
[wii However, y can only take on two values: 0 or 1. Let:

where W is the matrix of all w i .  p = *P[y=llw,x]

Equation 2 implies that these algorithms are all per- ro = E[rly = 0, w, x]
forming stochastic gradient ascent in an averaged ri = 9[rly = 1, w, x]
sense. The dependence on the values of the bli drops then ,r = p, and
out at an early stage, since:

£[eiIW~xl = . - - p)2 r, + (1 - p)p -ro£[ejslW,xi] = 0. Al =
p(1 -p)

=(1 -p)r + pro.
However, looking at equation 1, it is apparent that

changing the b,, is likely to affect at very least the irn which, counterintuitively, the expected reward for
stability of the algorithm. Sutton [2] investigated this emitting action 1 is paired with the probability of
empirically for his algorithm, and found faster conver- emitting action 0, and 6icc-zersa. Williams (personal
gence across a range of problems for b,, being estima- communication) derived the same expression for 1 on
tors of the average amount of reinforcement received the grounds of minimising the variance of the Aw,.
than for bij = 0. lie ultimately considered this an inappropriate reason

for choosing the value of b.
2.2 THE SECOND ORDER TERM The reinforcement comparison algorithm favoured by

Unfortunately, treating higher order terms at the same Sutton involves teaching an extra unit to predict the
level of generality as Williams is not fruitful. Consider future reinforcement level, lIe defines s = , vlz1 ,simplest of the cases that Sutton takes, where v are the prediction weights. These are changed

insted theaccording to:
Iere there is just one unit, weights wi, inputs xi, re- Aavo =6(r - s)x.
inforcement r, and with:

This tends to make s an estimator of sorts of &[rlw, x],
Awi = cr(r - 6)(y - -r)xi or ', where:

where Er = £fylx,w]. b can depend on x and w, but b' =pri +(1 -p)ro.
not on the output y.

A different way of looking at Williams' result is which, a priori, is the more natural pairing.

through the Taylor expansion of E[r'lw, x], using the 'Minimising the variance leads to the same expression
prime ' to indicate that it is the expected value of the since C[Aw,] is independent of b, and z, factors out.
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2.3 CHOOSING b same value of reinforcement, the only different be-
ing in the precise frequency.

Although 1 minimises the inner sum in the second or- * Imbalance in the reinforcement values - in which
der term of equation 3, it is not yet clear that this is the actual reinforcement values received are not
appropriate. In the one dimensional case, since the re- centred around 0. This can make learning sub-
inforcement is bounded above and below, the second
derivative 62.fl/w 2 will be positive for some values of changes in the weights on any one occasion inde-

w and negative for others. This means that it is bound phndentio the reinfomn reci.

both to speed and hinder the learning. Setting b = b pendent of the reinforcement received.

minimises this effect. Reinforcement comparison only deals with the second

As an example, consider the first ta-sk. Sutton inves- of these types of imbalance. Williams (personal com-

tigated, which is a two-armed bandit problem. Here, munication) has pointed out that the term r - bij in
theraewh two -ard blem actions y = 0, 1,and:the formula for the weight change, equation 1, willthere are two possible actions yt = 0,!, and: take both positive and negative values if the bii lie be-

y = 0 * P[r = 1] = 0.8 P[r = -11 = 0.2 tween the maximum and minimum reinforcement val-
Y= 1 =* r = 1] = 0.9 P[r = -1] = 0.1 ues. Barto [1] provides some reasons why the term

so the optimal action is y = I. y -7 in the learning rule helps mitigate the effects of
the first type of imbalance.

Choose [Py = 11w] = f(w) = 1/(1 + e-'), then:

C[rlw] = 0.6 + 0.2f(w) 3 RESULTS

- &IrIw] = 0.2f(w)(1 - (w)) Calculating the 'optimal' b is more difficult than cal-
62 culating Sutton's b', because of the cross-pairing of the

-W_2 g[rw] = 0.2f(ur)(1 f(w))(1 - 2f(w)) average reinforcement for action I with the probabil-
ity of doing action 0. It is possible to develop an es-

So, with Aw = a(r - b)(y - s), the changes are: timator p (x) = vfz with weights v, as in Sutton's
algorithm, and to change them according to:

y r P Aw/LC Av=.8 f f I- ' Y.) - A
0 -I 0.2(l - f(z)) (I + b)f(w) v r- y
0 1 0.8(1 - f(w)) I -(1- b)f(w) where ;' is an approximation to Efylw]. p then

-1 0.1f(w) -(1 + b)(1 - (w)) estimates I = - p)r, +pro. Since y is never I if
1(; = 0, the first term is never infinite. However, this

Then CgAxw] = a x 0.2f (w)(1 - f(w)), which, as ex- iterative scheme would not be expected to converge.

pected, is independent of b. The alternative way, suggested by, but not discussed

However, let 9(w) = C[rlw] = 0.6 + 0.2f(w), then: in, Sutton's thesis, is to develop separate predictions
of r0 and ri, using two sets of weights. These would

Err w] = 0.2(l - f(w))g(w + ef(w)(1 + b)) + then be combined with z' as (1 - z')rl + :rro. Both
0.8(0 - f(w))g(w - of(w)(1 - b)) + methods were simulated.
0.If(w)g(w - ct(l - f(w))(l + b)) + For the sake of comparison, I used the problems that

0.9f (w)g(w + a(1 - f(w))(l - b)), Sutton developed for his thesis [2]. The set chosen are

where F is the reinforcement received after the automa- the non-associative ones in Chapter II, although the
ton's next choice. b will not drop out of this. It is new comparison term will work for associative tasks
apparent from a graph of the second order term that too. Table 1, copied from PIS, shows the problems.
it helps learning for u; < 0 and hinders it for w> 0. The binary tasks produce reinforcement of -1, with

Settingsb minimises botha these effects. the probability that it is 1 given in the last two columns
Setting b = inof the table. The continuous tasks produce reinforce-
The same will be true in higher dimensions, i.. that ment spread uniformly within -; 0.1 of the means given
the second order term will be alternately a hindrance in the last two columns.
and a help. Minimising its modulus should therefore Formal descriptions of the algorithms compared are
increase the overall efficacy of gradient ascent, which given in table 2, using Sutton's notation. Algorithms
operates perfectly on linear functions. A and A' are Sutton's algorithms 8 and 9, which he

There are two types of imbalance that can afflict prob- found to be the best. B, B'. C and C' all make p
lems like the two-armed bandit. estimate the quantity recommended by the analysis

above. B and B' do this through a single term. whereas
* Imbalance in the probabilities - in which both the C and C' also emplo) u, and u, which are designed to

better and the worse action usually lead to the predict r, and r0 respectively.
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Table 1: The Tasks (From Sutton).
Task Reinforcement r range r mean

Type Act 1 Act 0
1 Binary {1,-1} 0.90 0.80 Table 2: The Algorithms (After Sutton).2 B in a ry { 1 , - 1 ) 0 .2 0 0 .1 0 -~ - - t p a e R l
3 Binary {1, -- 1) 0.55 0.45 Algorithm U.pdate Rule
4 Continuous R 0.90 0.80
5 Continuous R -0.80 -0.90 A Aw[t] = a(2 + 1] - p[t])(y[t] -

6 Continuous R 1 0.05 1 -0.05 A' AWN = a(rlt + 1] - ON) - Irfl)

B Aw[t] = a(r[t + 1] - q[t])(y[t] - D
Figures 1.6 show how the algorithms performed on
each of the various tasks, for differing values of a. Fig- B' Aw[tj = a(r[t + 1] - q[t])(y[t] - 7r[t])
ure 7 shows how the algorithms performed across the
entire range of tasks, choosing for each its best result. C Aw[t] = (r[t + 1] - s[t])(y[t] - 1)
The y-axis shows the terminal probability of choosing
action 1, which is the better action for all of the tasks. C' Aw[t] = a(r[t + 1] - s[t])(y[t] - xrft])
It is apparent that C which uses the new estimator,
does indeed perform better than A and A' which use
the original one, although not by much. B and 1' are Where: Aw[t] = w[t + 1] - w[t], and
particularly bad on the two tasks for which reinforce-
ment is generally negative whichever action is taken. w[0] = 0, 7r[0] y[t] E {1,0), a > 0,
It is unclear why this only happens for these partic- 0
ular tasks, although dividing by 7r' or (1 - i7r) does
build in an instability. The obvious way to cure this and 7r[t] is the probability that y[t] = 1.
- multiplying the rule by r(1 - 7rt ) does not improve 1, if w[t] + r[t] > 0;
matters substantially. For all algorithms, y[t] = , otherwise,

In a further experiment, the standard deviation a of
the distribution of ir[t] was set to 0.5. This value de- where rq[t] is normally distributed XAV' = 0, a = 0.3]
termines the balance between the exploitation of the
current weight w[t], and the exploration for a netter For A and A',
one. Figure 8 is the equivalent of figure 7 for this Ap[t] = P(r[t + 11 - p[t]), p[0] = r[1J,
case, showing the best performance of the algorithms,
an,' again aigorithm C can be seen to be somewhat For B and B',
superior. Indeed, it affords more improvement in this Aq[t] = )3 { r[t + 1] (("Mt + (
case. It is also unclear why C should outperform C', \1] +

since Sutton generally found algorithms with eligibil- q[t]},q[] =
ity terms of the form y - E[y] were preferable to those
employing y - 1/2. For C and C',

A further alternative is to develop explicit estimators As[t] = /f(ui[t+ 1](1- 7r[t])+ uo[t + 1],r[t]
of(1-p)rj and pro, and to use their sum. In the non- -s[it] )
associative case the resulting algorithms would not dif- s[0] = r[1,
f-r greatly from C and C'. They would differ in the
associative case, however, since the learning rule for Aul[t] = 8(r[t + 1] - uj[t])y[t], uj[0] = r[1],
these estimators would not change, whereas the equiv-
alents of C and C' would involve estimators of ri(x) Auo[t] = f(r[t + 1] - uo[t])(1 - y[t]), uo[0] = r[1],
and ro(x), which do depend on the input x.

and fi = 0.2.

4 CONCLUSIONS All algorithms are run for 25 iterations (Sutton used
200), and each mark on the graphs in figures 1-7 is the

At least one of the ways in which reinforcement com- average over 500 runs.
parison works is by reducing the effects of the non-
linearity of the function which relates the weights of
a stochastic learning automaton to the expected re-
inforcement. This is not apparent from the first or-
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der term, from which one can only conclude that the
reinforcement comparison algorithms are performing
stochastic gradient ascent, independent of the actual
comparison adopted. The second order term also re-
veals an optimum value for this comparison, and simu-
lations have confirmed that the new term speeds learn-
ing, although it does not make for a dramatic improve-
ment.

This analysis, like Williams', says nothing about the
convergence of the algorithms. However, Sutton's sim-
ulations do provide some grounds for optimism.
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Abstract of state', or 'short term memory', and we speak of
internal feedback.

This paper gives an overview of some novel Dynamic Learning Algorithms and Networks. A prob-
algorithms for reinforcement learning in non- lem that requires credit assignment to past activation
stationary possibly reactive environments. I states is called a dynamic problem. Learning algo-
have decided to describe many ideas briefly rithms for handling dynamic problems are called dy-
rather than going into great detail on any namic learning algorithms. Learning algorithms that
one idea. The paper is structured as fol- are not dynamic algorithms are called static algo-
lows: In the first section some terminol- rithms. For instance, all algorithms that require set-
ogy is introduced. Then there follow five tling into equilibria while the inputs have to remain
sections, each headed by a short abstract. stationary are considered to be static algorithms, al-
The second section describes the entirely lo- though the settling process is a dynamic one based on
cal 'neural bucket brigade algorithm'. The internal feedback.
third section applies Sutton's TD-methods to
fully recurrent continually running probabilzs- If a given network type can be employed for dynamic
tic networks. The fourth section describes problems, and if there exists a corresponding learn-
an algorithm based on system identification ing algorithm, then we sometimes speak of a dynamic
and on two interacting fully recurrent 'self- network.
supervised' learning networks. The fifth sec- The credit assignment problem. If a neural network is
tion describes an application of adaptive con- supposed to learn externally posed tasks then it faces
trol techniques to adaptive attentive vision: Minsky's fundamental credit assignment problem: If
It demonstrates how 'selective attention' can performance is not sufficient, then which component of
be learned. Finally, the sixth section criti- the network at which time did in which way contribute
sizes methods based on system identification to the failure? How should critical components change
and adaptive critics, and describes an adap- behavior to increase future performance?
tive subgoal generator.

Supervised Learning. A learning task is a supervised
learning task if there are externally defined desired

1 Terminology outputs at certain times, but the network never needs
to discover output actions on its own. Supervised

External feedback. Consider a neural network receiving learners have to consider only the internal feedback
inputs from a non-stationary environment and being for performing credit assignment.
able to produce actions that may have an influence Reinforcement Learning. A learning task is a reinforce-
on the environmental state. Since the new state may ment learning task if the teacher only indicates once
cause new inputs for the network we say that there is in a while whether the system is in a desirable state or
external feedback. not, without giving information about how to reach de-

Internal feedback. Jf the network topology is cyclic, sirable states. Usually an evaluative (non-instructive)
then input activations from a given time may alter the teaching mechanism sometimes provides a scalar sig-

way that inputs from later times are processed. In nal, the reinforcement, whose value indicates success
this case there is a potential for the 'representation or failure. During training the network is supposed

to discover on its own outputs that eventually lead to
*This work was supported by a scholarship from desirable states. In contrast to .upervised learning,

SIEMENS AG
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there can be something like undesired inputs caused tage over other goal directed learning algorithms like
by former output actions. In general the external un- back-propagation (Werbos, 1974)(Parker, 1985)(Le-
known dynamics have to be taken into consideration Cun, 1985)(Rumelhart et al., 1986) is. It is biolugi-
to perform credit assignment. cally more plausible, because it solely depends on com-

putations which are entirely local in space and time.
Reinforcement learning is strongly related to control It has been successfully applied to some classical non-
tasks. With many control tasks more information is lnear problems ivoling both feedforward and recur-
available about goal states than just a simple rein- rent networks.forcement signal. irowever, just as with reinforcement

learning, the (sequential) outputs necessary to achieve
the goal states in general are not known. Competitive Learning (heavily employed in work on

In the sequel we will concentrate on discrete time ver- unsupervised learning (Kohonen, 1988) (Grossberg,
sions of dynamic learning algorithms for neural net- 1976)) may be interpreted as 'shifting weight sub-
works. We assume that there are 'time steps', and stance' from certain incoming connections of a winner-
that state changes only take place from one time step take-all-unit to other incoming connections (Rumel-
to the next one, not within a time step. hart and Zipser, 1986). A novel algorithm for goal

directed learning with hidden units emerges if weight
A weak definition of 'locality in space and time'(there substance is shifted from outgoing connections to in-
also is a stronger definition). A learning algorithm for coming connections in a certain fashion.
dynamic neural networks is local in time if for given
network sizes (measured in number of connections) Consider the general reinforcement learning situation
during on-line learning the peak computation complex- where an evaluative critic in the environment some-
ity at every time step is 0(1), for arbitrary durations times provides 'payoff' in response to successful be-
of sequences to be learned. havior of a learning feedforward or recurrent network.

We translate reinforcement or payoff into weight-
A learning algorithm for dynamic neural networks is substance for connections leading to output units that
local in space if during on-line learning for limited du- were active in the moment of payoff. All such con-
rations of sequences to be learned and for arbitrary net- nections are immediately strengthened proportional to
work sizes (measured in number of connections) and their last contributions. (A contribution is the product
for arbitrary network topologies the peak computation of a weight and an activation.)
complexity per connection at every time step is 0(1). However, even in the absence of payoff there are

A learning algorithm for dynamic neural networks is weight changes for all weights, including the weights
local if during on-line learning for arbitrary durations of connections leading to hidden units. Any connec-
of sequences to be learned and for arbitrary network tion transporting activation information from an ac-
sizes (measured in number of connections) and arbi- tive unit i to another active unit j has to give up a
trary network topologies the peak computation com- part of its weight substance, which is shifted to those
plexity per connection at every time step is 0(1). weights that were setting the stage by contributing to

These definitions do not imply that a local algorithm the activation of unit i at the last time step. Thus re-
is unable to consider actions that have taken place any cursive dependencies 'through time' are established be-
time before. tween strengths of connections transporting contribu-

tions (luring successive time steps. The environmental
In the sequel some novel learning algorithms designed critic terminates the recursion. The algorithm shares
for networks with internal and external feedback will certain conceptual similarities %%itli the bucket brigade
be described. Due to limited space I will describe many learning algorithn' for rule-babed systems (Holland,
ideas briefly rather than going into great detail on any 1985) and is called the Neural Bucket Brigade Algu-
one idea. rithm'. One of the many differences is that competi-

tion works locally instead of globally.

2 The Neural Bucket Brigade The algorithm's most significant advantage over
Algorithm other goal directed learning algorithms like back-

propagation is: It solely depends on computations
which are entirely local m space and time. This means

Abstract. Competitive Learning 'shifts weight sub- that during on-line learning the peak computation per
stance'from certain incoming connections of a winner- connection is not affected by network szzc or by net-
take-all-unit to other incoming connectons. A novel work topology or by the length of input sequences. It is
algorithm for goal directed learning with hidden units always 0(1). This makes zt biologically more plausible
shifts weight substance from outgoing connections to than other algorthis (Schmidhuber, 1989) (Schiid-
incoming connections. An evaluative critic sometimes huber, 1990a).
provides weight-substance for connections leading to
output units. The algorithm's most significant advan- The basic network structure is an arbitrary (possibly
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cyclic) graph which is partitioned into input units and propagation seems to be faster by about an order of
small predefined winner-take-all-subsets, each having magnitude.
at least two members.

Notation: xj (t) is the activation of the jth unit at time 3 A Reinforcement Comparison
t, wij(t) is the weight on the directed connection from Algorithm for Continually Running
unit i to unit j at time t. cij(t) = Xi(t - 1)wij(t - 1)
denotes the 'contribution' of some connection between Fully Recurrent Probabilistic
i and j at time t. Networks

In the beginning weights are initialized with a positive Abstract. The principle of reinforcement comparison
value. The system is continuously receiving inputs,
and continuously producing outputs, which again may (employed for learning to play checkers (Samuel, 1959)

have an influence on subsequent inputs (external feed- and learning to balance a pole (Barto et a/., 1983))
back). Activations spread according to the following says: Let the temporal derivative of the expectation

rules: At time t the input-units are clamped to values of future reinforcement be the effective reinforcement.

determined by the environment. Each non-input unit This principle is applied to fully recurrent continually
computes netj(t) = "i cj(t). The winner-take-all- running networks of probabilistic bina.y units. A main

subsets ensure that only a fraction of the non-input advantage of the resulting novel algorithm is its appli-

units can be active simultaneously: xj(t) equals 1 if cability to networks with internal (and possibly exter-
the non-input unit j is active, and 0 otherwise. nal) feedback and its locality in both space and time

(the absence of back-propagation-like operations makes
If unit j is active then its positive modifiable weights it biologically more plausible than other algorithms).
change according to
Aw~ ij(t) = -ct 1) E AcJk(t)+77ciJ(t) In addition to a fully recurrent continually running

A =Aczj (t)+e(t - 1) k active network with probabilistic binary output units the al-

gorithm described in this section employs a second
linear static network, called the critic, which learns

where 0 < A < 1 determines how much of its weight to judge successive states of the recurrent network by
some particular connection has to pay to those connec- learning to predict the final reinforcement to be re-
tions that were responsible for setting the stage at the ceived at the end of the current 'episode'. Differences
previous time step. 77 is a small constant if unit j is an of successive predictions serve to adjust both the critic
output unit and if there is external payoff, and y is 0 and the recurrent network. Hereby the weights of the
otherwise. We get a dissipative system: 'Weight sub- critic are updated according to the principles of Tem-
stance' enters the system in the case of payoff, flows poral Difference Methods (Sutton, 1988):
through 'bucket brigade chains', and leaves the system
through connections coming from input units.

Note again that the algorithm is entirely local. This First all weights are randomly initialized with real val-
makes a parallel implementation trivial. No teacher ues.

has to define something like beginnings and ends of For all episodes:
back-propagation phases. No storage is required for
past activations or contributions except for the most In the beginning of each episode, at the first time step,
recent ones. The units do not care whether they are the activations of input units of the recurrent network
part of a feedforward or of a recurrent network. They are initialized with talues determined by sensory per-
do not care for concepts like 'layer structure' or net- ceptions from the entironment, and the activations of
work topology. Each unit and each connection is per- hidden and output units are initialized with 0. For all
forming the same simple operation at every time step. following timc steps, until there is external real-valuedreinforcement R indicating failure or success;

The algorithm has been successfully applied to some

classical non-linear problems involving both feedfor- At any given time step t:
ward and recurrent networks. Networks employ- 1. The critzc's output r = xT(t - )v(t) is interpreted
ing that algorithm learned to solve XOR-problems, as a prediction of the final reinforcement to be received
encoding-problems, and sequence recognition (motion in the future. (v(t) is the the critics current weight
on a one-dimensional 'retina') as well as sequence gen- vector, x(t) is the activation vector of all units of the
eration (an oscillation task). To address the question recurrent network).
of learning speed: The number of training cycles nec-
essary to find some (not necessarily stable) solution 2. Each probab~listic non-input unit i of the recur-
for the XOR-problem is of the same order of mag- rent net sums its weighted inputs, this sum is passed
nitude as with conventional back-propagation. Ilow- to the logistic fun, lion l(x) = j which gives the
ever, with the more complex encoding problems back- probability that the ictivation x,(t) becomes 1, or 0,
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respectvely. Each unit i also stores its last actztatzon with the 'neural bucket brigade algorithm' (Schmidhu-
x,(t - 1). Output units may cause an action in the ber, 1990g). In (Schmidhuber, 1990d) it also has been
environment, and this may lead to new activations for described how a recurrent critic can interact with the
the input units. So besides the internal feedback there recurrent primary network.
may exist external feedback through the environment.

3. If there is external reinforcement R (this means 4 Two Interacting Fully Recurrent
the end of the current episode) then the variable r' is Self-Supervised Learning Networks
defined to be equal to R.forReinforcementL

Otherwise r' is defined to be a new estimation of final
discounted reinforcement: r' = 7 xT(t)v(t). (0 < y < 1 Abstract. An extension of system dentification ap-
is the discount rate). proaches for adaptive control by Werbos, Jordan,

The critic associates the last activation vector x(t - 1) Munro, Widrow, and Robinson and Fallside is de-
of the recurrent network with r', thus 'transporting scribed. The algorithm is based on two interacting
expectation back in time' for one time step. So the fully recurrent continually running networks which
critic's error is given by r'- r. Its weight vector is zm- may learn in parallel. The algorithm has a potentialfor
mediately updated according to the Widrow-Hoff rule, on-line learning and locality in time, it does not care
the result is a new weight vector v(t + 1). for 'epoch-boundaries', it needs only reinforcement in-

formation for learning, it allows different kinds of rein-
4. Each directed weight wii(t) from unit i to unit j of formn for lar, t allows diern knd of e-
the recurrent network is immediately altered according r-to Awi 1(t) = A(r'-r)xi(t-1)(x1(t)-P(x1 = 1j x (t- nal feedback with theoretically arbitrary time lags, and

it includes a full environmental model thus providing
1), w(t - 1)) , where w(t - 1) is the last weight vector, complete 'credit assignment paths' into the past.
and A is a positive constant. Thus the last transition

gets encouraged (or discouraged, respectively).

An extension of system identification approaches for

The algorithm applies the principle of reinforcement adaptive control ((Werbos, 1977), (Jordan, 1988),

comparison to dynamic recurrent neural networks (Munro, 1987), (Nguyen and Widrow, 1989), (Robin-

(Schmidhuber, 1990d). Informally, this principle also son and Fallside, 1989)) is described.

can be formulated as follows: The algorithm attempts to be a very general one. It

If a system is in a state which it assumes to be a bad attacks the fundamental spatio-temporal credit assign-
state, bstere is a staiti which a es to ea state ment problem as far as it is attackable at all by purestate, but there is a transition which leads to a state grdetdescentmehd(Smiubr190)

assumed to be a good state, then this transition should

be encouraged. Furthermore, from now on the 'bad' The output units of a dynamic recurrent control net-
state also can be considered to be a good state. Transi- work may influence the state of a reactive non-
tions from good states to bad states have to be treated stationary environment, thus influencing subsequent
in an analogue fashion. inputs of the control network. The input of a dy-

Note again that unlike with back-propagation- like al- namic fully recurrent model network at every time is
N given by the input and the output of the control net-gorithms for recurrent networks the algorithm above is work. The model network is trained to predict future

local in both space and time. This means that during activations )f the input units of the control network.
on-line learning the peak computation per connection
is not affected by network size or input duration. Iare 're-

inforcement units' whose desired activations are fixedalways 0(1). for all times. For instance, the desired activations of

It is worth mentioning a counterintuitive fact. The so-called 'pain-units'are zero for all times. At a given
critic may be linear, however, the task of the recurrent time the quantity to be minimized by the controller is
network may be of the non-linearily separable type. 21 ,(c, -y,(t)) 2 , where y,(t) is the activation of the ith
This has been shown by successfully applying the al- reinforcement input unit at time t and c, is its desired
gorithm to a 'delayed XOR-problem'. A reinforcement activation for all times. (t ranges over all (discrete)
signal given in the end of each training episode (involv- time steps that are still to come.)
ing a small number of time steps) indicated whether
the recurrent network correctly computed the delayed Follo-wing the approach of system identification, the
response to one of the four XOR patterns. The critic niodel network helps to define desired output acti-
may be linear, because the final mapping to be imple- vations for the control network. Errors for the con-
maye liner b e the riiing nal smppig ton be inpl troller's weights are computed by measuring the par-
mented by the critic in general is simpler than the final tial derivatives of cumulative pain predictions of the
mapping to be implemented by the main network. moe ewr it epc ocntolrwihsmodel network with respect to controller weights.
The algorithm shares certain conceptual slinilarities llereby the frozen model network ib taken to be an
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emulator of the environmental dynamics. cumulative differences between desired and actual acti-
vations of the pain and reinforcement units. Since the

The algorithm can be run in two different modes: control network continues activation spreading based
There is the sequential version and the parallel version on the actual inputs instead of using the predictionsWith tie sequential version, first tihe model network of the model network, 'teacher forcing' (Williams and
is trained by providing it with randomly chosen ex- of the model network almsanampis o seuenes o ineratios bewee cotroler Zipser, 1989) is used in the model network (althoughamples of sequences o? interactions between controller there is no teacher besides the environment).
and environment. Then the model weights are fixed to
their current values, and the controller begins to learn. One can find various improvements of the systems de-

scribed in (Schmidhuber, 1990b) and (Schmidhuber,
With the parallel version both the controller and the 1990e). For instance, the partial derivatives of the con-
model learn concurrently. The advantage of the par- troller's inputs with respect to the controller's weights
allel version is that the model network focusses only
on those parts of the environmental dynamics which are approximated by the partial derivatives of the cor-

responding predictions generated by the model net-
the controller typically is confronted with. Particu- work. Furthermore, the model sees the last input and
larily with complex environments this represents an
enormous potential for gaining efficiency. The disad- current output of the controller at the same time.
vantage of the parallel version is that the controller Notation (the reader may find it convenient to compare
sometimes receives wrong error gradients caused by with (Williams and Zipser, 1989)):
an inperfect model. This should not be serious, as
long as the model continues to improve. However, the
controller might enter a local minimum relative to the C is the set of all non-nput units of the control net-
current state of thp model network's weights. This in work, A is the set of its output units, I is the set of its
turn may cause the controller to perform the same silly 'normal' input units, P is the set of its pain and rein-
actions all the time, thus preventing the model network forcement units, M is the set of all units of the model
from improving (learning about the effects of alterna- network, 0 is the set of its output units, Op C 0 is the
tive actions). Then the whole system might be caught set of all units that predict pain or reinforcement, WM
in a state from which it cannot escape any more. The is the set of variables for the weights of the model net-
sequential version represents a safer way, but it lacks work, Wc is the set of variables for the weights of the
the flavor of real on-line learning and locality in time. control network, Yk... is the variable for the updated

a ctivation of the kth unit from M Lu C U I U P, Yk,,d
Below we describe the parallel version. The sequential is the variable for the last value of yk., w,j is the
version can be obtained in a straight-forward manner.
An on-line version of the Infinite Input Duration (IID) vaia fo ut ig of the dircte cncin fro
learning algorithm for fully recurrent networks (Robin- unit j to unit i, is the variable which gives the

S k
son and Fallside, 1987) is employed for training both current (approximated) value of ;- ,j U. i
the model network and the control network. (The IID variable which gives the last value of pk ., if k E P
algorithm was first experimentally tested by (Williams then ck is k's desired activation for al times, acc is
and Zipser, 1989).) the learning rate for the control network, oqMj is the

At every time step, the parallel version of the algo- learning rate for the model network.
rithm is performing essentially the same operations. I I U P 1=1 0 I, I Op 1=1 P I. If k E I U P, then

In step 1 of the main loop of the algorithm actions in kpred is the unit from 0 which predicts k. Each unit
the external world are computed. Due to the internal from IU PU A has one forward connection to each unit
feedback, these actions are based on previous inputs from M U C_ Each unit from M is connected to each
and outputs. For all new activations, the correspond- other unit from M. Each unit from C is connected to
ing derivatives i-ith respect to all controller weights each other unit from C. Each u.cight of a connection
are updated. leading to a unit in M is said to belong to WM. Each

weight of a connection leading to a unit in C is said to
In step 2 actions are executed in the external world, belong to WC. Each weight wij E WiM needs p .-values
and the effects of the current action and/or previous for allkE Al. Each weight wj E Wc needs pk'-values

actions may become. visible, for all k E M U CU I U P.

In step 3 the model network tries to predict these ef-
fects without seeing the new input. Again the relevant
gradient information is computed.

In step 4 the model network is updated in order to The parallel version of the algorithm works as follows:

better predict the input (including reinforcement and
pain) for the controller. Finally, the weights of the
control network are updated in order to minimize the
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INITIALIZATION: ploying probabilistic output units for C and by using
'gradient descent through random number generators'

For all wjj E WAI U Wc: (Williams, 1988) we can introduce explicit explorative

begin wi1 4- random, random search capabilities into the otherwise deter-
ministic algorithm. In the context of the IID algo-for all possible k: p".oz 0,A -nd

f sO,pu , '-0 end. rithm, this works as follows: A probabilistic output

For all k E M U C : Yk,d 0, ykw - unit k consists of a conventional unit ky which acts
as a mean generator and a conventional unit ko" whicL

For all k E I U P acts as a variance generator. At a given time, the

Set Yk.,d by environmental perception, yk.. 0" O. probabilistic output Yk... is computed by

Ykne = YkPne, + Zykan...

where z is distributed e.g. according to the normal
FOREVER REPEAT: distribution. The corresponding pk3  have to be up-

1. For all i E C : Yin.- dated according to the following rul :
k kp Yk... - Y)LI . !

For all wiv E We, k E C: PilJ,. +-- Pijn,. -+ Pi) n-
Ykne

Pijn -4- .. (1 -Yk)(2 WMAM, +&kYjod). By performing more than one iteration of step 1 and
For all k E C: step 3 at each time tick, one can adjust the algorithm

to environments that change in a manner which is
begin yk.,,, 4 Ykn.w, not predictable by semilinear operations (theoretically

$3 - end three additional iterations are sufficient for any envi-for all w ij E W c : Pi.,d P4" 33n • ronm ent).

2. Execute all motoric actions based on activations of r a ent.The parallel version of the algorithm is local in time,
units in A. Update the environment, but not in space. See (Schmidhuber, 1990b) for ajus-

For alliE IUP: tification of certain deviations from 'pure gradient de-
scent through time', and for a description of how the

Set yne,, by environmental perception. algorithm can be used for planning action sequences.

3. For all i E M : Yin.. 4-" Variants of the algorithm are currently tested on cer-
tain non-Markovian reinforcement learning tasks. For

For all wij E WAI U WC, k E M: instance, a controller was able to learn to be a flip-flop
similar to the one described in (Williams and Zipser,

Pin, . _ --yk.,.. (1 -yk,.,)(Et WklPJ.,d + &kYjod) 1989). Of course, the important difference was that no
For all k E M: teacher provided the desired outputs!
begin Yk.., -Ykn....Other experiments are currently conducted with a

b Ynon-Markovian pole balancing task. Unlike with tasks
for all wj E Wc U WU : pJ P,j ... end. described in (Barto et al., 1983) and (Anderson, 1986),

no information about temporal derivatives of the sys-
tem's state variables (cart position, pole angle with

wij wij + tM - M ed,)&. ked the vertical) is provided. The recurrency of the model
W--- -kEUPYkw. P, • network provides a potential for extracting this kind

For all wli E Wc: of information, and to represent the state of the en-

k&rcd vironment in a form that allows credit assignment for
w -- wi + c ,kEP(ck - Y , the controller.

For all k E I U P: In (Schmidhuber, 1990b) it is described how the algo-
rithm can be employed for planning action sequences.

begin yk., y Yk.predo, ' Ykn.... It should be noted that the algorithm also could be

for all Wij E W _ &red o, used as a submodule in an adapltve critic system con-fo l kpred ensisting of three networks (Schmidhuber, 1990f), where
for all Wj E Wc pk.,d ,- Pi., end. the adaptive critic computes vcctor-valucd predictionsof future events. This contrasts previous adaptive crit-

ics, whose output is just a scalar evaluation of the cur-

To attack the above-mentioned problem with the par- rent state.
allel version of the algorithm we can introduce a prob- The parallel version of the algorithm described above
abilistic element for the controller actions. By er- has properties which allow to implement something
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like the desire to improve the model network's knowl- (through the environment). The final desired input is
edge about the world. This is related to curiosity, an activation pattern corresponding to the target in a
In (Schmidhuber, 1990c) it is described how the al- static visual scene. The task is to sequentially gener-
gorithm can be augmented by dynamic curiosity and ate a focus trajectory such that the final input matches
boredom in a natural manner. This can be done by in- the target input. C's error at the end of a sequential
troducing (delayed) reinforcement for actions that in- recognition process is given by the difference between
crease the model network's knowledge about the world. the desired final input and the actual final input. (Con-
This in turn requires the model network to model its trol theory calls this a 'terminal control problem'.)
own ignorance, thus showing a rudimentary form of Pure supervised learning techniques for neural net-
self-introspective behavior, works work only if there is a teacher who provides tar-

get outputs at every time step of a trajectory (which in
5 An Example for Learning Dynamic our case usually involves about 30 time steps). In our

Selective Attention: Adaptive Focus case, however, there never are externally given desired

Trajectories for Attentive Vision outputs. There only is one final desired input.

In order to allow credit assignment to past output ac-
Abstract. It is shown how certazn cases of selective at- tions of C, we employ a supervised learning model net-
tention can be learned. 'Static' neural approaches to work M which separately learns to represent a model
certain pattern recognition tasks can be ieplaced by a of the visible environmental dynamics. This is done by
more efficient sequential approach. A system is de- training A at a given time to predict C's next input.
scribed uhzch learns to generate focus trajectoies such This prediction is based on previous inputs and out-
that the final position of a moving focus corresponds puts of the controller. A serves to 'make the world
to a target in a visual scene. No teacher provides the differentiable'. It serves to bridge the gap between
desired activations of 'eye-muscles' at various times. output units and input units of the controller.
The only goal information is the desired final input A learning algorithm for dynamic recurrent networks
corresponding to the target. The task involves a com- is employed to propagate gradient information for
plex temporal credit assignment problem and an atten- C's weights back through M down into C and back
tion shifting problem. The system also learns to track through M etc... M's weights remain fixed during
moving targets. this procedure. In different contexts and with dif-

ferent degrees of generality, this basic principle for

There is little doubt that selective attention is essential credit assignment based on system identification has

for large scale dynamic control systems. In this section been previously described in (Werbos, 1977), (Jor-
we study the problem of learning selective attention in dan, 1988), (Munro, 1987), (Robinson and Fallside,

the context of attentive vision with dynamic neural 1989), (Nguyen and Widrow, 1989), and (Schmidhu-

networks. The problem, which in its general form has ber, 1990b).

not been explored before, is the control of sequential Note that in most cases the model network will not be
physical focus-movements. Hereby we concentrate on perfect. For instance, if objects in a visual scene may
the question: How can an attentive vision system learn occupy random positions then it will be impossible for
without a teacher to generate focus trajectories such Al to exactly predict future focus inputs from previous
that the final visual input always looks like a desireable ones. However, it is not intended to make the model a
input corresponding to a target? perfect predictor whose output could replace the input

A visual scene is given by an object (with internal de- from the environment (in that case not much would be

tails) placed on a 512 x 512 pixel field. The object coy- gained compared to the static approach: There would
ers only a small part of the scene and may be rotated be no need for dynamic attention). It suffices if the
ers ornlat small partrathersceneyn maybeated s inner products of the approximated gradients (based
or translated in an arbitrary manner. Instead of using on an inaccurate model) for the control network and
tenthousands of input units (as in a straight-forward the true gradients (according to a perfect model) tend
static approach) only about 40 input units are eii- to be ositive.
ployed. However, these units are sitting on a focus (a
two-dimensional artificial retina) which can be moved M's main task is to help the controller to move the
across the pixel plane. The focus has high resolution focus into regions of the plane which allow to continue
in its center and low resolution in its periphery, with more informed moves. (Although one can not ex-

In our approach there is a neural control network C actly predict what one will see after moving one's eyes
alfocus movements. Motoric ac- to the door, one is setting the stage for additional eye-that controls sequential fusmv en. toca- movements that help to recognize an entering person.)

tions like 'move focus left', 'rotate focus' are based on

the activations of the C's output units at a given time. One goal of this work is to demonstrate that imper-
Thus output actions may cause new activations for the fect models can contribute to perfect solutions. Our
input units, and we say that there is erternal feedback
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experiments show that the system described above is mutter, 1989), (Rumelhart et al., 1986), (Williams and
able to learn (without a teacher) correct sequences of Zipser, 1989), (Gherrity, 1989) and others in the case
focus movements involving translatwn,, and rotations, where there is only internal feedback. It has been pur-
although M often makes erroneous predictions. At sued by (Nguyen and Widrow, 1989), (Robinson and
the end of a trajectory, the focus has moved towards Fallside, 1989), (Werbos, 1977), (Jordan, 1988), and
a certain target part of the object and is rotated such (Schmidhuber, 1990b) in the case %,here there also is
that the final input corresponds to the desired input external feedback through a rea,.ti,,e ervironment.
(Schmidhuber and iluber, 1990) (Iluber, 1990). Second, there is the 'Adaptive Critic' approach, which

Further experiments showed that the system is well- is of primary interest in the case of external feedback.
suited for target tracking. The desired detail of the This approach has been pursued by (Samuel, 1959),
moving object soon is focussed and tracked, as long as (Barto et al., 1983), (Werbos, 1990), and (Schmidha-
the objects velocity does not excess the maximal focus ber, 1990d).
velocity. Both the algorithms based on pure gradient descent as

Further experiments were conducted where C and M well as the 'Adaptive Critic' algorithms have at least
learned concurrently. It was found that two interact- one thing in common. They show significant draw-
in- ,onventional determinmistc net~orks were not ap- backs w hen the credit assignment process has to bridge
propriate. So each of C's output units was replaced long time gaps between past actions and later conse-
by a little network consisting of two units, one giv- quences.
ing the mean and the other one giving the variance Both approaches show awkward performance in the
for a random number generator which produced ran- case where the learning system already has learned a
dom numbers according to a continuous distribution, lot of action sequences in the past. Both approaches
(We approximated a Gauss distribution by a Bernoulli tend to modify 'sub-programs', instead of modify-
distribution.) Weight gradients were computed by ap- ing the trigger conditions for sub-programs. They
plying William's concept of'back-propagation through do not have an explicit concept of something like a
random number generators' (Williams, 1988). sub-program. Pure gradient descent methods always

It %%as found that such an on-line learning system can consider all past states for credit assignment. Adap-
be able to learn appropriate focus trajectories. As it tive critics based on Sutton's 'Temporal Differences'
wvas expected, after training M was a good predictor (reinforcement comparison methods) or on Werbus'
only for those situations which the controller typically 'Heuristic Dynamic Programming' consider only the
was confronted with. most recent states for 'handing expectations back into

time'. Both methods in general tend to consider the
wrong states. This is a major reason for their slow

6 An Adaptive Subgoal Generator performance.

for Planning Action Sequences In the next section we will isolate one problem as-

sociated with 'compositional learning', namely, the
Abstract. None of the existing learning algorithms problem of learning to generate sub-goals when there
for sequentially working neural networks with inter- already exist a number of working sub-programs
nal and/or external feedback addresses the problem of (Schmidhuber, 1990h).
learning 'to divide and conquer'. It is argued that algo-
rithms based on pure gradient descent or on adaptive
critic methods are not suitable for large scale dynamic 6.1 Learning to Generate Sub-Goals
control problems, and that there is a need for algo-
rithms that perform 'compositional learning'. A sys- The sub-goal generating system to be described in this
tern is described which solves at least one problem asso- section consists of three modules. The heart of the
ciated with compositional learning. The system learns system is a neural network with internal and external
to generate sub-goals. This is done with the help of feedback. called the control network C. C serves as a
'time-bridging' adaptive models that predict the effects program executer. It receives as input a start. state.
of the system 's sub-programs. a desired goal state, and time-varying inputs from the

environment. The start and goal states serve as 'pro-

The algorithms for attacking the fundamental credit gram names'. Ve assume that C' already has learned
e pto solve a number of tasks. This means that there al-

assignment problem w ith dynamic learning algorithms ready are various working programs that actually lead
in non-stationary environments can be classified into rtwo major categories, from the start states to the goal states by which the

programs are indexed. These programs may have been
First, there is the approach of back-propagation learned by an algorithm for dynamic nct.vorks (as de-
through time'. This approach has bcen pursued by scribed by the authors mentioned above), or by a rc-
(Robinson and Fallside. 1987), (Weibos. 1988), (Pearl- cursit.c application of lht prnu p! outlincd bclov.



60 Schmidhuber

A second important module is a static evaluator net- moving from one point to another one. Then more
work E which receives as input a start state and a goal complicated tasks were posed that did not have an as-
state, and produces an output that indicates whether sociated sub-program.
there is a program that leads from the start state to
or 'close' to the goal state. An output of 1 means that The sub-goal gencrator soon learned to generate appro-
there is an appropriate sub-program, an output of 0 priate sub-goals for the robot.
means that there is no appropriate sub-program. An It should be noted that there also is a different slightly
output between 0 and 1 means that there is a sub- more complex architecture which allows vector-valued
program that leads from the start state to a state that evaluations of the expected effects of sub-programs.
comes close to the goal, in a certain sense. This mea-
sure of closeness has to be given by some evaluative
process that may be adaptive or not, and which will References
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1 INTRODUCTION

Abstract Natural selection has constructed animals' minds and
behavioral repertoires for adaptive fit to the environmen-

Psychology construed as the scientific study tal problems they must face. As the study of such minds
of adaptive agency can include not only and behavioral repertoires, a properly evolutionarily-
modelling of specific psychological adapta- informed psychology should focus on the notion of adap-
dons in particular species, but general ex- tive agency -- the generation of action in the world in
ploration of the adaptive processes (including response to challenges to fitness. This framework en-
evolution, learning, and computation) that compasses many approaches, including (A) analysis and
build, modify, and instantiate those adapta- modelling of complex species-typical psychological
tions. Connectionist theory has concentrated adaptations (as in human and animal experimental
on understanding the adaptive processes of psychology and cognitive ethology), (B) comparison of
learning and computation, and has assimed psychological adaptations across species and considera-
general-purpose learning principles as the tion of their phylogenetic ofigins (as in comparative
prime constructors of p! vchological adapta- psychology), and (C) general exploration of the adaptive
dons. But connectionism has thereby ignored processes themselves that yield adaptive agency (e.g. by
the central lesson of a century of learning simulation methods, including those in the field of
theory in psychology: learning mechanisms artificial life -- see Langton, 1989). Most connectionists
must be understood in terms of their specific doing psychological modelling have contributed primari-
adaptive functions, just like other psychologi- ly to the first of these three enterprises. This paper con-
cal adaptations. This paper introduces the centrates on the third.
notion of psychology as the study of adaptive
agency, outlines a hierarchy of adaptive One of the central applications of connectionist theory
processes underlying adaptive agency, and has been to develop parallel distributed processing
reviews the history of learning theory and the models of psychological mechanisms in humans and, less
emergence of ecological and evolutionary ap- frequently, other animals (e.g. Rumelhart & McClelland,
proaches to learning. We then develop a tax- 1986, Vol. II; Sutton & Barto, 1987; Gluck, Bower, &
onomy of adaptive functions that learning Hee, 1989). Although most connectionists would deny
mechanisms might serve, and outline a gen- the charge that they are the 'neo-Behaviorists' of psycho-
eral simulation framework for explorinZ logical modelling, many seem to adhere to one of the
those adaptive functions. Finally, we present most central, and most problematic, assumptions of
empirical results concerning the simulated Behaviorist psychology: that learning mechanisms can
evolution of associative learning. be studied without regard to their specific adaptive func-

tions for the particular species investigated. The very no-
tion of using an 'animal model' (e.g. a rat or pigeon) to
investigate human learning assumes the existence of
cross-species universal learning principles which, on evo-
lutionary grounds, we may have little reason to expect.
We would argue, to the contrary, that in pursuing the first

Copyright 0 1990 Geoffrey Miller and Peter Todd approach to the study of adaptive agency outlined above,
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(1) connectionists interested in modelling portions of hu- plication and metabolism. These larger phenotypes set
man or animal minds should attempt to model real the stage for the evolution of behavior-generating sys-
domain-specific psychological adaptations (the natural tems that could produce innately programmed sequences
building blocks of minds -- see Cosmides & Tooby, of activity and movement. (In the land of the sessile, the
1987) rather than other units of analysis; (2) connection- blind, roving, pre-programmed predator may be king.)
ists interested in modelling domain-specific psychologi Sensory systems could then evolve to guide these
cal adaptations should explore whether, when, and how behavior-generators more adaptively, based on sensitivity
specific learning mechanisms might be used by those to particular environmental cues. (In the land of the
adaptations, rather than simply assuming the adaptive blind, the optic-spotted paramecium may be king.) Thus,
utility of some hypothesized general-purpose learning blind activity may have preceded reactivity -- behavioral
mechanism. On the other Iand, if one is interested in adaptation to the current changing environment on a
pursuing the third approach to the study of adaptive agen- moment-by-moment basis.
cy, we would suggest that (3) connectionists can usefully Only after these first two adaptive processes (natural
explore the general features of adaptive agency by study- selection with a genotype/phenotype distinction, anding how adaptive processes themselves work and in- slcinwt eoyepeoyedsicin n
teat hout r cesss to mseic psychog andapi- behavioral reactivity) had emerged could a third evolve --teract, without reference to specific psychological adapta- 'learning,' defined as the ability to make long(ish)-term
tions in a particular species. Point 3 seems to conflict alarni ng in ed biliy oren erm
with points 1 and 2 because it suggests a less domain- adaptive changes in evolved behavior-generators in
specific, species-specific methodological focus. But just response to particular environmental conditions andas oe cn d thoreica asrophsic wihou costrct- dynamics.' (See Shepard, 1987a, 1989, for discussion of
as one can do theoretical astrophysics without construct- these adaptive processes in relation to psychology anding specific astronomical models of particular observable connectionist modelling). In this hierarchy, learning em-celestial bodies, one can explore the dynam ics of adap- e g s n t a h r m r d p i e f r e t a o et e rtive processes in general without modelling their specific erges not as the primary adaptive force that some theor-
structural outcomes in the minds and behavioral reper- ists (e.g. Behaviorists) have assumed it to be, but rathertoires of particular species. as a tertiary one, following long-term genotypic evolutionand short-term environmental reactivity. Once we re-
Our empirical research concentrates on point 3, because conceptualize 'learning' as merely one process among
we are currently more interested in how adaptive several that help generate and support adaptive agency,
processes interact than in the particular adaptations those the questions we might ask about this process begin to
processes happen to have produced on this plane, at this change as well.
time. This paper lays out the theoretical framework and Traditionally, researchers using simulation to explore
methodological principles guiding our work in exploring adaptive agency have started by assuming learning as a
adaptive agency. Elsewhere (Todd & Miller, 1990), we adaptive ge cesstad by asmn ler in
describe in more detail the specific methods and results primary adaptive process, and then asked how evolution
obtained in simulating the evolution of associative learn- might shape and be shaped by learning. For example,ing as a mechanism for 'imprinting' on certain features of Hinton and Nowlan (1987) and Belew (1990) explicate

the Baldwin effect in which learning "guides" evolution;
one's evolutionary niche; and in a forthcoming paper Stork and Keesing (1990) and Belew, Mclnerney, and
(Todd & Miller, in press), we extend this simulationmethod to understanding habituation and sensitization Schraudolph (1990) investigate how evolution and learn-
methaniss to uevtionay hadtations and sensatoy ing can combine to affect the initial structure of neural
mechanisms as evolutionary adaptations for behaviorally networks. But considering the hierarchy of adaptive
tracking short-term environmental dynamics. processes spelled out above, the question we want to ask

is, rather, given the already-powerful adaptive processes
2 NATURAL SELECTION AND THE of genotypic evolution and environmental reactivity,

EVOLUTION OF SUBSIDIARY ADAP- under what conditions would the tertiary adaptive process
TIVE PROCESSES of learning ever prove useful in terms of increasing indi-

vidual fitness? Assuming no learning, when should
Evolution as an adaptive process has itself undergone learning evolve? We consider learning a mystery to be
changes: "survival of the stable" probably preceded "sur- explained rather than a commonsense explanation for
vival of the fittest" (Dawkins, 1976). Evolution in the other phenomena.
earth's early environment is likely to have selected for
physical systems (e.g. autocatalytic sets) with relative Fortunately, connectionists are not the first group to grap-
stability in the simmering primurdial soup. After stability ple with these thorny issues. The history of learning
came replication and metabolism, the ability to turn theory in comparative psychology has considered such
external material into copies and extensions of oneself, problems for over a century, and is slowly arriving at a
Simple physical systems thus evolved into replicating
systems. Larger, more complex phenotypes probably ' By this definition, learning includes such processes as expenence-
evolved to protect the replicators against biochemical guided development nut commurnly included in this category - see,

breakdown and facilitate their intake of materials for re- e g , Singer, 1988 We discuss this issue further in section 5.
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theoretical consensus that we can take, almost off the 3.2 BEHAVIORIST LEARNING THEORY
shelf, to guide our modelling and simulation efforts. 1g- The emerging Behaviorist paradigm viewed learning as a
norance of this intellectual heritage may not preclude
success, but knowledge of it should help. Connectionists general mechanism for crafting behavioral order out of
can, at least, hope to avoid recapitulating the pitfalls of initial neurological chaos. Morgan (1896) wrote of learn-certain historical ways of thinking about learning. ing as sculpting directed activity out of initially random

movements; Hull (1943) viewed infants as bundles of
reflexes generating random movements that slowly get

3 A BRIEF HISTORY OF LEARNING tuned by conditioning to yield adaptive behavior; Skinner
THEORY IN (COMPARATIVE) (1953) viewed learning as the differential reinforcement
PSYCHOLOGY of initially undifferentiated behavior. (Parallels to con-

nectionist learning theory should be obvious.) Empiri-
Aithough the earliest comparative psychologists recog- cism, which was initially a theory of knowledge, became
nized learning mechanisms as evolutionary adaptations, first a theory of perception, and then, only with the rise of
the rise of general process learning theory in Behavior- Behaviorism, a theory of behavior (Bolles, 1988). No
ism effectively obliterated consideration of the adaptive one actually believed animals' minds started as tabula
functions of learning. With the accumulation of empiri- rasae in Aristotle's strict empiricist sense, but most
cal results indicating biological 'constraints' on learning Behaviorists held that a few basic reflexes and motiva-
and theoretical arguments for the necessity of innate tions, in conjunction with the ability to form conditioned
structure for learning, general process learning theory stimulus-response associations, sufficed to explain all
was gradually abandoned. Yet only recently has an alter- behavior. Species differences in niche and lifestyle were
native model, ecological learning theory, emerged, to re- ignored (e.g. Thomdike, 1911). The simple, almost
store emphasis on the adaptive functions of learning. 'atomic' stimulus-response bond was taken as the basic

unit of behavioral analysis in an attempt to emulate the
3.1 EVOLUTIONARY COMPARATIVE theoretical style of physics and make psychology into a

PSYCHOLOGY BEFORE BEHAVIORISM "purely objective experimental branch of natural science"

Few modem learning theorists are aware of how (Watson, 1914/1967, p. 1) Behaviorism's central features
evolutionary-minded the earliest comparative psychology (as compiled by Davey, 1989) were the principle of in-
was (see Boakes, 1984). Darwin was well-versed in as- strumental reinforcement (with 'reinforcement' defined
sociationist learning theory; Pavlov concerned himself circularly -- see Meehl, 1950), the principle cf stimulus
with the adaptive functions of learning when to salivate generalization (theoretically impossible without innate
(Garci y Robertson & Garcia, 1988). Kline (1898), Small structure -- see Shepard, 1987ab), temporal contiguity as
(1900), and even the early Thorndike (1911) and Watson the prime determinate of association strength (demonstr-
(1919) recognized the importance of animals' intrinsic ably false -- see Rescorla & Wagner, 1972), and the equi-
organization for learning. However, these early attempts potentiality of stirr.uli and responses (also demonstrably
to understand learning as an evolutionary adaptation were false -- see the next section).
derailed by the commitment of Romanes and other com-
parative psychologists to Lamarckian inheritance of 3.3 EMPIRICAL RECOGNITION OF 'BIOLOGI-
learned abilities and to a phylogenetic continuity of mind CAL CONSTRAINTS' ON LEARNING
from simpler to more complex organisms that was taken Some disenchantment with Behaviorist learning theory
proximally from Spencer's (1855) Principles of Psychol- came from psycholinguistic studies of human language
ogy but derived ultimately from Aristotle's 'Great Chain acquisition (e.g. Chomsky, 1957), and from ethological
of Being'. Thomdike (1898) correctly rejected both of studies of learning in natural settings, which focused on
these doctrines, and "viewed the work of his predeces- life-cycle patterns of learning, the plasticity of natural
sors, studying learning within an evolutionary frame- behavior, and the dynamics of natural patterns in real en-
work, as unmitigated failure" (Galef, 1988, p. 55). Un- vironments (e.g. Lorenz, 1937; Tinbergen, 1951), How-
fortunately, T like appears to have been unaware of ever, the strongest challenges to general process learning
attempts b. 1, Osborn, and Morgan to propose al- theory came from within the Behaviorist tradition of an-
temative concel, .,ns of evolution, inheritance, and learn- imal learning studies itself. In the 1960's and 1970's, a
ing that might have served as a better foundation for an growing number of studies demonstrated biological
evolutionary comparative psychology of learning. In re- 'predispositions' and 'constraints' in learning, which
jecting evolutionary thinking, Behaviorists believed they ,.hallenged the Behaviorist doctrines of equipotentiality
no longer had to consider the specific niches and adaptive and the universality of learning principles across species.
problems facing each species, and their doctrines of equi- Seligman & Hager (1972) and Hinde (1973) review this
potentiality (equality of all stimuli and responses with hterature, which includes demonstrations of conditioned
respect to their associability) and of the cross-species food aversion that violates the principle of contiguity
universality of learning principles gained temporary he- (e.g. Garcia & Koeling, 1966), animal 'misLehavior' and
gemony. 'instinctive drift', where instinctive behaviors eventually
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dominate operantly-conditioned behaviors (e.g. Breland suiecssion, Michotte (1954) explored the mind's inherent
& Breland, 1961); autoshaping, where animals perfect tendencies to organize perceptual experieices in terms of
skills without reinforcement (e.g. Williams & Williams, causal relations. Chomsky (1957) argued that intrinsic
1969); spontaneous maze learning in rats (Brant & Ka- structure (e.g. a 'Language Acquisition Device') was
vanau, 1965); reward-specific association biases (Jenkins, necessary for learning grammar given the supposed pau-
1984); species-specific defense reactions (Bolles, 1970, city of linguistic input to children. Shcpard (1987a,b)
Bolles & Fanselow, 1980); animal's superiority at learn- maintained that any cognitive system that lacks innate
ing natural over artificial concepts (Hernstein, 1979), structure in the 'psychological spaces' in which it organ-
preparedness in human phobia learning (Ohman, Dim- izes peiceptual experiences would have no basis for gen-
berg, Ost, 1985); and imprinting to parents (Lorenz, eralizing adaptively to new situations. In general, "non-
1952), enemies (Curio & Vieth, 1978), and potential trivial self-programming can take place only if sufficient
mates (Marler, 1984). In addition, Behaviorists %ere be- knowledge about the world in which the system is to
ginning to recognize that, although they explicitly defined learn is already built into the system" (Shepard, 1989, p.
learning in terms of experimental paradigms, they too 106). Further, learning principles do not emerge directly
often were defining it implicitly in terms of highly from the dynamics of replicating systems in the way the
artificial lab equipment tailored to the constraints and principles of natural selection do. Learning is not a self-
predispositions of each 'animal model' species (Timber- organizing adaptive process ab evolution is. "the princi-
lake, 1989) There were 'tricks' to conditioning and shap- ples that govern learning cannot themselves be learned"
ing (i.e. in selectively avoiding species-typical behaviors) (Shepard, 1989, p. 106). Of course, arguments for innate
and to setting up lab situations to overcome or circum- constraints were never very surprising to evolutionary
vent the mechanisms actually used in complex natural biologists. Emlen (1973), for instance, argued that postu-
learning (Shettleworth, 1984). lating learning without genetic guidance means postulat-
Although the empirical proof of biological 'constraints' ing the evolution of a mechanism that would allow an an-on learning was overwhelming by the mild-1970's, anmal imal to arbitrarily change its phenotype without regard tolearning theorists simply didn't know what to make of its fitness consequences -- an evolutionary implausibility.

these 'anomalies'. The burden of proof was always 3.5 FROM BIOLOGICAL CONSTRAINTS TO
against species-specific, domain-specific adaptive learn- ECOLOGICAL LEARNING THEORY
ing mechanisms, and for completely general learning
principles (Revusky, 1977). But Shettleworth (1984) ob- The accumulation of theoretical arguments and experi-
served that, from an evolutionary point of view, this bias mental evidence for biological 'constraints' in animal
was absurd, since selective association makes learning learning did not result in the rapid overthrow of general
more adaptive than it otherwise would be. The burden of process learning theories, largely because there was not,
proof should, evolutionarily, be against domain- until recently, an alternative theoretical framework for
generality and against cross-species universality, understanding learning. Describing selective associations

Consternation and confusion accumulated in the animal and species-specific or domain-specific learning mechan-

learning literature, threatening the hegemony of isms in terms of 'predispositions' and 'constraints' in it-

Behaviorist doctrine. Cognitive psychology (which had self reveals the continuation of a general process view of

rejected Behaviorism's philosophy ot science and learning. Constraints could be seen as anomalous biolog-
methods of research even as it retained Behaviorism's ical intrusions on an otherwise normative tabula rasa

doctrine of equipotentiality and anti-r.volutionary bias) (Shettleworth, 1984): "the implications of the term
responded by walling itself off from animal learning ['constraints'] ... is that animals would be smart if their

theory. Where cognitive psychology could not ignore the genes did not constrain their general ability to learn and

infiltration of biological 'constraints' intoaimal learning thereby make them selectively stupid" (Gould & Marler,

research, at least it could (and did) contain the damage by 1984, p. 254). Timberlake (1989) suggests that predispo-
mantaining hua moud (and leonting a eaae, sitions and constraints are evolutionary outcomes to bemaintaining human memory and learning as a separate, explained, not explanations in themselves for failures of

pristine field: "the prevailing view of human learning is

[still] that it is almost wholly general-purpose in charac- general process learning theory, and Revusky (1977)
holds that viewing learning in terms of constraints ister and can be understood without reference to biological misleading in that it has fostered blindly empirical inves-or ecological considerations" (Estes, 1984, p. 626). tigations of limits on general process learning theory in

3.4 THEORETICAL RECOGNITION OF THE ignorance of relevant ethological information about an-

NEED FOR 'BIOLOGICAL CONSTRAINTS' imals' niches and behavior.
In fairness, there was some recogniion in human cog- Research on biological constraints became a simple cata-

five psychology of the need for intrinsic structure to log of anomalies and puzzles without integrative or
guide learning. Following on Kant's attcmpt to solve predictive power, and did not lead to development of a
gume' plemrning. Foflineg cKa'salitfrtemp sorl contemporary integrated theory of learning (Davey,
Hume's problem of inferng causality from temporal 1989). As Cosmides and Tooby (1987) point out, almost
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any complex adaptation can be viewed in terms of 'con- Questions of adaptive functions ('why?') have logical
straints' (e.g. a bird's wings 'constrain' its ability to priority over analyses of proximate mechanisms ('what?'
swim), but rmost adaptations are better understood as and 'how?') for any evolved biological system (Davey,
'enablers' (e.b. a bird's wings do enable it to fly). More- 1989), but adaptive mechanisms and adaptive functions
over, the atten.pt to view constraints as biological boun- do illuminate each other. Analyses of proximate learning
dary conditions on general laws (e.g. Logue, 1979) has mechanisms alone cannot constitute a complete psycho-
not proved fruiCul, nor can selective association be ac- logical learning theory. "The common belief that 'learn-
commodated in ,-eneral process learning theory by ad- ing' is an alternative to an evolutionary theory of adap-
ding more paramaters, e.g. a scalar 'preparedness' value tive function is a category error. Learning is a cognitive
for every possible stimulus-response association (see process. An adaptive function is not a cognitive process.
Seligman, 1970). It is a problem that is solved by a cognitive process"

Biological constraints research eventually crippled gen- (Cosmides & Tooby, 1987, p. 292). The guiding ques-
but left a huge theoretical tion in ecological learning theory thus becomes "whateral process learning theory, kind of learning mechanisms would natural selection

gap. Only recently has ecological learning theory
(Davey, 1989) risen to take its place. Ecological learning have produced?" (ibid.).
theory's strategy is to start, like all adaptationist accounts Ecological learning theory suggests that we answer this
in evolutionary biology and behavioral ecology, with question first by considering what specific kinds of eco-
consideration of what adaptive functions might be served logical problems might be solved by the evolution of
by the biological structure or process in question -- in this leaming mechanisms. Among the central problems fac-
case, the processes of learning. In this view, learning ing terrestrial organisms are finding food, finding mates,
theory must be linked to a consideration o" adaptive allocating reproductive effort, caring for offspring and
pressures bearing on the evolution of leaiaa.. mechan- kin, avoiding predators and parasites, and navigating
isms, and of the phylogenetic resources (e.g. 'pre- through the environment. We might expect learning
adaptations') available for constructing learning mechan- mechanisms to be organized around these adaptive prob-
isms (Timberlake, 1989). Just as evolution does not l-.ns -n the context of behavioral systems (Timberlake,
'build down' bodies or organs from more general- 1989), Darwinian algorithms (Cosmides & Tooby,
purpose desigr.s, evolution would not be expected to 1987), or psychological adaptations (our preferred term),
somehow 'constrain' general-purpose learning princip.es. each containing cognitive, motivational, emotional, voli-
We might rakher expect evolution to generate specific tional, learning, and memory components. For examp!e,
learning mecL.anisms attuned to particular ecological learning has been investigated specifically as an aid to
problems. Among the central tenets of ecological learn- foraging behavior (e.g. Lea, 1984; Staddon, 1980).
ing theory are. recognizing learning mechanisms as evo- These considerations support points (1) and (2) advocat-
lutionary adaptations (Dawkins, 1983; Shettleworth, ed in section 1.
1983); recognizing the possible biological utility of learn-
ing (Kamil & Roitblat, 1985; Lea, 1984); considering the 4 HOW ECOLOGICAL LEARNING
ecological problems facing organisms, (Plotkin & THEORY CANINFORMCONNEC-
Odling-Smee, 1979); attending to relevant ethological in-
formation (Johnston, 1981a); taking an evolutionary view TIONIST LEARNING THEORY
of reinforcement (Vaccarino & Glickman, 1989); appre- Behaviorists attempted to see how much of real human
ciating that animals are often rather specifically adapted and animal behavior they could explain just by reference
to their niche (Slobodkin & Rapoport, 1974); and under- to general principles of learning interacting with environ-
standing the evolution of learning in the context of mental contingencies and conditioning paradigms. Con-
already-functioning behavioral systems (Mayr, 1974). nectionists all too often attempt to see how much of hu-

man mental life can be explained just by reference to
3.6 TOWARDS UNDERSTANDING THE ADAP- general principles of learning interacting with the 'statist-

TIVE FUNCTIONS OF LEARNING ical regularities of the environment'. Arguments from

An evolutionary and ecological perspective on learning parsimony can be dangerous. The history cf learning
gives rise to very different questions, not only about the theory in comparative psychology indicates that in both
proximate mechanisms of learning (what the Behaviorists Behaviorism and Connectionism the burden of proof
investigated almost exclusively), but about the ultimate against evolved psychological adaptations has been mis-
adaptive functions of different learming mechanisms. For placed. Evolutionary considerations suggest that we
example, Davey (1989, p. xiv) asks "What is the baulogi- should reverse this traditional burden of proof and as-
cal function of learning? How does it coizributQ to in- sume that most psychological adaptations will include ei-
elusive fitness? What selection pressures bear on the ther no learning mechanisms, or very finely-tuned learn
evolution of learning processes? Could generalized learn- ing mechanisms with quite specific functions, e.g. to pro-
ing processes ever be selected for? Have basic learning mote experience-sensitive development of behavior-
processes evolved separately in different species?" generators, to track changes in body shape and size, to al-
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low spatio-temporal integration of certain kinds of infor- ary psychology (Cosmides & Tooby, 1987).
mation (i.e. 'memory'), or possibly to track certain en-
vironmental dynamics. Learning is a subsidiary rather 4.2 TURNING THE TABLES ON LEARNING
than an autonomous adaptive process, because learning By prematurely adopting the sort of 'evolutionary con-
mechanisms evolve to serve particular adaptive functions nectionism' outlined above, however, we may be missing
defined in ecological and evolutionary terms. Ecological a valuable opportunity for re-conceptualizing learning it-
learning theory suggests, then, that connectionist learning self. Evolutionary theory has traditionally been dominat-
theory per se cannot serve as the core theoretical frame- ed by learning theory in psychology; what would happen
work for connectionist modelling of psychological adap- if we momentarily inverted this dominance relation and
tations. Only evolutionary psychology (Cosmides & asked: given the already powerful adaptive process of
Tooby, 1987), appropriately extended and modified, can evolution by natural selection, what could learning really
fill that role. add?

4.1 ECOLOGICAL LEARNING THEORY, CON- Johnston (1981b) analyzed the relative costs and benefits
NECTIONISM, AND EVOLUTIONARY of learning from an evolutionary perspective, and con-
PSYCHOLOGY: A HAPPY RECONCILIA- cluded that learning is not always an adaptive thing to
TION? have. Fitness costs of learning may include longer infan-

Evolution, learning, and computation can all be construed cy and adolescence, with delayed reproductive maturity
as adaptive processes (Holland, 1975). C neconeism (as Staddon, 1983, p. 1, observes, it is "sometimes better

to be dumb and fast than intelligent and slow"), increased
has concentrated almost exclusively on the adaptive juvenile vulnerability during learning, increased parental
processes of learning and computation, but perhaps evo- investment during learning, the neural 'bookkeeping'
lution could be added in as just another process at a cost associated with memory storage and the possibly
longer time scale. This would result in a tidy kind of greater connection complexity and density required for
'evolutionary connectionism' where every connecuonist leat er o mprtan ty h e or

model of a human psychological adaptation would con- learning, and, perhaps most importantly, the developmen-
sider three adaptive processes at different time scales (as tal fallibility of learning: "the importance of not learning

outlined by Shepard, 1989). First, at the shortest time maladaptively is underestimated" (Shettleworth, 1984, p.

scale, computation would allow the connectionist system 448) In particular, not learning the wrong things at all
toajusta itscinternalmpstation s a a t oett sses may be more important than learning the right things
to adjust its internal representations and overt responses quickly (Revusky, 1984). Proposed benefits of learning
to the requirements of the current environment, e.g. by include being able to adapt to changes and fluctuations in
perceptual completion, interpretation, categoizauon, the environment, particularly when the environment may
prediction, and inference. An action dynamics e ua- change unpredictably during the animal's lifetime (Slo-tion governs the network's relaxation in stare space to bodkin & Rapaport, 1974; Plotkin & Odling-Smee,

fulfill the hard and soft constraints set by the current en-
vironmental input. Second, at an intermediate time scale, 1979), and being able to exploit new niches when re-
learning processes would adjust connection weights and quired (Davey, 1989).
biases, perhaps by gradient descent in weight space ac- All adaptive costs and benefits must be understood rela-
cording to some connection dynamics equation, e.g. error tive to evolutionarily available alternatives. There may
back-propagation. Third at the longest time scale, a be no a priori need for learning to evolve if other psycho-
simulated process of natural selection (e.g. a genetic al- logical mechanisms suffice to generate adaptive behavior.
gorithm) could evolve network designs by performing a Why insert an intermediate adaptive process (learning)
stochastic search through an architecture space (e.g. Mill- betveen the evolution of psychological adaptations and
er, Todd, & Hegde, 1989; Belew, 1990; Belew, Mclner- the online functioning of those adaptations in generating
ney, & Schraudolph, 1990). In the limit, we could simply beha,ior contingent on current environmental input?
'evolve' connectionist models of psychological mechan- Hardwiring may suffice. Descartes (1662/1972), for ex-
isms in an abstract 'econiche' composed of experimental ample, ignored learning and viewed all animal behavior
results and theoretical heuristics which the models should as reflexive responses to current environmental events.
fit. Alternatively, consideration of the adaptive tasks that Davey (1989, p. xiii) observed "it is surprising how rela-
certain psychological adaptations might have been tively few species have abandoned fixed behavioral pat-
designed to solve evolutionarily could help guide model- terns in favor of learning abilities" , and Mayr (1974, p.
ling of those adaptations by human psychologists. Ac- 652) noted "considering this great [supposed] advantage
cording to this view, if we make our computational tasks of learning [i.e. adaptability to changing environments], it
just a little more ecologically valid, and our learning is rather curious in how relatively few phyletic lines
processes a little more biologically plausible, we'll have genetc.ally fixed behavior patterns have been replaced by
a flexible, powerful paradigm that updates connectionist the capacity for the storage of individually acquired in-
modelling to fit better with ecological learning theory formation".
(Davey, 1989) and with the emerging field of evolution-
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The prevalence of hardwiring among terrestrial organ- lution of learning?
isms has several explanations. Staddon (1983, p. 1) sug- We see three main adaptive functions for learning. First,
gests "direct stimulus-response mechanisms, plus some
sensitivity to rates of change, are sufficient for a wide and perhaps most importantly, 'learning' may serve to in-range of surprisingly intelligent behavior" (see also crease an organism's 'developmental leverage', allowing

Braitenberg, 1984). This is particularly true for small, it to build a larger, more complex, more finely organizedfast-breeding organisms, whose short generation time fa: phenotype than it otherwise could, given a certain size

cilitates rapid evolutionary change in response to en- genotype. Sensitivity to certain predictable environmen-
vironmental change and limits how much time they have tal regularities during neural development, and the result-
to exploit learned information during their lifespan. ing sensory activation patterns, could guide the self-
Staddon (1983, p. 395) also remarks "the longer an organization of an animal's behavior-generating mechan-

animal's life span, and the more varied its niche, the isms (e.g. see Singer, 1988). Learning may allow the
more worthwhile it is to spend time learning". He goes genotype to 'store information in the environment' and

on to note that, given most animals have rather short life let environmental regularities do much of the hard work
spans, "It is not surprising, therefore, that learning pays a of wiring up adaptive behavior-generators. 2 The environ-
rather small part in the lives of most animals" (ibid.). mental regularities used in this way may take a ratherrathr sallpar inthelivs o mot aimas" ibi.). abstract form. For example, parental 'imprinting' in
Moreover, "animals in invariant environments can rely
on equally invariant patterns of behavior" (Mackintosh, birds (Lorenz, 1937) can be viewed as a way of building
1987, p.336). a behavior-generator sensitive to the appearance of one's

parent, based on the following environmental regularity:
Some science seeks to reduce the strange to the familiar; the first large moving thing one sees after hatching is
our goal in this section has been the reverse. We sought very likely one's parent. Of course, the particular
in turning the tables on learning to make an apparently behavior-generator constructed by different birds for
commonsense adaptive process seem strange and prob- recognizing their parents will be different (the birds will
lematic from an evolutionary point of view. Perhaps by 'learn' different parental images), but the species as a
turning up the heat of evolutionary theory on the caul- whole relies on the same environmental regularity when
dron of learning theory, we can perform the kind of doing the construction.
theoretical annealing that has been so successful in other Second, 'learning' construed as 'memory encoding' can
areas of adaptationist biology. One of the hottest ques-tion toaskbecmesnotwhyhav anybioogial on- assist in the spatio-temporal integration of environmentaldions to ask bec om es , not w hy have any biological con- in o m t n. B h v r-e ra rs g d d o ly b e -straints on learning evolved, but why isn't all initially information. Behavior-generators guided only by en-
'learned' behavior canalized into genetically hardwired vironmental cues in the here and now may be inferior topsychological adaptations? What can a few years of behavior-generators sensitive the relevant environmentallearning really buy a cognitive system already fine-tuned cues from the distant and past.3 Animals may evolve toby millenia of natural selection? Whereas connectionists construct the functional equivalent of variable-delayhave taken learning as the ultimate adaptive process, real neural delay lines (i.e. 'episodic memories') from certainhaeaking lrgnis als h ae aatertive aroc ,rel sensory systems to certain behavior-generators, to expandevolving organisms always have an alternative: hardwire the temporal scope of their sensitivity to environmental
the knowledge. cues. That is, they may evolve to be able to 'bring to

mind' information they recruited in the past that is not
5 TOWARDS A TAXONOMY OF ADAP- currently available in the environment. For mobile an-

TIVE FUNCTIONS FOR LEARNING imals, broadened temporal sensitivity can translate into
broadened spatial sensitivity as the animal moves aboutThe most salient aspect of learning to Behaviorists was and recruits environmental information. (Constructing a

its dynamic ability to bring organismic behavior into a

better fit with the current conditions of the environment.
Learning was, quite intuitively, assumed to have a kind 2 Thcre have been many demonstrations that experimentally depriv-
of environment-tracking function. It was a way for or- ing developing nervous systems of certain environmental regulari-

ties (e.g. certain kinds of visual stimulation) results in maladaptivelyganisms to adapt to environmental changes faster than organized topographic maps (e.g. in stratc visual cortex -- see Hubel
evolution could. This view carries over into many recent & Wisel. 1965. Wiesel & Hubel. 1965) Such experiments should
justifications of learning as an adaptive adjunct to natural not be construed as demonstrations of the impotence of genetic pro-

selection (e.g. Belew, 1990). But we still wondered why gramming and the importance of 'experience' and 'learning'. but of
how efficient evolved developmental mechanisms are at recruiting

an organism would evolve to allow environmental condi- environmental regulanties to assist in self-orgaruzation. The fact
tions to change how its behavior-gencrating mechanisms that neurologists can seleuuvely ehminae those regularities in la
work (by 'learning'), rather than allowing natural selec- bvratonCs should not make us doubt their reliability and ubiquity in

tion to optimize those mechanisms (by 'hardwiring') just nature.
its has optimized so many other physical adaptations 3 However, Gibson (1966, 1979) and Johansson. von ltofsten. and

as Jansson (1980) warn against underestimating the informational nch-
(see Mayr, 1974; Staddon, 1983; Menzel, 1984)? How ness of the present, proximal environment, or underesumating the
can we clarify and extend these intuitions about the evo- range of adaptive behavior that it can guide
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'mental map' of one's environment from experience but in their 'extended phenotypes' (Dawkins, 1982), in-
gathered during sequential exploration is a paradigmatic cluding the location, health, and reproductive status of
example of using 'learning' to integrate information their kin and offspring. Animals may be able to rely on
across space and time.) This function of learning neither relatively fixed developmental sequences and internal
constructs behavior-generators (function I above) nor clocks to modify the operation of their behavior-
modifies their online functiozdng (function 3 below), but generators as they grow and age. But to track the whole
simply expands the range of environmental information of their extended phenotype, they need to actually ob-
to which they are sensitive, serve when other copies of their genes are being instan-

Third, as suggested earlier, 'learning' may allow organ- tiated (i.e. when kin and offspring are born), when those

isms to adjust the online functioning of their behavior- copies are gaining access to metabolic and genetic

generators faster than natural selection would allow, by resources (i.e. growing, eating, and mating), and when

conferring on those behavior-generators some sensitivity they are being threatened (i.e. injured or dying). Animals

todnrrichng es in th environmental conditions during may evolve learning mechanisms that permit acquisition
to dynamic changes in thironmenadts pheng and maintenance of an ongoing cognitive model of one'san organism's life. In this case, learning adapts pheno- kin and social-exchange network, including how to

types to ongoing changes and particularities of the en- recognize and assist them, and how to request assistance
vironment rather than depending on environmental regu- of them. Many learning mechanisms may be rather

larities during phenotype-construction. For example, an- specifically tuned to promote this type of kin recognition

imals equipped with a special mechanism for learning and kin slco(eHaion
motor skills to remove new varieties of parasites from and kin selection (see Hamilton, 1964).

their bodies may fare better than competitors lacking Such complexities aside, environment-tracking is prob-
such a mechanism if a new species of parasite migrates to ably the adaptive function of learning most familiar to
the area. Different parasites may have different modes of adult humans (e.g. learning a new restaurant location, or
attachment to the animals' bodies, so may require dif- a new person's name), so it has been more commonly
ferent removal methods. A learning mechanism that al- studied by psychologists. Yet it is likely to be a less
lowed an animal to infer, practice, and perfect an ap- common use of learning than experience-guided
propriate removal method given, e.g., a visual assessment phenotype-construction throughout the animal kingdom.
of the parasite's attachment method, might prove adap- Several issues of scale in time and space arise in consid-
tive. In this case, the animals would not be using an en- ering the adaptive functions of learning; these can il-
vironmental regularity to construct a behavior-generator luminate why experience-guided development may be
during development (the new parasites weren't around more widespread than environment-tracking learning.
then), or integrating information about the parasites We might expect small and large organisms to use
across space and time (parasites currently attached to the experience-guided development to almost the same ex-
animals' bodies are very much in the here and now), they tent, i.e. as much as possible. Big animals, by definition,
are simply developing a new behavior-generator (e.g. a must build large and often incredibly complex pheno-
new method of parasite removal) adapted to a new en- types given moderately sized genotypes. Although small
vironmental problem. animals do not have as much of a phenotype to build,

This proposed environment-tracking function includes they must build their phenotypes from very small
many sub-functions not usually considered in learning gametes that contain very little genetic material.
theory. One reason for modifying the operation of However, larger phenotypes generally take longer to
behavior-generators during the lifetime of an animal is build, implying longer generation time and a slower rate
that the animal's body may be growing and changing -- of genetic evolution (the greater extinction rate of large
i e the spatial relations among its sensory transducers species is generally thought attributable to their difficulty
and motor effectors, and between those and its surround- in genetically adapting to changing environments). Thus,
ing environment, may be changing. Certain learning larger phenotypes will generally have a harder time
mechanisms may evolve to track such relations between tracking eavironmental change, and their genotypes will
the animal's gradually changing body and relatively generally lag farther behind being adapted to the current
stable aspects of the environment, rather than tracking environment, so in general there may be unusually strong
'objective' environmental dynamics per se. Another way adaptive pressures for larger animals to evolve
of expressing this would be to say learning tracks not just environment-tracking learning mechanisms. The sah-
the external environment, but also the corporeal environ- ence of these addptive pressures to humans, one of the
ment of bone, sinew, and flesh in which the animal's largcr and longer-lived species on the planet, may lead us
behavior-generators (i.e. brains) are embedded. to overestimate the importance and popularity of

A second reason for modifying the operation of environment-tracking learning. But, as Davey (1989, p.

behavior-generators in response to certain environmental 20) suggests, "learning ... is likely to evolve only when
conditions is that animals may need to track changes not more fundamental processes of information gain (such as
only in their indiidual bodms (ther bastc phenotypes) phylogenesis [i.e. evolution]) have reached an upper limit

to the amount or rate of change that they can cope with".
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Thus, we needn't suppose that small animals lack genies and adaptations. However, the facility with vhiuh
environment-tracking learning abilities because they are suh simulations can be developed and explured, and the
'less advanced' than larger animals. We must see 'learn- inherent appeal of watching adaptive systems develop,
ing' as (1) as way of developmentally fleshing out the can allow the proliferation of studies not well-grounded
genotype during development, (2) informationally flesh- in a theoretical framework. Without theoreucal ground-
ing out the animal's current Umwelt (view of the world) ing, results are difficlt to interpret and to assimilate into
over space and time, and (3) temporally filling in the a coherent picture. We hope the notion of psy.hology as
adaptive fur..tion of environment-tracking in between the study of adaptive agency can help to unify and direct
generation times, when natural selection operates. Small, all such studies (observations, experiments, and simula-
fast-lived organisms simply don't need much of the third tions).
function. Since small-bodied species as collective enti-
ties out-number, out-weigh, out-reproduce, and typically To capture all of the adaptive processes discussed earlier

in a simulation, we must have methods of simulating
out-last large-bodied species, they objectively instantiate genotypic evolution, the generation of behavior, and the
most of the adaptive agency on this planet. The adaptive genoty olutn e g behavior , andlthe
functions of learning that are central to them must be aiio ler new behaviors.l(We ignore 'cultual'transmission for now, but see Belew, 1990). Specifically,considered central to psychology as the (non-
nsreocentral t . 4 we use a genetic algorithm to evolve successive genera-

study of adaptive agency. tions of a population of neural network architectures,
which in turn contro . the behavior of simple creatures

6 A SIMULATION FRAMEWORK FOR which can learn as they live in a simulated environment.
EXPLORING ADAPTIVE AGENCY This is an extension of earlier work exploring the use of

genetic algorithms to design network architectures capa-
A general understanding of adaptive agency cannot rest ble of learning specific input/output mapping tasks (Mill-
on experimentation, observation, and theory alone. Some er, Todd, and Hegde, 1989); here, the algorithm's meas-
adaptive processes happen on time-scales that precludeadapiveproesss hapenon imescals tat recude ure of fitness depends not on learning an arbitrary task,
experimental manipulation or direct observation. Also, urofitesdpnsotnlanngnabtaytskexpeimetalmanpulaionor iret obervtio. Aso, but on behaving adaptively in the simulated environment.
the canalization of terrestrial evolution along certain lines
(e.g. using DNA for genotype material) makes us wonder In simulating the evolution of further adaptive processes,
about alternative possibilities not directly observable. for instance specific behavior-generators and specific
And the stochastic, complex nature of adaptive processes learning abilities, we must first specify some environment
make strict experimental control of real physical systems and what defiaes fitness in that environment. We then
very difficult. For these reasons, researchers have recent- observe, through the course of the evolutionary simula-
ly turned to computer simulation as the most tractable tion, which adaptive processes are most important for
way of exploring certain adaptive processes. Simulation maximizing individual fitness by "so!ving" the relevant
allows strict control over specified parameters, explora- environmental problems. Ackley and Littman's (1990)
tion of alternate phylogenies and developments, and rapid sophisticated simulations, for example, show the utility of
observation of processes that take eons in the real world. e%olving motivational systems to guide learning.
Simulation bears on psychology not only as a method for Nevertheless, their simulations are pre-set to operate ei-
modelling specific psychological adaptations and specific ther with learning or without, rather than set up with an
historical phylogenies, but as a way of generally explor- environment whose adaptive problems allow the evolu-
ing the adaptive processes that produced those phylo- tion of learning itself to be studied. We strive to create

simulations in which the subsidiary adaptive processes
The suggested logical and historical prmacy of experience- that evolution can spawn are as open-ended as possible.

dependent development over environment.tracking learning is a
conjecture not easily supported or refuted. It is appealing to us be- 6.1 TYPES OF LEARNING
cause learning mechanisms that evolved originally for experience-
guided developmeit of behavior-generators could conceivzbly ser~e Since we are primarily interested in using simulation to
as pre-adaptations for the evolution of environment tracking learn explore issues in the evolution of learning, we must ad-
ing. That is, given a learning mechanism that recruits patterns of en dress the varieties of learning we could investigate. Tol-
vironmental stimulation to help in construction of a psychological man (1932) asked "Is there more than one type of learn-
adaptation, one could easily imagine how prolongation of that
mechanism's sensitive penod could confer longer, perhaps lifelong. ing?" The answer, of course, depends on what one
adaptive flexibility to that mechanism. Selective pressures to pro- means by 'type'. Different kinds of learning might be
long such sensitive periods, ve conjecture, may underlie the evolu distinguished by at least three different criteria. t1) type
tion of most environment-tracking learning mechanisms. Johnston of experimental paradigm used to investigate it; (2) neur-
(1981) discusses how potentially adaptive concommiiants of
evolved learning abilities might serve as pre-adaptatons for later al mechanism implementing it; (3) adaptive functions
learning abilities by confemng on animals certain eculugicAlly served by it. Behaviorists concentrated on the first cri
surplus abilities". i.e learning abiliucs not directly selected f.,r. R. tcrion, defining _labsial versus operant tonditioning, for
zin (1976) also suggests that learning mechanisms may have example, according to the sorts of environmental con-
evolved first as isolated specializations and later became available to tingencies the experimenter sets up for tie laboratory an-
a wider range of behavior.generators.
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imal. Connectionists view the first criterion in terms of to track. But if the environment changes too rapidly, then
structuring the training set and test set for the network, extensive simulation of learning during an organism's li-
and the second in terms of the specific mathematical fespan would be required. Likewise, exploring the
learning algorithm implemented in the network. Rarely second information-integration function of learning
has a taxonomy of learning been conceptualized in terms would require simulating extensive interactions between
of adaptive function. The theoretical and empirical study creatures and worlds, including recurrent network
of learning could concentrate on any of these three ways dynamics or memory encoding and retrieval systems.
of distinguishing learning processes, or it could pursue a We did not want to become mired in simulating
fourth strategy of attempting to elucidate general princi- constantly-changing environments or sophisticated
ples of operation governing all learning processes, under- dynamic learning mechanisms, so we opLed for a kind of
stood in some sufficiently abstract way -- as in Shepard's imprinting scenario, where experience-guided develop-
(1987a) work towards a universal law of generalization. ment uses an abstract environmental regularity to help
Fortunately, there may be some correspondence between build behavior-generators adapted to unpredictable parti-
learning mechanisms construed in terms of experimental cularities of the niche, as follows.
paradigm used to investigate them and learning mechan- The simplest way to defeat natural selection is to make
isms construed in terms of their adaptive functions. the genotype unable to know ahead of time which one of
Learning mechanisms evolved to solve particular ecolog- two alternate econiches it will find itself in during pheno-
ical problems; to the extent that different experimental typic development. If one econiche requires one kind of
paradigms present ecologically valid, adaptively iso- behavior-generation mechanism and another econiche re-
morphic problems, they may map onto real adaptive quires a different kind, natural selection alone will be un-
functions of learning. But the fit between adaptive func- able to select the proper mechanism to guide the
tions and neural mechanisms may be much looser: phenotype's behavior. Natural selection must instead"analysis of learning in terms of functional problems select for the evolution of a more general mechanism that
does not map directly onto the learning theorists' analysis can flip into one of two states depending on some assess-
in terms of [neural] mechanisms" (Shettleworth, 1984, p. ment of which econiche it finds itself in. Thus, we chose
431). Different adaptive functions might be implemented a kind of "imprinting" or parameter-setting based on the
by similar neural mechanisms for changing synaptic early environment as the simplest possible case in which
weights, or the same adaptive function might be imple- learning, construed as adaptation to specific environmen-
mented in very different neural mechanisms in different tal regularities, could evolve.
species.

For these reasons, we chose to categorize learning 6.2 INCLUSIVE FITNESS AS THE ONLY NA-
mechanisms by adaptive function rather than by experi- TURAL 'SUPERVISOR' FOR LEARNING
mental paradigm or neural mechanism. But the problem Many previous attempts to use genetic algorithms to
remains: which adaptive function should be explored evolve neural network architectures have evaluated archi-
first? To investigate the evolution of learning for exploit- tecture fitness by training the networks with a supervised
ing environmental regularities specifically as a means of learning procedure, (i.e. one with an externally provided
maximizing phenotype size and complexity given limited "target vector" the network is to produce given each input
genotype size, a simulation must include adaptive pres- vector), typically back-propagation (Belew, Mclnerney,
sures or constraints on genotype length or specificity. & Schraudolph, 1990; Miller, Todd, & Hegde, 1989, for
Without such pressures or constraints, the genotype may a review, see Weiss, 1990). While supervised learning
simply expand to accurately specify (hardw, ire) the ap- paradigms may be appropriate in evolving connectionist
propriate phenotype, rather than evolving devclopmental systems for particular commercial applications, they are
tricks that depend on internalizing environmental regular- problematic and perhaps misleading in scientific studies
ities during development. Clearly, such pressures depend of adaptive agency. In particular, to be biologically plau-
on what developmental mechanisms exist or can evolve sible, the source of the "targets" or other supervising
for gener..ing phenotypes from genotypes. Since the va- feedback must be justified. Organisms as whole func-
garies of real neural development and of adaptive pres- ioning agents in real environments rarely reeive pat-
sures on genotype size are still poorly understood, ve terns of information analogous to training signals in
have not found a satisfactory general method for simult- back-propagation. Although the distinction between su-
ing neural development or for imposing pressures on pervised and unsupervised learning procedures can be
genotype length. So we have avoided simulating the evo- blurred, we have chosen to focus on the more defensible
lution of learning as a vay of achieving developmental latter end of the spectrum, including self-organizing, as-
leverage. sociative, and simple feedback-based mechanisms. But

even if we sidestep the issue of target-based training, theExploring the third 'adapting to particularites' function
of learning requires setting up an adaptive problem with concept of feedback still raises problems.
environmental changes too rapid for genotypic evolution
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Years of learning by "being taught" instill in us intuitions Once a network, instantiating the behavioral mechanisms
about the utility of corrective feedback to guide learning. of an individual creature, has been so constructed, it is
But such intuitions make it easy to overlook the fact that evaluated in the simulated world over several time-steps
it is at least as difficult for organisms to evolve the ability representing the creature's lifespan. During each time-
to perceive feedback signals from the environment to step, a creature's network receives sensory input based
guide their learning, as it is to evolve the perception of on the current external environmental cues available,
any other complex external cues. Consider for example processes that input according to its architecture and
the complexities involved in registering the information current weights, generates behavior based on the activa-
that one has just been rebuffed in a social exchange. tion of its output units, and changes its connection
Feedback signals cannot be assumed to be just somehow weights based on an unsupervised learning rule (e.g.
"provided" to an organism for it to use in adjusting its Hebbian association). The effects of the creature's
behavior. Instead, feedback systems must be understood behavior on the world and on its own fitness are then re-
as special sensory systems evolved to provide informa- gistered, and the next time-step begins.
tion to special learning mechanisms that in turn adaptive-
ly change the functioning of certain behavior generators 7 A SIMPLE SCENARIO FOR THE EVO-
(e.g. in the simulations of Ackley and Littman, 1990). LUTION OF UNSUPERVISED LEARN-
Feedback systems, whether motivational, emotional, voli-
tional, or proprioceptive, evolve just like other aspects of ING
adaptive agency -- by cumulative selection of incremen- For our first exploration of adaptive agency, we attempt-
tally better-adapted designs. ed to devise the simplest, cleanest scenario in which

Ideally, an organism might prefer to guide its learning learning could prove adaptive, focusing on a kind of im-
with direct information about how its inclusive fitness printing function. After analyzing the building blocks
changes as a result of its behavior. But there is no such needed for associative learning, we analyzed what sorts
thing as an inclusive fitness transducer that can be used to of environments might exert adaptive pressures to evolve
supervise learning. Organisms must instead evolve to that type of learning. Finally, we constructed an ap-
sense inclusive fitness indirectly, through whatever proxi- propriate simple world to see if learning would spread
mal sensory Lues have been reliably associated hith in- threugh a population of simulated creatures behaving in
creased fitness in their environment. Thus, natural selec- that world. We explain the scenario used by outlining a
tion itself is ultimately the only sourte of 'supervision' biological metaphor that specifies the structure of the
for learning systems. econiche and the nature of the adaptive problem. (The

scenario and results are described in more detail in Todd
The indirectness of natural selection's supervision of and Miller (1990); space constraints preclude making this
learning leads to the complexity inherent in real evolved section much more than an overview.)
learning mechanisms. Humbled by this complexity, we
decided not to clutter our initial simulations with the re- Our scenario can be imagined as an underwater realm, in
quirement of evolving a motivational system to provide which parents emit eggs randomly into two different
supervising feedback during learning, in addition to types of feeding patches. those where food is green and
evolving the learning system itself. So instead we chose poison red, or vice-versa. Each creature in this world
to start by exploring the simplest set of unsuper,,ised as- lives a fixed lifespan, eating or ignoring food and poison
sociative learning mechanisms we -ould conceptualize, at each life-step, and amassing energy which determines
as will be described below, its eventual number of offspring in the next generation.

Eating food raises energy; eating poison drains energy.
6.3 THE GENETIC ALGORITHM FOR EVOLV- Food smells sweet and poison smells sour across all

ING NEURAL NETWORKS creatures, but with some perceptual error rate -- the
smell-sense accuracy -- determined by the turbulence of

Te simulate the evolution of learning in our explorations the water in this world. Food and poison each have
of adaptive agency, we use a relatively standard form of characteristic fixed colors wittun one creature's life, but
Holland's (1975) genetic algorithm, combined with a the meaning of each color varies between creatures, food
simple "developmental" method which translates gcno- being red for some and green for others, depending on
types into neural network architecture phenotypes. In their patch as mentioned above. The color-sense is 100%
this method, a strong genetic specification scheme (as accurate. Thus natural selection can 'predict' the associ-
defined by Miller, Todd, and Hegde, 1989) interprets ation between smell and object, but not between color
each genotype as a connectivity constraint matrix that and object -- this will be the task for learning.
directly specifies the nature of each unit and connection
in the network architecture.
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the sweet smell unit says to do -- the creature has now
learned that a particular color means food. The creature

[Chroignarus iex I can now rely on this completely accurate visual cue, rath-
sweet smell unit er than the inaccurate smell cue, and always choose to eat
(e.g. 5, acuae) properly, thereby increasing its fitness further.

id connecton 7.2 INITIAL SIMULATION RESULTS

or (eating) unit We continued our investigation of the conditions under
which learning could evolve with the more interesting
question of how quickly learning would evolve, given

[Chr-odiscipulu. simplex various smell accuracies in different worlds. By tracking
population average fitness values, it is possible to tell

(weet 75el unite ed or g(1e color unit when the use of learning has spread through the popula-
,e.g. 75 accurate)"- (,100 accurte, tion. Initially, the average fitness quickly rises to a pla-
fixed po. connection 'learnable connection teau at which the fixed sweet-smell to eating unit connec-

leanaletion is present in most of the creatures (Chromignarus

otor (eating) unit temporarily dominates). After remaining fairly level at
this fitness value for possibly many more generations, the
average population fitness again jumps, indicating that

Figure 1. The network designs of Chromignarus (without color the learnable connection from a color unit has penetrated
learning), top. and Chromodiscipulus (with color learning), bot- the population (Chromodiscipulus ultimately rules).
tom. Average fitness then levels out again, this time around its

final highest value. Thus recording when fitness jumps
occur can tell us when the different creature designs

7.1 EVOLVING ADAPTIVE NETWORKS predominate in the population.

As the genetic operators process genotypes again and For each of 17 smell accuracies between 50% and 100%
again through many generations, recombination and mu- we ran 20 populations of 100 individuals for 1500 gen-
ration will sometimes produce particularly fit network erations each. Figure 2 shows how many generations it
designs. One reasonable design we can expect consists took each population to make each of the two jumps to
of a sweet smell sensing unit connected to a motor unit new fitness-plateaus. These two jumps correspond to the
(which controls the creature's eating) by a fixed positive widespread appearance of Chromignarus (without color
weight. A creature equipped with this nervous system learning) -- indicated by asterisks -- and of Chromodisci-
will depend purely on smell to decide when to eat, with pulus (with color learning) -- indicated by bullets. The
its behavioral accuracy dependent on the inherent noisi- bottom curve shows the average number of generations
ness of the smell sense in its world (i.e. by amount of tur- taken to evolve Chromignarus across the 20 runs at each
bulence). Although this design will sometimes make accuracy level, and the top curve indicates the analogous
mistakes (that is, ignoring food or eating poison that average generations to evolve Chromodiscipulus, and
smells wrong because of the turbulence), still on average thus learning itself.
it will eat more food than poison. Thus these creatures' The fixed smell connection (the Chromignarus design)
energy, and number of offspring, will be higher than if evolves rapidly, in less than 100 generations for most ac-
they were just eating randomly. We call this design the curacy levels. The greater the accuracy of smell, the
color-blind eater, or, more fancifully, Chromignarus sim- more quickly the fixed smell connection spreads, because
plex, and it is shown in the top portion of Figure 1. the adaptive advantage to be gained from evolving it (i.e.

The best evolved creature design though is an elaboration the adaptive pressure) increases. More interesting is the
on the color-blind eater chassis. Creatures of this type effect of smell accuracy on time taken to evolve color
gain an adaptive edge by including a red or green color learning (Chromodiscipulus). Here we found an unex-
sensing unit, along with a learnable connection to the mo- pected U-shaped relationship, color learning evolcd
tor (eating) unit This creature design we name Chrono- most quickly for smell accuracies around 75%, and took
discipulus simplex, color-learning eaters, as shown at the longer and longer for accuraies diverging on either stde
bottom of Figure 1. of that middle range (as shown by the upper, solid, curve

in Figure 2).
With this design, an appropriately excitatory link
between the color unit and the eating unit will be built up
over successive time-steps in the creature's life by a Heb-
bian correlational weight-change mechanism. Eventually,
this weight will be large enough that the color unit alone
can cause the eating unit to come on, regardless of what
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tiveness at low smell accuracies, and learning will take a
1600 long time to evolve.

At high smell accuracies, in contrast, color learning
1400 would be easy to perform ontogenetically, because per-

* ceived smell, color, and substance type will be highly
1200 correlated, and tle associations between them could build

" up quickly. However, there is little phylogenetic adap-
" •tive pressure to evolve color learning in this case, be-moo " "cause the smell sense alone suffices to guide highly adap-

tive eating behavior. Since natural selection cannot dis-
tinguish Chromignarus from Chromodiscipulus if they
are both doing almost perfectly, this 'ceiling effect' will

60 . keep Chromodiscipulus from proliferating. So again
400• "color learning will take a long time to evolve.

400 But for middle smell accuracies, color learning is rela-
" .tively adaptive and relatively easy. Color learning gives

200 .:1: , , a significant fitness increase over using smell alone, and
learning can occur fairly quickly, since the eating unit
comes on rather more often to food than to poison. Mid-

0 " "level smell accuracy represents a happy medium between
50 SS 60 65 70 80 85 90 95 100 phylogenetic adaptive pressure and ontogenetie ease of

sse, A==Y. % learning, leading to the rapid evolution of color learning
and its spread through the populastion.

Figure 2. Generations to evolve Chromignarus (without color 8 PLANNED EXTENSIONS AND FU-
learning) and Chromodiscipulus (with leaming) plotted against TURE RESEARCH
smell-sense accuracy. Asterisks indicate time to evolve
Chromignarus for each of 20 runs at each of 17 smell-sense ac-
curacy levels; the dotted line indicates average time across the Our theoretical motivation will continue to be the ex-
20 runs at each smell accuracy. Bullets indicate time to evolve ploration of adaptive agency and interactions among
Chromodiscipulus for the same 20 runs at each accuracy level, adaptive processes; our methodological strategy will con-
the solid line indicates average time across the 20 runs at each tinue to focus on the search for simple, elegant scenarios
accuracy. Note that average time to evolve Chromignarus de- that reveal potentially general patterns and dynamics
creases monotonically as smell sense accuracy increases, but underlying adaptive agency. Gven this orientation, we
average time to evolve Chrornodiscipulus follows a U shaped have gradually abandoned our earlier ambitions to create
Learning Evolution Curve. a general-purpose system for investigating the evolution

of very complex nervous systems in very complex en-

7.3 THEORETICAL INTERPRETATION OF vironments. The rush to build as much biological realism

THE U-SHAPED EVOLUTIO" FUNCTION as possible into our simulations as quickly as possible,
can, we fear, obscure those features of simulation that

We view the U shape as emerging indirectly from a make it so useful in other sciences, parametric control,
trade-off between the phylogenetic adaptive pressure to replicability, conceptual clarity, ease of analysis, and
evolve learning (dunng species-wide evolution), and the speed. Thus, we hope to dc'elop more simple scenarios
ontogenetic ease of learning (during each indi.idual that not ,nly capture the cntral features of certain adap-
creature lifetime). These forces interact at the i-arious Live problems, but that can reveal unanticipated patterns
smell sense accuracy levels as follows, and complexities.

At low smell accuracies, where Chromignarus does quite More specifically, we intend to develop as series of
poorly, there is great phylogenetic adaptive pressure to slightly more Lomplex learning scenarios to investigate
evolve color learning, because it would add significantly how natural scletion, assoxiati'c learning, and en,.iron
to this creature's fitness by overcoming its ,.olor-blind, mental dynamis intcra.l One could imagine that, given
smell-guided error-prone behavior. However, this large a series of results from such scenarios, a more ger.eral
potential benefit is offse; by the ontogenetic difficulty uf theor) con.cming the interaction of adaptie processes
actually accomplishing learning at noisy low smell a,u might emerge - not a formalistic mode! in terms of
racies. In fact, learning can be so slow in this case that a d)namical systems or information theour, but a concrete
learning creature's lifespan may clapse before it gains understanding of the interai.tions among adaptive pres
any benefit from this ability. Thus the ontogenctif sores, cue structures in different environments, genetic
difficulty of learning offsets its high phylogenetic adapi rcprescntations and operators, dcvclopmental mechan
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isms, learning, behavior-generation, and information- Press/Bradford Books.
processing. Later, we intend to address the adaptive Brant, D.H., & Kavanau, J.L. (1965). 'Unrewarded' ex-
problems of foraging, communication, and pr..ean ploration and learning in complex mazes by wild
behavior. At each step, we hope to keep our motivations and domestic mice. Nature, 204, 267-269.
for simulation closely tied to resolving theoretical issues Breland, K., & Breland, M. (1961). The misbehavior of
in the study of adaptive agency, while remaining sensi- organisms. American Psychologist, 16, 681-684.
tive to the sorts of unanticipated phenomena, patterns, Chomsky, N. (1957). Syntactic structures. The Hague:
and dynamics that simulation research so often reveals. Mouton.
In allowing research to be guided so strongly by a clearly Cosmides, L., & Tooby, J. (1987). From evolutior to
articulated conceptual framework, we may give up some behavior: Evolutionary psychology as the miss-
of the immediate richness and appeal of simulation-for- ing link. In J. Dupre (Ed.), The latest on the
its-own sake, but we hope to achieve a theoretical depth best. Essays on evolution and optimality. Cam-
and breadth, and a connection to major issues and pe;en- bridge, MA: MIT Press/Bradford Books.
nial questions, that will, we believe, be more satisfying in Curio, E., & Vieth, W. (1978). Cultural transmission of
!he end. enemy recognition. Science, 202, 899-901.
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Abstract duction is devoted to a somewhat philosophical dis-
cussion of the role of evolutionary computation in the

This paper explores how an evolutionary pro- modeling of cognitive systems, and in particular the
cess can produce systems that learn. A gen- importance of the phenomenon of emergence. A brief
eral framework for the evolution of learn- outline of related work combining connectionist and
ing is outlined, and is applied to the task of genetic methods is also given. Readers whc wish to
evolving mechanisms suitable for supervised skip this background material may proceed directly to
learning in single-layer neural networks. Dy- the second section.
namic properties of a network's information-
processing capacity are encoded genetically, 1.1 EVOLUTION, EMERGENCE AND
and these pioperties are subjected to selec- COMPUTATION
tive pressure based on their success in pro-
ducing adaptive behavior in diverse environ- In recent years, the evolutionary approach to the com-
ments. As a result of selection and ge- putational modeling of cognitive systems has gained
netic recombination, various successful learn- prominence, following the work of Holland and his col-
ing mechanisms evolve, including the well- leagues on genetic algorithms (Holland 1975, Goldberg
known delta rule. The effect of environmen- 1989), a class of methods of search directly inspired by
tal diversity on the evolution of learning is biological systems. The attractions of this approach
investigated, and the role of different kinds are many. To the biologibt, ethologist or psychologist,
of emergent phenomena in genetic and con- evolutionary computation offers insight into the mech-
nectionist systems is discussed. anisms that gave rise to adaptations presernt in existing

living systems. To the computer scientist or the engi-
neer, genetic search can yield a powerful method of

1 INTRODUCTION problem solving. If we accept the often-repeated slo-
gan, "Nature is smarter than we are", then harnessing

Evolution and learning are perhaps he two most fun- the problem-solving methods that nature uses makes
damental adaptive processes, and their relationship sound practical sense. Final,, to a cognitive scientist,
is very complex. This paper explores one aspect of evolutionary methods offer a paradigm of cmergence
this relationship, how, via the process of evolution, that seems to have much in common with the kind of
the process of learning might evolve. Taking this ap- emergenc. found in contemporary connectionist sys-
proach, we can view evolution as a kind of second- tens. In both kinds of systems, complex higl-level
order adaptation. it is a process that produces indi- behavior is pr.oduced as a result of combining simple
vidual systems that are not immediately adapted to low-level computational mechanisms in sinple %%ays.
their environment, but that have the ability to adaptthemelvs t may eniromens b thefirt-oder The kind of emergence found in genetically-based sys-
themselves to many environments by the first-order tems differs, however, from that found in connec-
adaptive process of learning. Here the learning mcli tionist systems. Connectionist systems support syn-
anisms themselves are the object of evolution. Using tioni ems. orence oeels t a
a combination of methods drawn from connectionism chronic emergence, or emergence over levels: at a

and genetic search, we will start with a population of given time, a host of low-level computations are 01-
individuals with no ability to learn, and attempt to ing place, which when looked at on ano.ier level can

evolve useful learning techniques. be interpreted as complex high-level functioning. By
contrast, genetically-based systems support diachronic

The details of the experiments performed here start emergence, or emergence over time. primitive compu-
in the second section. The remainder of this intro- tational systems gradually evolve towards greater crn-
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plexity. search methods that a genotypic space is precisely

To the cognitive scientist, while there is a good deal of specified in advance, and search cannot go outside this
intrest cntie pociessnofeoluti on theis gooeatt i - space. When this is coupled with a direct genotype-
interest in the process of evolution, the greatest inter- to-phenotype mapping, it translates directly into a
est lies in the product. One wishes that eventually, as strongly-delineated phenotypic space whose properties
a product of the appropriate sort of genetic search, we are well-understood in advance. The role of genetic
will be able to produce plausibly functioning cognitive search is reduced to that of optimizing over such a
systems. This is where the distinction between syn- sell-understood space. However, if the relationship

chronic and diachronic emergence becomes important. between genotype and phenotype is indirect and emer-

The diachronic emergence of the evolutionary process gen enotyp e nd note s trnd eo-

gives no guarantee that the systems that result from gent, phenotypic space need not be so strongly con-give noguarnte tha th sytemstha reslt rom strained. To be more precise, in such cases phenotypic
the process will manifest the kind of emergence-over- space will be indirectly constrained by the genotypic

levels that is so important in connectionist systems. space, but synchronic emergence guarantees that high-

For example, classifier systems, the most prominent level phenotypic characteristics need not be limited in

application of genetically-based computation (Holland advance by the imagination of the designer.

1986), give rise via genetic search to a kind of produc-

tion system, a paradigm of symbolic computativn. To There are at least two different ways to achieve such
someone-a connectiunist, for example- %%ho believes an emergent relationship between genotype and phe-
that emergence-over-levels is fundamental to most rog- notype. The first is to make the genotype code for
nitive phenomena, this is somewhat unsatisfying. This subsymbolhc computation in the phenotype. it might,
is not to say that Jassifier systems are uninteresting- for example, determine the low-level computations of
they have yielded powerful insights into the process a connectionist system, without explicitly constrain-
of learning, for instance (see e.g. Holland, Holyoak, ing high-level behavior. Secondly, a genotype might
Nisbett and Thagard 1986)-but it would be very in- code for developmental processes in the phenotype.
teresting to see whether evolutionary methods could On this approach, the phenotype's final form would
be used to develop systems that might be classed as not be specified, bitt instead would result from a com-
emergent in their own right. plex pattern of developmental processes over its life-

time. In this paper, we will use both kinds of emergentThe road to achieving synchronic emergence through genotype-phenotype relationships simultaneously: the
evolutionary methods seems clear: loosen the connec- gntp-hntp eainhp iutnosy h

genotype will specify the dynamics of a developing sys-
tion between genotype and phenotype.' In classifier tem that interacts with an environment, and these dy-
systems (and in most other current applications of ge- namics will control low-level properties of a connec-

netic algorithms) the connection between these is very tionist system. In this way, we will see whether adap-

direct. An element of the genome codes for a feature- tation at the level of evolution can give rise to adapta-

detector or an action in the phenotype in a direct, tion at the level of the individual: specifically, whether

symbolic fashion. This contrasts strongly with the hu- we an produce, ou the paci y for
man ase inwhic elmens ofthegenme apea to we can produce, through evolution, the capacity for a

man case, in which elements of the genome appear to connectionist system to learn.

determine phenotypic functioning in only a very indi-

rect way, coding for low-level mechanisms that produce
human behavior via "action at a distance". When the 1.2 GENETIC CONNECTIONISM
genotype encodes high-level features directly and sym- The combination of genetic search with connectionist
bolically, there is no room for synchronic emergence. comutation ey sear.h w er onetic
Emergence-over-ievels can only take place when lev- computation is already popular. The power of genetic
els are distinct. The key to achieving full emergence coding at the subsymbolic level is well-recognized. Awith evolutionary systernis seems to lie in the abilty to key motivation behind this "genetic connectionism"
allow phenotypic characteristics to emerge indirectly stems from the fact that due to the synchronic emer-
from genetic information, gence of connectionist systems, it is difficult to know

in advance precisely which low-level computations are
There is another motivation for indirect mappings appropriate for a specific high-level behavior. In view
from genotype to phenotype. open-ended search. Cur- of this difficulty, it makes sense to use genetic methods
rent genetically-based methods have been criticized for to search for an appropriate low-level computational
not allowing a sufficiently "open-cnded" space of pos- form. Rather than construct the right kind of system
sibilities for evolution. It is a feature of current genetic or architecture by hand, why not let natural selection

do the work?
'The genotype is the collection of genetic information Genetic connectionism to date has usually taken one

passed on between generations: in a genetic algorithm, of two forms. Genetic information has been used to
this is typically a string of bits. The phenotype is the
behavioral expression of the genotype, an entity that i- encode the connection strengths in a neural network
teracts with an environment and is subject to selection by (e.g. Belew, Mclnerney & Schraudolph, 1990, Wilson
differential fitness. In the human case, genotype=DNA, 1990), or to encode the overall topology of a network
phenotype=person. (Miller, Todd & Ilegde 1989; Whitley, Starkweather &
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Bogart 1989). These methods have yielded interesting framework). Thus, if genetic search is tu be successfal,
results on the optimization of network design. They it must evolve a learning procedure that can start from
have not, however, led to qualitatively new kinds of a wide variety of network configurations and reliably
connectionist processes. The reason for this lies with reach an appropriate result.
the fact that the phenotypic spaces are qualitatively Working within this paradigm it is important to distin-
well-understood in advance (although, as pointed out
above, the relationship between individual phenotypes guish two levels of adaptation: learning-adaptation
and genotypes may not be). Genetic methods provide at the level of the indvidual-where an individualover time adapts to its e ivironment, and evolution-
a powerful method of searching these spaces, but are adaptation at the level of te population- where over
unlikely to come up with surprising results. Soon we
will look at an application where the nature of the the course of evolutionary history a population grad-
phenotypic space is less clear in advance, ually evolves mechanisms that improve the fitness of

its members. In our case, the fitness of a single mem-
Much interesting recent work has focused oi, the re- ber of the population will be measured by its capac-
lationship between evolution and learning. It has be- ity for adaptation %ithin its lifetime (learning), so the
come apparent that genetic connectionism is an ideal evolutionary mechanisms l,, be viewed as a second-
modeling tool in this endeavor, genetic algorithms order adaptive process. a population-wide adaptation
providing an elegant model of evolution, and connec- that over generations produces better adaptive pro-
tionism providing simple but powerful learning mech- cesses within the lifetime of an individual.
anisms. Belew, McInerney and Schraudolph (1990), A vital component of the learning process is the en-
following up suggestions by Maynard Smith (1987) vitom n enome wer e roel stic,and Hinton and Nowlan (1987), have demonstrated vwronmeni. If the environment were relatively static,
the complementary nature of the two phenomena: the there might be little need for learning to evolve. Sys-presence of learning makes evolution much easier (all tems could instead e.'olve to a state where they havepelutinc haof din mas apolutimuasie r all tt innate mechanisms to handle that environment. But if
evolution has to do is find an appropriate initial state the environment is diverse and unpredictable, innateof a system, from which learning can do the rest); and environment-specific mechanisms are of little use. In-
evolutionary methods can significantly speed up the en ividalseera v mechanismslearning process. Nolfi, Elman and Parisi (1990) have stead, individuals need general adaptive mechanisms

learingproess NofiElma an Paisi(190) ave to cope with arbitrary environments. In this way, a
similarly investigated the ways in which the presence
of learning might facilitate the process of evolution, diverse environment encourages the evolution of learn-

ing.
These studies have presumed a learning process to be
fixed in advance-usually backpropagation-and have Our basic modus operandi isas ofollows. A genome
taken the object of evolution to be the initial state of a encodes the weight-space dynamics of a connectionist
system, upon which the learning process may act. The system-that is, it encodes a potential learning proce-
genesis of the learning mechanisms themselves is not dure. The fitness of a learning procedure is determined
investigated. This study will take a different approach, by applying it to a number of different learnable tasks.
Here, the learning process itself will be the object of This is achieved by creating a number of networks andevolution. We will start with systems that are unable putting them in different environments for a specifiedto learn, subject these systems to genetic recombina- amount of time. (In the experiments to be outlinedtion under selective preses based on their ability to here, an environment consists of a set of input pat-adapt to an environment within their lifetime, and see terns with associated training signals.) Each networkwhether any interesting learning mechanisms evolve, has a random initial state, but its final state is deter-mined by its interaction with the learning procedure

and the environment. The fitness of the network is
2 EVOLUTION OF LEARNING IN determined by how well it has adapted to its environ-

NEURAL NETWORKS ment after the specified amount of time. The fitness
of the learning procedure is derived from the fitness of
the various networks that have used it. Learning pro-

2.1 GENERAL FRAMEWORK cedures reproduce differentially over time, depending

The main idea in using genetic connectionism to model on their success in yielding adaptive networks. The

the evolution of learning is simple: use a genome to hope is that from a starting population of essentially

encode not the static properties of a network, but the useless learning procedures, we will eventually produce

dynamic properties. Specifically, the genome encodes something that enables powerful adaptation.

a procedure for changing the connectin strengths if In principle, such a process could b( of interest not
a network over time, based on past performance and only to biologists and psychologists but also to com-
environmental information. In the experiment to be luter scientists and engineers. The space of possible
outlined here, the genome encodes no static proper- learning mechanisms is %ery poorly understood. Ge-
ties at all. The initial configuration of a network is netic search allows the exploration of this space in a
inst(ad determined randomly (%%ithiii a constrained manner quite different from the usual combination o,^
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ingenuity and trial-and-error employed by algorithm 2.2.3 Genetic Coding of Learning
designers. It is not impossible that genetic search Mechanisms
could come up with a learning algorithm that rivals ex-
isting human-designed algorithms. At the very least, We need to be able to code complex forms of weight-
it might produce a learning algorithm already known space dynamics into a simple linear genome. Clearly,
to be useful. This, in fact, was the result of the exper- we are not going to be able to express all possible kinds
iments outlined here. of weight-space dynamics under a single encoding; in-

stead, the dynamics must be severely constraiined. In
this experiment, it was decided that changes in the

2.2 IMPLEMENTATION DETAILS weight of a given connection should be a function of

We may now move from broad generalities to specific only information local to that connection, and that

implementation details. In this preliminary experi- the same function should be employed for every con-
ment, an effort was made to keep things as simple as nection. For a given connection, from input unit i to

possible, in the interests of minimizing computational output unit j, local information includes four items:

requirements and maximizing the interpretability of
results. The choices made below were appropriate for aj the activation of the input unit j.

a study of the feasibility of the methodology outlined oi the activation of the output unit i.

above, but many of them could be varied with poten- ti the training signal on output unit i.

tially quite different results. wij the current value of the connection strength.

2.2.1 Type of Learning Task The genome must encode a function F, where

First, we must choose what kind of learning we will Awij = F(aj, oi, ti, wij).

try to evolve. The three standard categories of learn- It was decided that F should be a linear funcion of the
ing tasks are supervised learning (learning with full four dependent variables and their six pairwise prod-
training feedback about desired actions), reinforce- ucts. Thus F is determined by specifying ten coef-
ment learning (where the only training information ficients. (Note that this framework for weight-space
is a scalar representing the utility of a given action), dynamics does not exclude the delta rule as a possible
and unsupervised learning (learning without any ex- candidate. This is not, of course, entirely coincidental,
ternal teacher) Any of these kinds of learning could and the charge of using prior knowledge about learning
potentially be investigated via evolutionary methods, to constrain the evolutionary process might be leveled.
but here we chose supervised learning, as it is both However, one advantage of the network topology we
tbe easiest and the best-une stood of the three vari- have chosen is that a sufficiently simple good learning
eties. The tasks will involve associating specific input procedure exists. Due to the simplicity of the proce-
patterns with specific output patterns, where the de- dure, we can allow it as a possibility without rigging
sired output patterns are presented to the network as the possibilities in too arbitrary a manner in advance.)
a training signal.

The genome specifies these ten coefficients directly,
with the help of an eleventh "scale" parameter. We22.2 Network Architecturepu
put

The next choice to be made is that of the topol-
ogy of the networks. Under the assumption that Aw,; = ko( klw,, + k2a, + k3o, + k4t,+
the genome codes for weight-space dynamics, we need k5w,,a, + k6w,.o, + k 7 wt,+
not fix weight values in advance, but it is necessary ksajoi + kgaiti + kloOLti).
that some form of network design be fixed. (Another
approach might be to evolve network dynamics and The genome consists of 35 bits in all. The first fi'e
network topology simultaneously, but that was not bits code for the scale parameter k0 , which can take
pursued here.) The simplest non-trivial topology is the values 0, ±1/256, ±1/128,..., ±32, ±64. -ia expo-
that of a single-layer feed-forward network. These nential encoding. The first bit encodes the sign of ao
networks also have the advantage that a powerful (0=negatihe, I=positive), and the next four bits en-
learning algorithm the delta rule, also knowr, as the code the magnitude. If these four bits are interpreted
Widrow-Hoff rule-is known to exist in advance, at as an integer j between 0 and 15, we have
least for supervised learning tasks. This experiment
employs fully-connected single-layer feed-forward net- IkoI={ 0 ifj = 0
works with sigmoid output units, with a built-in bias- 2)-- if j = .5.
ing input unit to allow for the learning of thresholds.
A maximum connection strength of 20 was imposed, The other 30 bits encode the other ten cveflicient. in
to prevent possible explosion under some learning pro- groups of three. l'he first bit of each group expresses
cedures. the sign, and the other two bits express a magnitude



The Evolution of Learning: An Experiment in Genetic Connectionism 85

of 0, 1, 2 or 4 via a similar exponential encoding. If Table 1: Eight Tasks from the Environment.
we interpret these two bits as an integer j between 0
and 3, then a, a2 a3 a4 a5  tl t2 t3 t4 t5 t6 t7 t8

0 if j = 0 1 1 1 1 1 1 0 0 0 1 0 1 0
Iki{ 2j-

1 ifj=1,2,3. 0 0 0 0 0 0 0 1 0 0 1 0 1
0 1 1 1 0 0 0 1 0 1 0 i 0

1 1 0 0 0 0 1 1 1 0 1 1 1
For example, the delta rule could be expressed genet- 1 0 1 0 1 1 0 0 0 0 0 1 1
ically as: 0 1 1 0 0 0 0 1 0 1 1 0 1

0 1 1 1 1 1 0 1 0 1 0 1 0
0 1 0 0 0 0 0 1 1 1 1 0 1

11011000000000000000000000010110000 1 1 0 0 1 1 0 0 1 0 1 1 1
1 0 0 1 0 0 0 1 1 1 0 1 1
1 0 1 1 0 0 0 0 0 0 0 1 0

where the coefficients decode to 0 0 0 1 0 0 0 0 0 1 0 0 1

4 0 0 0 0 0 0 0 -2 2 0
2.2.5 Evaluation of Fitness

and the appropriate formula is thus With this diverse "environment" in hand, evaluation
of the fitness of a given learning algorithm proceeds as
follows. A number of tasks (typically 20) are randomly

Awii = 4(-2aioi + 2ajti) selected at the start of every evolutionary run. For
= 8aj(ti - oi). each learning algorithm in the population, we measure

its performance on each task. Fitness on a given task
is measured by the following procedure:

2.2.4 The Environment (1) Create a network with the appropriate number of
input units for the task and a single output unit.

Given that we are trying to evolve successful perfor-

mance on supervised learning tasks, we need an appro- (2) Initialize the connection strengths of the ntwvrk
priate environment consisting of a number of learnable randomly between -1 and 1.
. .;ks. Each "task" in the environment used here con- (3) For a number of epochs (typically 10), cycle
ists of a mapping from input patterns to output pat- through the training exemplars for the task, where for

terns. As we are using single-laver networks, learnable each exemplar we:

mappings must be linearly separable. Thirty diverse
linearly separable mappings were used. These had be- (3a) Prupagate input values through the sbytem, yield-
tween two and seven units in the input patterns, and ing output values; then
always a single unit as output. (Any single-layer net- (3b) Adjust the weights ofthe system according to the
work with more than one output unit is equivalent to a formula specified by the learning procedure. on the
number of disjoint networks with a single output unit basis of inputs, output, training signal, and current
each, so there is no point using more than one output weights.
unit at a time.) For each task, a network was presented
with a number of training exemplars, each consisting (4) At the end of this process, fitness on the task ib
of an input pattern and associated output. measured by testing the network on all training ex-

Table I shows eight of the tasks that were used. Each emplars, and dividing the total error by the number

of these was a linearly separable mapping from five 1' exemplars, subtracting from 1, and multipleing by

input units to a single output unit. The eight right- 100. This yields a fitness "Percentage" between 0 and
0 1001

most columns of the table represent the correct out-
puts for the eight different tasks. The five leftmost ritness of the learning rule is obtained by ( aluating
columns represent the input units, common to all eight its performance on each of the (tyjically 20) tasks.
tasks. For each task, twelve training exemplars were and taking the mean fitness over all tasks, In this
presented, correspon:ding to the twelve rows of the ta- way e~er" learning procedure is a-ss igned a fitnes, be-
ble. For examplt, the first task shown was to detect tween 0 anti 100%. A fitness of507 represent-s chance
whether the fifth unit in the input pattern was on or performance i.e.. no learning over the lif-.,pail 0f an
off. The second task involved recognizing a single spe- indii.idual [etmork. A fitnss of 100% illdi, ate-s Ioerf. L
cific pattern. The ot*,er tasks were more complex. learning, at least on the gi'cr tasks at th end -f ten
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epochs, each mapping is learned perfectly. It should be 3 RESULTS
noted that given the limited number of epochs, perfect
fitness seems unachievable if we are using more than When the genetic algorithm is run, initial results are
one or two tasks: even the delta rule has a fitness of as expected. At the start of the run, all individuals
only around 98%. present in the population have fitness between 40%

There is some stochastic variation in the fitness of a and 60%, indicating no significant learning behavior.
given learning rule, due to the random variation in ini- Instead, weight-dynamics are essentially random over
tial weights of the networks. This variation is reduced time. Within a few generations, differential reproduc-
by maintaining a history of each specific learning rule tion begins to exploit even small differences in fitness,
that appears in a given evolutionary process. If a and the fitness of the best individuals in the popula-
learnng rule has appeared already in an evolutionary tion rises rapidly as simple adaptive mechanisms make
run, its fitness is computed by the above procedure, their way into the weight-space dynamics. After 1000
but the fitness used for purposes of selection is the generations, the maximum fitness is typically between
mean fitness from this and all prior appearances. This 80% and 98%, with an mean of about 92%. Table 2
occurs until a given learning rule has appeared fifteen gives the results of ten separate runs with t'he same
times, at which time the mean fitness is recorded for parameters but different random seeds.
good and never recomputed, thus saving a significant
amount of computational resources. Table 2: Best Learning Algorithms Produced on 10

Evolutionary Runs.

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k lO Fitness

2.2.6 Parameters of the Genetic Algorithm 0.25 0 0 0 0 0 0 0 -4 4 0 89.6%
-2.00 0 0 0 0 0 0 0 2 -2 0 98.0%
0.25 0 -1 -2 4 0 0 0 -2 4 -2 94.3%

For those unfamiliar with the genetic algorithm, it 0.25 0 -1 -2 4 0 0 0 -2 4 -2 92.9%
works as follows. We start with a population of ap- -0.25 0 0 1 -1 0 1 -1 4 -4 0 89.8%
propriate genomes-in this case random bit-strings of -1.00 0 0 -1 1 0 0 0 4 -4 0 97.6%
35 bits each. In these experiments, the population size 4.00 0 0 1 -1 0 0 0 -2 2 0 98.3%
was always 40. Every generation, each genome is con- - 0 0 0 -2 -1 2 2 4 -4 2 79.2%
verted into a phenotype (here, a learning procedure),
and its fitness is measured (as outlined above). Then -0.25 0 0 2 -1 0 -1 -1 2 4 0 89.8%
we have a process of differential reproduction. Each 0.25 0 -1 -2 4 0 0 0 -2 4 -2 93.2%
genome probabilistically makes copies of itself, with
the probability of reproduction being linearly propor-
tional to its fitness. This yields a new population of40 genomes, which is then subjected to the process of Note that even the worst learning rule has significant

adaptive ability, with a fitness of 79.2%. This rule,
crossover. pairs of genomes are "mated" by taking a then enables a network to redict the correct outpt
randomly selected string of bits from one and insert- for en intwt prximt 80% crac apf-ing it into the corresponding place in the other, and for a given input with approximately 80% accuracy af-
ice versa, thucoespoding w in geoe Ind ter 10 epochs of training. Other rules are significantlyvice versa, thus producing two new genomes. In thIs better, with a mean fitness of 92.3%.

experiment, 80% of the population are subject to this
process, while the remaining 20% reproduce asexually On the second of the ten runs, the genetic s-.arch pro-
by copying themselves directly into the new popula- cess discovered a version of the well-knonn delta rule
tion. "Elitist" selection is also used; the best individ- (or Widrow-Iloff rule). The learning rule here was;
ual in the previous population is guaranteed a place in
the new population by asexual reproduction. Finally, Awjj = -2(2ajoi -2ajti)

in the resulting population of 40 genomes of 35 bits = 4aj(ti - oi).
each, each bit has a 1% chance of mutation-that is.
of changing from 0 to 1 or vice versa. This process of This rule unsurprisingly has a high fitness of 98.0%.
fitness-measurement, reproduction, crossover and mu- Such an event was not unusual-the delta rule was
tation is repeated for a number of generations, usually discovered on perhaps 20% of all runs with similar pa-
1000. rameters. In this set often runs. the delta rule evolved

Summary of genetic algorithm parameters. Population twice (the secondI occurrence has a much lower alue of
= 40, two-point crossover apd elitist selection are used, the "learning rate" ko, and so a lower fitness of 89.6%).
crossover rate = 0.8, muta,., rate = 0.01, number of Slight ,ariations on the rule also evolved twice, with
generations = 1000. high fitnesses of 98.3% and 97.6%. In the seventh run
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adaptive mechanisms, but for other kinds of weight-
Average Maximum Fitness dynamics evolved by this process, the answer is not so

clear a priori.
95.00 It might well be thought that given the limited number

90.00 of tasks in the evolutionary environment, the evolved
learning mechanisms would function well only on those

85.00 tasks. At the very least, it is plausible that perfor-
mance on such tasks might be superior to performance

80.00 on tasks not in the evolutionary environment. On the
other hand, it seems plausible that if enough tasks

75.00 -are present in the evolutionary environment, then it
is unlikely that highly task-specific mechanisms would

o.__0__-_ Ievolve. In the design of the experiment, 20 different
65.0- tasks were used in the environment of a given evo-

lutionary run precisely because this seemed a large
60.00 - enough number of tasks to minimize this likelihood.

55.00 The task-specificity of evolved learning mechanisms
can be measured by applying such mechanisms to a

50.00 .selection of new tasks not present in the evolutionary
.0dentio environment. In this experiment, this measurement0.00 0.50 1.00 was made by starting from a pool of 30 tasks. On

every run, 20 of these were randomly selected and des-
ignated as part of the evolutionary environment, and

Figure 1. Evolution of Maximum Fitness in Popula- evolution proceeded on the basis of how well these 20
tion. tasks could be learned. The other 10 tasks were desig-

nated as test tasks: at the end of an evolutionary run,
the best learning algorithm in the evolved population

above, the rule is was tested on these 10 new tasks, and mean fitness
was measured.

Aw~i  = 4(oi - tj - 2aioi + 2atFi)
= 8(aj - 0.5)(ti - oi). For the 10 runs outlined in the previous section, the av-

erage fitness of the 10 final learning algorithms on the
In the sixth run above. the rule is 20 tasks in their evolutionary environment was 92.3%.

The average fitness these algorithms on the tasks not

Awij = -1(-oi + t, + 4ao, - 4ajti) present in the evolutionary environment was 91.9%.
= 4(aj - 0.25)(ti - oi). This indicates that the evolutionary environment was

sufficiently diverse that there was no significant ten-

The similarity of these rules to the delta rule is clear. dency for task-specific mechanisms to evolve.

Typical evolutionary progress in fitness is shown in The next question of interest is that of how diverse the
Figurey1phi s uisnarah pofe fitness of th s in- environment must be to force the evolution of general
Figure 1. This is a graph of the fitness of the best in- learning mechanisms. To investigate this, the number
dividual learning rule in the population every 25 gen- of tasks in the evolutionary environment was varied be-
erations over the course of the run. The figures are tween 1 and 20 on a number of runs. Performance of a
averaged over the ten runs mentioned above, learning algorithm on this set of tasks is referred to as

evolutionary fitness. After 1000 generations. the learn-
3.1 EFFECT OF ENVIRONMENTAL ing algorithm with the highest evolutionary fitness was

DIVERSITY ON THE EVOLUTION OF removed and tested on 10 further tasks that were not
LEARNING in the evolutionary environment. Performance on this

set of tasks-the test fitness-indicates the generality
Gisen the learning algorithms that this eolutionarl of the learning mechanisms that evolve. For each of
method produces, it is natural to ask whether the al- a number of values of the number of tasks in the eto-
gorithms are adapted specificall for the tasks that lutionary environment, 10 runs %vere performed with
have been present in the environment during the eu- different random seeds, and the results for these runs
lutionary process, or whether the algorithms are in fact were averaged. Figure 2 graphs (1) the average final
very general adapti, e mechanisms capable of learning colutionary fitness and (2) the average test fitnebs, as
a wide range of tasks, including tasks that were not a function of the number of tasks in the eolutionar)
present during the evolutionary process. The delta environment.
rule clearly falls into the second category of general
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degree of task-specificity in the learning mechanisms.
When the number of tasks is about 10, test fitness rises
to a value very close to evolutionary fitness, indicat-

Firs ing that this number of tasks is sufficient to force the
95 .. I. I . . ..... evolution of general learning mechanisms.

The moral here is clear: a sufficiently diverse environ-
90- ment brings about the evolution of general learning

" [ ' * Lmechanisms. This makes intuitive sense. If the envi-
8 ___O__ "_ ._- ronment is fairly constant, there is no need for evo-

lution to produce mechanisms that function in more
SM ."general contexts-instead, we might expect organisms

to inherit innate mechanisms adapted to that specific
7 _____ environment. When the environment is diverse and

relatively unpredictable, we should expect individual
7040 organisms to inherit adaptive mechanisms capable of

coping with a variety of different environmental fea-
60 tures as they arise This is precisely what we have

65M -found here.

600_ These results also have some bearing on the traditional
controversy between nativists and empiricists. When

________ _the environment in these experiments was not diverse,
the mechanisms that evolved to cope with that envi-

Nir.-ofas ronment may be regarded as innate, at least in a weak
5.0D 10.00 15.00 20.o sense. These mechanisms are present specifically to

cope with certain tasks. Although the capacity to deal
directly with the tasks is not actually present at the

Figure 2: Evolutionary Fitness and Test Fitness versus beginning of the lifetime of an individual, the capacity

Number of Tasks. is triggered by an expected sequence of events from
the environment on the basis of tazk-specific informa-
tion present in the individual's genome. In this case.
we might say that the weight-space dynamics repre-

The first thing to note is that evolutionary fitness is sent a task-specific developmental process for an in-
fairly constant as a function of the number of tasks, nate capacity, rather than a learning process. When
always somewhere around 90%. In some ways, this is the environment is diverse, on the other hand, the only
surprising-we might expect superior performance on mechanisms that individuals possess innately are gen-
a smaller number of tasks. It seems plausible that it eral learning mechanisms. In a situation familiar to

would be easier to evolve good learning mechanisms empiricists, the individual is a tabula rasa, ready to

for one task than for 20. The reason for the observed be imprinted with whatever regularities it finds in the

constancy perhaps lies with the fact that when there environment.

is only a single task, there are more ways to learn to

perform it quite well but suboptimalb.. The greater We should be cautious about appl% ing the resuts from
ease of finding a successful learning mechanism may these limited experiments to theorizing abuut natural
be counterbalanced by an increased chance that the biology and ps1chlJog . In particular, an important
evolutionary process will get stuck in a suboptimal lo- difference is that in these experiments, genetic infor-
cal maximum, from Which it is difficult to escape even mation codes only dy namic properties of an indi.Idual,
by genetic recombination. and specifies no structural information about the in-

dividual's initial state. In natural biological systems,The more important thing to note is that test fitness the genome appears to carry much information about

does indeed decrease significantly as the number of the initial structure of a system. This would make

tasks decreases. When there is a single task in the sae in estouur oncusis abou ae
evoltioaryenvronent tes fines avrags .3%, some differences to our conclusions about innateness.

evolutionary environment, test fitness averages 53%, for example. But a general moral may still be drawn.
or only just above chance. This indicates that the kind if strewn with caveats: innate mechanisms are likely to
of weight-dynamics that evolves, while performing well be the product of a relatively constant evolutionary en-
on the task in the evolutionary environment (fitness vironment; adaptive, empiricist-style mechanisms may
89.7%), is not suited at all for othe, tasks. A task- be a consequence of environmental diversity.
specific mechanism has evolved, rath -r than a general
learning mechanism. When the numaer of tasks is be-
tween I and 9, test fitness rises above chance but is
%vell below evolutionary fitness, again indicating some
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4 DISCUSSION AND FURTHER There is one problem that is always lurking in the

DIRECTIONS background here, and that is the problem of the ge-
netic coding. How do we choose such a coding? Do
we try to allow for as many kinds of weight-space dy-We have seen that the methods of genetic search and nmc spsilo ow osri h pc sn

connectionism can be combined to provide a demon- naics aosle, or do we osain a using
strtio tht te cpactyfor learning (adaptation prior knowledge? How could wve possibly find a coding

stration that the capacity fof possible dynamics that includes as possibilities all
within the lifetime of an individual) may evolve in the diverse learning algorithms proposed by humans
a natural fashion under the pressures of evolution to date? In the experiment described in this paper,
(adaptation over the history of a population). This the decision was easy. The networks were small, there
double adaptive loop seems to be a powerful mecha- was only a certain amount of relevant information, and

nism for coping with a diverse environment. All that it was known in advance that a simple quadratic for-

seems necessary for learning to evolve in this fashion mula could provide a good learning mechanism. The

is that the genome encode the long-term dynamics of encoding of more ambitious mechanisms may not beso

the information-processing capacities of an individual, simple. To attempt to evolve backpropagation by this
If genetic variation allows for variation in these dy- method, for example, we would need either a highly
namics, then a diverse environment will exert pressure complex genetic coding, or else a simple but very spe-
towards dynamics that are adaptive over the lifetime cific coding that was rigged in advance to allow back-
of an individual; eventually, we should expect learning propagation as a possibility. When we do not know the
mechanisms to arise. form of a plausible learning algorithm in advance-and

The kind of learning that we have allowed here has this is the most interesting and potential!y fruitful ap-
been very simple, to allow a simple proof of possibility plication of these methods - the problem of the coding
and an illustration of the key issues. Super, ised learn- becomes %cr. important. Only so much can be coded
ing is a fundamental kind of learning, but it is not very into a finite-length bit string.
plausible biologically, and it also suffers from the prob- One way around the limitation of prespecified codings
lem that we may understand it too well. At least in of dynamic possibilities would be to move away from
feed-forward networks, we already possess very power- the encoding of learning algorithms as bit-strings, and
ful supervised learning methods in the delta rule and instead encode algorithms directly as function trees.
its generalization to multi-laver networks, backpropa- In a recent report, Koza (1990) has demonstrated the
gation. It is unlikely that evolutionary methods will potential of performing genetic-style recombination
allow us to improve much on these methods. So while upon function-tree specification ofalgorithms. This
the methods here can yield some insight into the evolu- method of "genetic programming" uses recombination
tionary processes behind learning, they have not given and selection in a fashion very similar to traditional
much insight into learning itself, genetic methods, but with the advantage that under

Other forms of learning are much less well-understood, e~olutionary pr,-surei such function-treeb may bucuric
however, and the methods of genetic connectionism arbitrarily cumplex if necessary. This open-endednies
outlined here may provide a novel means of insight. may be a good way of getting around the linkitatunz
For example, reinforcement learning is much more dif- inherent in fixed genctic codings. Furthermore. the
ficult than the supervised variety. A number of learn- method is a %cr.y natural way of encoding d.namic,
ing algorithms are known (e.g. Barto 1985, Williams algorithmic processes of the kind we are investigatiig
1988), but none have been as successful as backprop- here.
agation has been. Using genetic search, we can in- Even if we are forced to constrain the possible kinds of
vestigate the space of possible dynamics of reinforce- learning algorithm, genetic methods provide a power-
meh.1 learning systems, and it is not impossible that ful way of searching the spaces of such learning algo-
we might come up with novel algorithms. The exten- rithms. Unlike other phenotypic spaces such as those
sion, in principle, is a simple one. The problem of of classifier systems or network topologies, the space of
unsupervi.-ed learning, although more complex, could learning algorithms is so poorly understood that even
be attacked in a similar fashion, the gross qualitative properties of a given algorithm

Another possible generalization would be to a different are %ery difficult to predict in advance. Genetic sarch
class of net..jrk architectures. We could, for exam- may allow to us unco c.r algorithmsthat human.s iiight
pie, attempt to evolve learning algorithms for recur- never consider.
rent network. Another interesting approach would be In sum, genetic connectionism provides a tool of anal-
to attempt to evolve static and dynamic properties of vsis that may be of interest to biologists and psycholo-
a network simultaneously. Network topology, the val- "-"ueortaik eighltand aNeawringpalgrith could gists, and also to computer scientists and engineers.
ues ofcertain weights, and a learning algorithm could Genetically-based methods provide a direct way to
be simultaneously encoded by a genome, and genetic model evolution, a powerful method of search, and
search might fruitfully explore the interaction between a paradigm of emergence-over-time. Connrctionist
these factors.
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methods have the potential for sophisticated form: of netic algorithms and neural networks. Optinizing con-
learning %ia their paradigm of emergence-o-er-levels. nections and connecti~it). Parallel Computing, forth-
Combining genetic emergence-over-time with connec- coming.
tionist emergence-over-levels seems to provide a prop- S. Wilson (1990). Perceptron redux. Physica D, forth-
erty that neither class of methods possesses alone: au- coming.
tomated creativity in the design of adaptive systems.

R. J. Williams (1988). Toward a theory of
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Abstract

This paper considers the use of the genetic
algorithm (GA) to create neural networks
capable of carrying out a series of increas-
ingly difficult control problems. The con-
trol problems considered are variations of the
standard pole balancing problem, including
a variable length pole, multiple poles on a
single cart, and a jointed pole. This paper
presents these problems and their equations
of motion, discusses GA created networks for
handling these problems, and compares the
networks for control theoretic solutions. The F
paper concludes that the GA and neural nets
are well suited to the difficult control prob-
lems presented.

1 INTRODUCTION Figure 1: Single Pole Balancing Problem

Balance and control are tasks that are often innate
tv natural systems but are annoyingly difficult to de-
rive or compute. This paper considers artificial neu-
ral networks that have been created (or "evolved")
by genetic algorithms (GA's); two paradigms that are been solved using a single computing ecuron, and as
loosely based on nature. These networks are used to such does not address some of the more difficult areas
control a series of pole balancing problems, including of control. The variations of the pole balancing prob-

g lem in this paper are intended to force the creation of
a single pole, a variable length pole, multiple poles on nemwik that are tese more t areas.
a single cart, and a jointed pole. networks that address these more difficult areas.

The remainder of this introduction surveys past work
The standard pole balancing problem (also known as in pole balancing and provides a brief review of the
the cart-pole, broom balancer, or inverted pendulum relevant control theory and GA's. The next two se-c-
problem) can be solved by a very simple neural net- tions describe the specifics of the neural networks and
work. The problem involves balancing a single rigid the genetic algorithms used for this work. Section 4
pole on a wheeled cart by exerting forces on the cart, describes the different pole balancing problems in de-
as shown in Figure 1. This problem is of interest be- tail, the neural networks used to solve the problems,
cause it describes an inherently unstable system and and compares the networks to the control theoretic
represents a wide class of unstable mechanical systems. solutions. The conclusions section discusses the sig-
Unfortunately the pole balancing problem can and has nficance of this work and suggests possible areas of

*The author is also a part-time/on-call employee of The future study. An appendix contains the equations of

MITRE Corporation, 7525 Colshire Drive, McLean, VA motion and parameter values for the pole balancing

2210*-3481. problems.
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1.1 PAST WORK All of these works focus solely on the single unjointed

Neural networks, genetic algorithms, and the pole bal- pole balancing problem.

ancing problem have each generated considerable lit- 1.1.3 Genetic Algorithms
erature. This section surveys past work in these areas.

GA's have been used extensively for creating neural
1.1.1 Control Theory networks, e.g. (Harp et al., 1989). A good overview

of evolving neural networks with an emphasis on com-
The pole balancing problem is a standard control prob- bining GA and back-propagation learning is provided
lem that has been examined in many control theory by (Belew et al., 1990).
texts. This makes the pole-balancing problem par-
ticularly useful as a test problem for neural networks GA's have been used to develop single pole balancers.
since it is possible to gauge the success or failure of a There is a section in Goldberg's doctoral disserta-
network by comparing it to known solutions. tion, (Goldberg, 1983), which discusses the pole bal-

ancing problem. Also, (Koza, 1990) evolves LISP S-
The task of balancing a single pole on a cart has been expressions to solve a number of problems including
used in introductory texts on control systems, such pole balancing.
as (Cannon, 1967; Friedland, 1986). These texts var-
iously consider the problem both with and without
friction, with and without time delays in the response
of the "motor," and with both unlimited and bounded The pole balancing problem has also been used to
track lengths. demonstrate the power and versatility of other com-

The multiple pole and the jointed pole problems have puting paradigms. Of particular interest is the work
also been addressed as a control theoretic problem, on cellular automata with a steepest descent learning
though to a much lesser extent. A control theoretic procedure used to balance both a single pole and a
solution to balancing multiple poles on a single cart jointed pole, (Lee et al., 1990a, 1990b).
forms the core of a Stanford University doctoral dis-
sertation, (Higdon, 1964). This work describes the re- 1.2 CONTROL THEORY
gions of controllability and of stable chatter for a bang-
bang controller. Similarly, a second Stanford Univer- This section provides an introduction to the portions
sity doctoral dissertation, (Schaefer, 1965), addresses of control theory that are of particular relevance to this
the jointed pole problem. paper. Those interested in pursuing the area further

should consult a text in the area, such as (Anand, 1984;
1.1.2 Neural Networks Cannon, 1967).

Neural networks and their predecessors have a long In general, a control system receives one or more in-
tradition of addressing the (single) pole balancing puts and attempts to cause a physical system to pro-
problem. The ADALINE model was trained to balance duce matching outputs. Based on the inputs and the
poles using the Widrow-Hoff LMS algorithm nearly current state of the physical system the control system
thirty years ago (Widrow & Smith, 1963, Widrow, produces a control signal that it sends to the physical
1987). These simple systems were able to perform op- system. The difference between the inputs to the con-
timal bang-bang control using a four-component state trol system and the outputs of the physical system
vector composed of the cart position and velocity and forms an error vector that indicates the success of the
the pole angle and angular velocity, controller, see Figure 2.

More recently, the now classic papers on reinforcement
learning addressed the pole balancing problem, (Barto Error j Controlet al., 1983; Michie & Chambers, 1968a, 1968b). In Target + Sys n ~OfhycSgnal PhYsi..uputs

these papers an "adaptive critic" is used to train the Outpu ,J syscilr1 SystemFY
network.

Pole balancing continues to be a standard research M
task for areas including training networks with a
teacher (Guez & Selinsky, 1988) and adaptively coding Figure 2: Basic Control System
sensor ranges (Rosen et al., 1990).

Recent neural network control papers that address In this paper the control system is implemented by a
pole balancing consider simultaneously learning the neural network, the control signal is a scalar specifying
forward model and control (Jordan & Jacobs, 1990), the force to apply to the cart, and the physical system
and dynamic reinforcement learning (Schmidhuber, is a computer simulation of the cart and pole(s). Fur-
1990). ther, since the goal is to keep the pole(s) vertical and
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Figure 3: Neural Network Pole Balancer

the cart centered, the error signal is proportional to Figure 4: Sample Poles and Transient Response

the cart position and the pole angle(s), see Figure 3. of Second Order System.

The state of the physical system is specified by the
measurements that it receives (and any "memory" of of a second order system where both roots are in the
past states that it may contain). This so called "state left half plane and the corresponding system behavior.
vector" and the corresponding state space that it de- This is the behavior that we would hope to see from
fines is fundamental to whether the system is capable successful pole balancers.
of being controlled. The control system must receive In any physical system there is a limit to the control
(or be able to compute) some minimal state vector to signal that can be applied. Further, it can be shown
be able to control the physical system, that the fastest way to move a system to a desired

A common but simple control scheme is proportional state involves only applying maximal forces This so
control, in which the control signal is proportional to called bang-bang control is what is most often used by
the error signal. In neural network terms proportional neural network controllers.
control requires only a single computing neuron with a It is sometimes possible to determine under what con-
linear transfer function. Owing to the lack of velocity ditions it is possible to bring the physical system to
information, proportional control generally overshoots the desired state. For example, with the pole balanc-
its target output, resulting in oscillations. The mag- ing problem, if the cart is at the far right of the track
nitude of the proportional controller's gain balances and the pole is leaning to the right then there is no
the steady state error of the system against this over- way for the system to recover without either hitting
shoot and corresponding oscillation frequency. This the end of the track or allowing the pole to fall over.
problem can be overcome by combining proportional These regzons of controllabihiy have been derived for
control with derivative control and/or integral control, the multiple pole problem and will be presented below.in which the derivative or integral of the state vector

is also used to compute the control signal. Most pole
bala.cing neural networke use some a form of propor- 1.3 GENETIC ALGORITHMS
tional and derivative control. GA's, first introduced in (Holland, 1975), are a

By considering the Laplace transform of tLe system stochastic search method based loosely on the process
transfer function, that is the relationship between the of evolution and natural selection. With GA, the sys-
desired and the actual output of the physical system, tem to be evolved is encoded in a "gene," a string that
it is possible to derive the characteristic behavior of can represent any of the class of systems. This gene
the control system. The characteristic behavior of the then defines the GA search space. Sets or "popula-
state variables is assumed to be periodic and is de- tions" of these strings are created randomly and then
scribed by a sum of complex exponentials, a process of "natural selection" and "reproduction"

X(t) = i ~ce(0iw.)t continue until some goal is met.

It is this repeated selection and reproduction process
that gives GA's their character. Selection of "parents"

wherej = VZT and ar and w, are the real and imagi- is based stochastically on their relative "fitness" in the
nary parts of the poles of the transfer ft.nction. population. The specific fitness measures and selec-

tion procedures that were used for this research are
It is helpful to plot the roots of the transfer func- described in Section 3 below.

tion in the s-space defined by the real and imaginary

parts of the complex exponentials. Roots in the right Reproduction is based *on a series of "genetic opera-
half-plane correspond to unstable liehavior in the con- tors." The three genetic operators used in this work
troller; the state variable z(t) grows exponentially for are mutation, crossover, and inversion, shown pictori-
a > 0. Conversely, poles in the left half plane cor- ally in Figure 5. Mutation refers to randomly chang-
respond to stable behavior, i.e., oscillations that die ing parts of a gene. Crossover takes part of the child's
down. Figure 4 shows a plot in s-space of the roots gene from one parent and the remainder of the gene
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Mutation
Iii~I~o~o ).o..]-i .st~o i o 'a-iafrssfe 

Inputs4 outputs

Crossover

Inversion Figure 6: Fully Recurrent Network Topology

E d~EI~~~g }. d h

been exceptionally successful for other hard problems,
Figure 5: Genetic Operators (Collins & Jefferson, 1990) it was only slightly more

successful here.

from the other parent. Inversion involves reversing the Contrary to most other pole balancing work, in most
order of a fraction of the gene. Depending on how in- of the simulations the nodes were not limit.ed to binary
formation has been coded in the gene, inversion can outputs but could produce a range of outputs between
produce disastrous results, but in one case discussed -1 and 1. This not only gave tLe network more in-
below, inversion was used successfully. ternal computational power but Also allowed for finer

control signals. This finer degree of control was helpful
The new text by David Goldberg, (Goldberg, 1989), for the more difficult tasks addressed.
is recommended to the reader interested in pursuing Some of the neural network design decisions were af-
genetic algorithms further. fected by the desire to run the simulations on both a

conventional computer and a Thinking Machines Con-
2 NEURAL NETWORKS nection Machine. Weights, thresholds and node val-

ues were stored in single bits or in eight bit bytes.
Neural nets are by their nature well suited to perform- Bits vere used to represent -1 and 1, and bytes were
ing control tasks. Their distributed nature allows them used tt. represent the values -1 - 253

to ignore noise and their general paradigm of weighing 1 Thus, all 256 values representable with one byte
and combining information from many sources makes were used to represent numbers in the range -1 to 1,
them good at integrating and filtering the many often arranged symmetrically around zero. This represen-
redundant control signals that are available. tation has the interesting property of not allowing for

any representation of zero. This made it impossibleMany controllers require memory to compute deriva- for these networks to exploit unstable equilibria since

tives or integrals. In neural network terms, this re- the w ors p loit unse.r

quires recurrent networks, i.e., networks that contain they were always producing noise.

feedback. All the networks discussed in this paper are Poth a sigmoid and a clipped linear transfer function
recurrent. were used at different times for the neurons, see Fig-ure 7. The performance of the two transfer functions
The bulk of this research was carried out on fully con- wre quTae idnc e of ae nd

lieced ecuren newors, how inFigre . Eerv were qua.itatively identical. Because of space and
uected recurrent networks, shown in Figure 6. Every speed considerations, the results prersnted in this re-
neuron in these networks receives an input that is the port were all computed using the clpped linear trans-
weighted sum of all the external inputs to the network fer function.
and the previous state of all the neurons, including
itself. A subset of the computing neurons are desig-
nated as output neurons and their outputs are used
as control signals, but aside from this designation the
output neurons are identical to the other neurons in
the network.

Arbitrarily connected networks were also considered.
Strings of structures containing from, to, and weight
slots were used to evolve networks with arbitrarily
complex interconnections. While this approach has Figure 7. Node Transfer Functions



Evolving Controls for Unstable Systems 95

Network's genes were represented by binary strings. _.xhibit. The data and plots in this report were made
Fully connected networks were represented by a coa- with a cutoff angle of 150.
tiguous sequence of substrings for each neuron. Each
node's substring contained one byte each for the node's While the networks quickly evolved to keep the pole
initial value, threshold, and the weights of the connec- from plng the cutoff angle, it often took consider-
tions into that neuron. A fully recurrent network with ably longer to discover the relevance of the ends ofN nodes and M inputs requires N(N ± M + 2) bytes. the track. This was especially true for controllers that

were able 6o balance the pole for hundreds of thou-
Arbitrarily connected networks were represented by sands of time steps without ever approaching the ends
two substrings. The first substring contained the ini- of the track. Therefore, fitness functions that penal-
tial value and threshold for each node and the second ized the network for leaving the center of the track were
substring contained an arbitrary number of 3-byte arc sometimes used. Thtse functions were of the form
specifications (representing the from, to, and weight of I\ 2
each arc). f(t + 1) = f(t) + 1 - A )

where f(t) is the fitness at time t, x is the distance
3 GENETIC ALGORITHM of the cart from the center of the track, L is half the

length of the track, and 0 < A < 1 is a co . tant factor

GA's are well suited to creating neural network control determining the degree of penalty. Also, whein one or

systems. Many control systems require memory and no inputs were provided to a network it was useful to
therefore recurrent neural networks. Also the "cot- force the network to generate the missing state vari-theefoe rcurentneual etwrks Alo te "or- ables. In these instances a similar penalty was giv.en
rect" control signal is not always known ahead of time. for n the cec aluenoft rain

GA's are able to deal successfully with both of these stat vribles.

difficulties. state variables.

Recurrent networks pose special problems for gradi- Parent networks were selected based on their fitness.

ent descent learning techniques that are not shared by The selection criteria used were determined in part by

GA's. With gradient descent learning it is generally the desire to implement them efficiently on a Think-

necessary to correlate causes and effects in the net- ing Machines Connection Machine. In standard GA,
work so that nodes and weights that cause the desired a gene's likelihood of being selected is proportional to

output are strengthened. But with recurrent networks that gene's fitness relative to the fitness of the rest of

the cause of a state may have occurred arbitrarily far in population. In these simulations a network was

the past. Conversely, since GA's are only concerned selected based on the rank of the gene's fitness. This
wth pasa r ftnvesofytheinetworks e quesion d both avoids problems having to do with translationwith a scalar fitness of the network, the question of invariance of fitness values' and allows parents to bewhat caused any particular network state to occur is selected without considering individual network's fit-
considered only in that the resulting state is desirable. ness values once the networks have been ranked.
This inherent strength of GA's is in some ways also Two selection criteria were used in this research. In the
their weakness. While GA's do not rely directly on first method, parents were selected uniformly from a
the cause and effect relations of nodes, ignoring this fixed percentage of the best networks, (Jefferson et al.,
information when it does exist can make them ineffi-power,
cient. Fitness functions can be created to reflect much was chosen. A real valued rarn.dom number was chosen
of our understanding of what the network should be from the range (0, Ni/a), where N is the population
doing, but in general GA's ignore much useful infor- size, and the resulting random variable was then raised
mation. to t.k.' a pow;.er This allowed a continuous "knob"

The specific details of GA's vary widel., between uin- ',hich controlled the selection process, the larger the a
plementations. The remainder of this section describes thc inoo,. ;ikzl' that only the best perfor.iing networks
specific fitness functions, selection criteria, and the ge- would be chosen as parents.
netic operators that were used. The basic use of these Crossover and mutation were used on tei fujiy con-
functions was introduced in Section 1.3 above. nected recurrent networks. Crossovers were allowed to

The basic fitness of any network controller is defined occur anywhere within the bit-string, i.e, byte bound-
simply as the time that it was able to keep the pole(s) Selection is generally based on fitness relative to the
from falling down or the cart from hitting an end of poletions averae. T ases fitness res to ethe track. "Falling down" means having the angle of population's average. This causes fitness scores to be sen-

sitive to translation; that is, if your fitness is 2 when the
the pole (from the vertical) pass some cutoff value, population's average is 1 you will be selected as a parent
Cutoff angles ranging from 10 to 90' were tried, with more often than if your fitness is 1002 and the average is
little qualitative difference. In general the larger the 1001. This sensitivity can cause Droblems controlling the
angle the longer the e~olving process took, but the convergence of GA's, particularly when the fitness func-
less interesting the behavior that the balancer could tions are heuristic measures of performance.
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aries were not respected. Mutations correspondad to SL%-iple proportional control of these coupled second
random changes in individual bits. order equations produces an oscillatory system. The

All three genetic operators, crossover, mutation, and left plot in Figure 8 shows the poles of the propor-
Aional control transfer function with different amounts

inversion, were used in the arbitretrily connected net- of feedback. In this system the force is simply pro-
works. Any crossover point in the fixed length initial portional to the angle of the pole. 4 The open loop
substring of the gene was at the same location in both system, that is without any feedback, contains a pole
parents. But, in the variable length connection sub- in the right half plane. That means, not surprisingly,
string, crossover points were only required to be at that with no control signal the pole falls over. As the
the same point in a 3-byte connection specification in feedback is increased, the poles of the transfer func-
both parents. In this system mutations were effected tion move along the real axis meeting at the origin
by adding a random value in the range [-32,32] to and then separate along the jw axis. At this point the
an individual byte. Inversion was only allowed in the pole balancer exhibits undamped oscillations.
connection specification substring and inverted only
the order of the 3-byte connection specifications but
not the bytes in a specification itself.

4 POLE BALANCING
Sx ..

This section describes the results of the pole balanc-
ing problems and the GA created networks that solve
them.

4.1 SINGLE POLE Figure 8: Proportional and Lead-Network Control for
Balancing a Single Frictionless Pole.

The traditional single unjointed pole balancing prob-
lem can be solved optimally with a proportional bang- In a real physical pole balancing system there are de-
bang controller, (Cannon, 1967; Widrow, 1987). The lays between the control signal and the application of
pole can be balanced by exerting a force F on the pole the force on the cart. This, with the additional dy-
given by: namic terms, tends to rn've the roots shown in the

F = Fm. sgn(klx + k2i + k3 0 + k4j), (1) left plot of Figure 8 into the right half plane, caus-
where Fa, is the maximum force, x and ;i are the ing the oscillatory system to be unstable. This effect

position and velocity of the cart'
, 0 and 0 are the angle is mitigated to some degree by friction in the system,

but in general a proportional controller based on the
and angular velocity of the pole, and ki, k2 , k3 , and k4  angle alone is not stable. One method for stabilizing
are coefficients that depend on the masses and frictions this system is the lead-network technique in (Cannon
of the system. Equation 1 is also the equation of a 1967, pp. 703-709). The right plot in Figure 8 shows
single four input linear thresholding neuron. Thus, it is the effective poles )f the lead-network controller. This
possible to solve the standard pole balancing problem controller could be implemented using a four node re-
with a neural network of a single neuron. current neural network.

Let us consider the control theory solution to the one Of more interest to this paper is the single pole bal-
pole problem. The assumptions that the mass of the ancing problem with friction and without any of the
pole is evenly distributed along its length and, for this small angle or small velocity approximations. This is
first case, that there is no friction and that the angles the problem that hrs been addressed by (Barto et al.,
and velocities are srna~ll, yiald the equations 1983) and others. The equations of motion for this sys-

(M + m)Li + ml = F (2) tem are given by Equations 9 and 10 in the appendix.

4n;14 - O = 0 (3) A slightly more difficult variation of this problem uses+3 a two component state vector containing x and 0, but
wht;z l i',.d m &-e the .mas of the cart and pole neither i nor 0. Stable control of this system requires
respectiv-ly I i, the lialf length of the pole, and g = the controller to compute an estmate of the velocities.
-9.8m/s " is th,- ac.eler6.ion due to gravity. Using GA and fully recurrent networks the tw3 in-

2The "dot" aotation for time derivatives is used put single pole balancing problem required iess chan
throughout hi, pcper: i = dzfdt is the velocity of the a dozen generations to evolve to a point where most
cart, i = d2 f/di3 is .he- acceleration of the cart. of the controllers can balance a pole indefinitely. Fig-3The small 3rtle approximation assumes that sin(6) _z:_

0 and cof2l, i 1 and the small velocity approximation 'We are also assuming that the desired force never ex-
assumeir U!at factors containing i and 8 can be ignored. ceeds the system's limits.
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ures 9 and 10 show the maximum, median, minimum, lations alternately grew and were damped out. Thebt
and a rectangle from the median of the larger half of controllers becoming increasingly rare in later gener-
the values to the median of the smaller half 'values of ations, prebumably because the) are nut stabh under
the values of the population's fitness at successive gen- GA reproduction.
erations. Figure 9 used a fitness function that was sim-
ply the length of time that the pole remained balanced, Figures 9 and 10 show the difficulties of working
while Figure 10 used a fitness function that was a func- with the single pole problem. Generally, populations
tion of the position of the cart. Both these simulations evolved more quickly when fitness functions that pe-
used a population of 511 fully recurrent networks, each nalized a network for being near an end of the track
network composed of six neurons. The selection factor were used. In these particular examples however, tile
was 10.0, and there were an average of 1.5 mutations reverse is true. The single pole problem is so simple
per gene. In this and subsequent sections, a controller that compiling statistics becomes difficult.
is considered successful if it can balance a pole for 106 Further variation: of the single pole balaning prvblem
time steps, approximately 5.5 hours of simulated time. were considered. Controllers that required only one in-

put, the angle 0, were evolved. These tasks required

6 slightly larger networks (ten neurons) and a consistent
10 ....................................................... starting location (centered on the track). Using a fit-

: ness function that required two outputs, one for the
10........................ ...... ........ ..... .. .force and the other for an estimate of the currentx lo-

4 cation, sped the rate of evolution considerably. These
10 I networks evolved in about thirty generations. With-

3 Iout such a fitness function the task was more difficult
10 and required approximately 100 generations to evolve.

10 . . - One further extension is to use a network with no
inputs. For this problem the cart was consistently

01_ ............ ......... 1. . .... .started in the center of the track with the pole
vertical5  The most successful networks that were

10°  evolved for this probern w-ere only able to balance a
0 1 2 3 4 5 6 7 8 pole for a few hundred time steps. Even when a fit-

ness function that required the network to produce an

estimate of x and 0 was used, these estimates quickly
Figure 9: Evolution of a Two Input Single Pole Con- deteriorated (due largely to "round-off error"), causing
troller, Fitness is the Time the Pole is Balanced. the controller to fail.

A variation of the single pole balancing problem that
6 surprisingly was not difficult considered variable length

10.,.................................................poles. Two related problems were investigated. In the

10. first problem the length of a pole was randomly drawn
*i between 0.1 and 1 meters but then fixed for the du-

40 ration of the simulation. In the second, tihe length of
the pole varied between 0.1 and 1 meter in a slow ran-

103.  dom fashion throughout a simulation. In both cases
the mass of the pole varied in proportion to the length,

2evaporte hle i t was sit r e d
102 th.t is the pole did not compress but rather the end"evaporated." While this task was slightly more diffi-

10 ..... ..... cult than the standard fixed length pole problem (a 10
neuron fully recurrent network requiring 25 to 30 gen-

10 -.. erations with a selection power of 4 to evolve), there
0 1 2 3 6 8 9 10 was no evidence that the network ever computed an

C" ....:10 stimate of the pole's length as anticipated. Further,

most good standard pole balancers were able to bal-
Figure 10: Evolution of a Two Input Single Pole Con- ance the variable length pole systems for at least 104
troller, Fitness is Based on Position of Cart. time steps.

Since the fitness of a controller was not directly af-
fected by oscillations, it is not surprising that many of 'Note that while this is an lunstable, eqilibrium point,
the successful controllers albwed the pole to oscillate because the neurons used were unable to produce an output
during the entire simulation. In the early stages of evo- of zero (see Section 2j the network as nut able to makc
lution it was common to find controllers in which oscil- use of this degenerate solution.
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4.2 MULTIPLE POLES
so0 2

An interesting and considerably more challenging ver- l 2
sion of the pole balancing problem involves balancing
more than one pole on the same cart, a two pole ex- o
ample is shown in Figure 11. As long as the poles r_
are of different lengths they will react differently to a :

force applied to the cart and can be balanced simul-
taneously. The equations of motion for the multiple
pole problem are almost identical to the standard sin- Pole 1 = 1.5m
gle pole balancing problem and are shown as Equa- Pole2 = 0.5m
tions 11 and 12 in the appendix.

Figure 12: Control of Two Poles on One Cart

For the two pole problem these eigenvalues are 6

Figure 11: Double Pole Balancing Problem A2 = 3 (4)

It is worth taking a moment to examine what is in- A4 = 3 g- (5)
volved in solving this problem. Equation 12 shows
that the angular acceleration of a pole for a given i is A6 = PC (6)
greater the more vertical the pole and is inversely pro- M
portional to the length of the pole Therefore, if the The region of control!ability can be described by a
shorter pole is vertical and the longer pole is tilted, small number of "generalized coordinates." For the
in order to bring both poles vertical a force must be two pole problem these coordinates are given by
applied so the longer pole leans over even further un-
til the faster rotating shorter pole passes it. Then, 1 il Pc/Afg
when the shorter pole is leaning sufficiently more than Y2 = -01 - - - i (7)
the longer pole, the opposite force is applied and both 1 -
poles are brought upright together. In order to balance
both poles, the controller must make the current state 1 I2 + Pc/Mg
of the system "worse' by leaning two nearly vertical Y14 = -02- g1I" u2 -

" (8)

poles over. Figure 12 shows the output of a neural 1i (Pc/M)V0
network controller executing this maneuver. Figure 13 shows the region of controllability in terms
It is possible to derive the conditions in which the poles of the generalized coordinates y12 and y4 for different
are able to be returned to their upright positions at the 'alues of A2/A4, including the two degenerate cases
origin. This region of controllability is derived for the A2/A4 = I (equal length poles, cannot be controlled
multiple pole balancing problem in (Iligdon, 196-1). A unless y2 = y4) and A2/A4 = 0. The region for a par-
brief summary of lligdon's observations is presented ticular ratio is bounded by the symmetric lines around
below. Y4 = Y2- The important point to notice is that the

region of controllability shrinks quickly as the pole
The size of the region of controllability is determined rein o con althr
by the ratio of the natural frequencies of the poles. lengths approach one another.

The natural frequencies of the poles are given by the 6The same variable names are used here as in the
eigenvalues of the state vector's equations of motion. appendix.
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Figure 14" jointed Pole Balancing Problem

Figure 13: Regions of Controllability for 2 Poles tiple pole problem, the control signal that brought the
poles closer to vertical was always the correct signal to
use. For this reason it was possible to strongly favor.Network controllers for the two pole problem were selecting parents from a small set of best performers.

evolved for the case where the poles had lengths of 20.to 30 generations were required to evolve controllers
1.0 and 0.1 meters (A2/A4 = 0-1/11.0 : 0.3). This for the jointed pole problem when the bottom pole was
was a difficult task that required over 150 generations 1 meter and the top pole was 0.1 meter. A population
of a population of 2048 ten node fully recurrent neural of 512 ten node networks was used with selectL2 corn-
networks. ing either from the top 1% of the population or with

Evolution was then continued while the shorter pole a selection factor of 10.
was lengthened by 1% increments until it was 0.9 me-
ters long (A2/, 4 = ,f-911.0 . 0.95). At this point 5 DISCUSSION
the region of controllability is approximately 0.1* for
vertical stationary poles. The process of slowly adjust- This paper discussed a series of difficult control prob-
ing the pole length was similar to the "shaping" pro- lems and the wa s that GA's have been successfully
cess that has been used with gradient descent learning esd the wa s t have nsespfull
paradigms, (Wieland & Leighton, 1988). It was most used to create neural networks to solve those prob-
remarkable how slowly this shaping process proceeded. lems. With the sole exception of the difficult, and
The controllers often required as much as a dozen gen- to my knowledge previously untried, problem of bal-
erations to recover from the 1% change. ancing a pole while receiving no feedback, networks

were successfully created to solve each of the problems
It is significant that the GA's were able to evolve con- posed.
trollers for the two pole problem, particularly when In most control theoretic work it is necessary to ln-
the pole lengths were 1.0 and 0.9 meters. The two ize the oretion by i n sall n-
pole problem was the hardest control problem consid- earize the equatioct of motion by making small an-
ered in this paper. The resulting system corresponds gle and small velocity approximations. This gencrallyto an extremely sensitive and delicate control problem. gives good results that are valid over the range of in-terest. However, one advantage of evolving controllers

is that there is no restriction on the complexity of the
4.3 JOINTED POLE model that can be controlled. This work has made a

point of using accurate physical models, complete with
The final variation of the pole balancing problem con- friction and higher order velocity terms.
sidered a jointed pole, shown in Figure 14. As with
the multiple pole problem, as long as the lengths and In general, the classic pole balancing problem was too
therefore the natural frequencies of the poles are suf- simple a problem to be used with GA's and neural
ficiently different it is possible to balance the system. networks. The single pole balancing problem with two
The equations of motion for a pole with a single joint inputs is slightly more difficult, requiring the network
ace shown as Equations 13, 14, and 15. to compute derivatives of its inputs. The next harder

problem i; the single input problem that required the
The jointed pole problem proved to be simpler to network to estimate its current position, effectively re-
evolve than the multiple pole problem. Unlike the mil- quirinb it to compute an integral, in addition to the
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derivatives. The multiple pole problem was the au- and fin is the effective mass of the pole
thor's favorite. The equations of motion are simple 3
and the problem can be made as challenging as desir- m = m (1 - cos 2 0)

able by adjusting the ratio of the pole lengths. The 4 Cs al

equations of motion for the jointed pole problem are The main of the snd te pales use
considerably more complex but the underlying task during simulations of the single pole problem are
was found to be relatively simple to evolve, shown in Table 1.

The difficulty that was encountered while "shapingTd
the multiple pole system points out an underlying dif- Table 1: Symbols Used in Equations 9 and 10
ficulty with exclusively using GA's for creating neural
networks. Even though small changes were made in Sym. Description j Value
the task, considerable effort was required by the GA to X Position of cart on track. t-2.4, 2.41 m
accommodate those changes. This is in sharp contrast _ J Angle of pole from vertical j-15,15 deg.
to gradient descent learning paradigms that quickly F Force applied to cart. "[-10,101 N
adjust to small changes. GA's and gradient descent g Gravitational acceleration. -9.8 m/s'
learning techniques move through the neural network I Half-length of pole. 0.5 msearch space in different but complementary ways. An M Mass; of cart. i.0 kg

ideal system would combine GA and gradient descent m Mass of the pole. 0.1 kg
learning techniques. Pc Coefficient of friction 10,0005
This work was intended to address whether recurrent _ of cart on track.

neural networks could be created using GA's to do Pp Coefficient of friction 0.00U002
hard control problems. In general, once a controller of the pole's hinge.

could be repeatedly evolved, questions of whether that
controller could have been created more efficiently or Similarly, the equations of motion for N unjointed
with a smaller network were not pursued. Therefore poles balanced on a single cart are
the number of generations required to create the dif- V.
ferent controllers should be considered only in relative F - pc sgn(i) + R N
terms. .. = j=1 (11)

This work points to many areas for future research. M +
Many of the details in comparing neural network con-
trollers to theoretic control systems need to be com- 3
pleted. Similarly. the field of control is full of hard ' _ (i cos0 + g sin0O + 12)
problems that couid be addressed by these techniques. 4li
Finally, numerous questions still exist about the com- where F is the effective force from the ii" pole on the

bined use of GA's and gradient descent learning. This cart
paper has shown that hard control problems can be 3
addressed; the next challenge is to harness that power. P = mi i sin Oi + -rnicos0i( " ' + g sin 0)

APPENDIX and fil is the effective mass of the irh pole

DETAILS OF POLE BALANCING SIMULATIONS 4 Cos" 60

Tle equations of motion for the standard pole balanc- The meaning of the parameters and the values used

ing problem are' during simulations of the two pole problem are shown
in Table 2.

= F - pcsgn(;i) + (9) The equations of motion for the jointed pole are not

.A + (i is concise. For a pole with a single joint:

T (-*cosO + gsinO+;j (10) 3

where P is the effective force of the pole on the cart
+ (v - i)Cos Ob

= mli 2 sin0 + 2mcos ( +gsin0) tbyO-
4 inbib

These equations are in a different but equivalent form - 0 h (13)
to what has generally been used elsewhere. S(J.
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Table 2: Symbols Used in Equations 11 and 12 + 9-aMb COSOb COS(Oa - Ob)

Sym. I Description Value - 6mblb0(2ma + Mb) COS Oa sin(Oa - Ob)
X Position of cart on track. [-2.4, 2.4J m + 6mambvb6 O0 cos 2 Ob
0 Angle of pole from vertical +-15,151 deg.
F Force applied to cart. [-10,m0( N

Gravitational acceleration. -9.8 m/s + 9M (M b -) sin 0. sin Ob
li Half-length of the i" [0.0,0.5 m,v )

pole. 11 = 0.5 m -(v 2~, + 2(i - vs=) 2)sin(O, - Ob)J cosOb
M Mass of cart. 1.0 kg 9M.M_ v_ sin 0b cos(. + 0)
mi Mass of the i" pole. [0.0,0.1] kg, 41 sm = i4/541

Pc Coefficient of riction 0.0005 - 4m.(m. + 2 mb)vbYdOa
of cart on track. 3mb2

ppi Coefficient of friction 0.00002 1 ( - vb-) 2 (2m + 4b)
of the ith pole's hinge. + v2 (5m. + 4mb)] sin 0,

- 2mblb0i(4m6 + 3Mb) sin Ob

S= en (4)"= ( m0 + mb(1 + 3sin2 (00 - Ob))) Xdcn = -3m~m 5 cos" O

where + 3(m. + 2mb)(2m0 + Mb) cos1 0.

enurn = + 9m&[2M cos2 (00 - Ob)

9 [(Me. + Mb/2) sin 0, -m. sin(. - Ob)]

3 - 8(m. + 3mb)M
+ Tnb cos Ob sin(G6 - Ob)] - 8(m, + mb)(m. + 3m&/-4)

- i(m. + 2b) cos O vb = i + 2 1. k cos Or
3Mbvl ( - v,)(2 cos 2  

- 1) Vy = 2 1. 60, sin 0.a

3mb . 2 The single (unjointed) pole problems were modeled us-

4--- - v6') si Ob cos G6 ing the Euler method and a time step on 0.02 seconds.
+ The multiple pole and jointed pole problems were mod-

" (mb COS b + )3o COS(0. -O) eled with a time step of 0.01 seconds and a fourth order
Runga-Kutta model.

- 2m~i4Ob sin(06 - 0h)
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Abstract ciple be solved, the future outcome of an experiment
can be predicted once the initial conditions are com-

We investigate the effectiveness of connec- pletely specified.
tionist architectures for predicting the fu- A second, albeit less powerful, method for predicting
ture behavior of nonlinear dynamical sys- the future relies on the discovery of strong e-mpirical
tems. We analyze the sunspot series as an regularities in observations of the system. The motion
example of a real world time series of limited of the planets, the small amplitude oscillations of a
record length. The problem of overfitting, pendulum, or the rhythm of the seasons carry within
particularly serious for short records of noisy them the potential for predicting their future behavior
data, is addressed both by using the statis- from knowledge of their cycles without resorting to
ticomplexity term to the cost tdtion n (weight- knowledge of the underlying mechanism.

elminahon). We show why sigmoid units are There are problems, however, with the latter approach.
superior in performance to radial basis func- Periodicities are not always evident, and they are often
tions for high-dimensional input spaces. The masked by noise. Even worse, there are phenomena
ultimate goal is prediction accuracy: we find - although recurrent in a generic sense - that seem
that sigmoid networks trained with weight- random, without apparent periodicities.
elimination outperform traditional nonlinear We use feed-forward networks of the type introduced
statistical approaches. The prediction ac- by Lapedes and Farber [LF87] to predict future val-
curacy does not deteriorate when too many ues of time series by extracting knowledge from the
input units are used. Iterated single-step past. In dserion o eig kneefom ap-
predictions are found to be better than di- past. In distinction to previous connectionist ap-
rect multi-step predictions. Furthermore, we proaches for noise free, computer generated time se-
compare different sampling times (yearly and ries [LF87, MD89], we focus on noisy, real world data
monthly), investigate the effect of preprocess- of limited record length. In this case, the problem of
ing the data (square root and logarithmic overfitting can become very serious. This problem is
transforms) and compare different error func- approached from two angles: by using internal valida-
tions (corresponding to Gauss and Poisson tion [MB9] and by the method of weight-elimination
statistics). [Rum88].

We analyze the time series of sunspots from the year
1700 to 1979, a benchmark used by many time series

1 INTRODUCTION analysts. We show that the network leads to better
predictions than the threshold autoregressive model of

In many instances, the desire to predict the future is Tong and Lim [TL80], considered the best model in a
the driving force behind the search for laws that ex- recent review by Priestley [Pri88].
plain the behavior of certain phenomena. Examples
range from Newton's laws of motion to forecasting the
weather and anticipating currency exchange rates. 2 NETWORKS FOR TIME SERIES

The ability to forecast the behavior of a given system PREDICTION
hinges on two types of knowledge. The first and most
powerful one is knowledge of the laws underlying a
given phenomenon. When this knowledge is expressed Three ingredients are required tu SpCLify a mudd fur
in the form of deterministic equations that can in prin- short term prediction of time series.
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1. Choose an embedding for the time series {xt): 9 The d input units are given the values
the short-term structure1 can be captured by ex- Xt-l, Xt- 2, ... , - .
pressing the present value xt as a function of the * The n nonlinear hidden units are fully connected
previous d values of the time series itself, to the input units.

t = f I(past) {Rd . R * The linear output unit is fully connected to the
(Xt-1,' Xt-2, ... , Xt-d) ' xt hehidden units, producing the prediction 2t as the

The vector (x- 1 ,Xt-2,...,Xt-d) lies in the d- weighted sum of the activations of the hidden
dimensional time delay space or lag space. units.

2. Approximate the points {Xt(Xt-1, Xt-2, ... , Xt-d)} * Output and hidden units have adjustable biases.
by a smooth surface. Different approaches in time
series prediction mainly differ in the choice of * The weights can be positive, negative or zero.
primitives (polynomials, splines, sigmoids, ra- * There are no direct connections from input to out-
dial basis functions,...) and in the choice between put that skip the hidden layer.
one global fit in lag space vs. many local fits.

3. Choose a cost function that evaluates how The nonlinearities are located in the activation func-
well the points are approximated by the surface. tion kor nonlinear transfer function) of the hidden
The cost function reflects the assumptions about units. We used two activation functions: logistic ac-
mesurement errors and statistics of the original tivation, giving rise to sigmoid units, and Gaussian
data. Assuming Gaussian errors, the cost function activation, giving rise to radial basis units.
is simply the the sum of the squared differences.

2.1.1 Sigmoids vs. Radial Basis Functions
Then, given the embedding, the primitives and the

cost function, find the parameters for the surface that The success in learning crucially depends on the spe-
minimize the cost function. cific functions used to construct the smooth prediction

Once the surface has been determined, the prediction surface above the d-dimensional input space. Specif-
for the value following a point in lag space is given by ically, it is important to understand how the input
the value of the surface above that point. The problem variables are treated in the two cases of sigmoids and
of prediction, usually framed as extrapolation in time, decreasing radial basis functions.
is re-framed for time invariant systems as interpola-
tion in lag space. Following the approach by Lapedes Sigmoids. Let h denote the input of the network
and Farber [LF87], we train connectionist networks on (including bias bh) into a sigmoid (or logistic) hidden
examples from the past to find such surfaces. unit h,

d
2.1 ARCHITECTURE h= WhiXi+bh= h•- bh . (1)

i=1

output unit xi stands for xt-i, the value of input i, and whi is
the weight between input unit i and hidden unit h.
The contribution i. Uih is the projection of the input
vector : = (X1 , X 2 , ... , Xd) on the weight vector WVh

n hidden units (Whl, Wh2, ..., Whd).

The activation S1, of a hidden unit is given by

dinputunits Sh = S( h)= 1+e-Oah = (I + tanh ph) . (2)

Figure 1: Architecture of a feed-forward network with The sigmoid performs a smooth mapping (-oo, +oo)
one hidden layer. Units are shown as circles, connec- -* (0, 1). The slope of the sigmoid, a, can be absorbed
tions as lines. into weights and biases without loss of generality and

is set to one.
The networks are feed-forward networks with one hid-

den layer, as shown in Fig. 1. The abbreviation d-n-1 Radial basis functions. A radial basis function
denotes the following network: (RBF) depends only on the distance q/ = I1 - )Thl1

1The focus is on the short-term structure, since between the input, Z, and the center of the RBF, )Th
"chaotic" systems can be predicted on short time-scales, (also of input dimension d),
but not on long time-scales. This is discussed in [WHR90],
see also [CFPS86, Sch88, Ger89, FS89, Cas89, EF90]. f(;) = f(II - i1) = f(77) . (3)
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Choosing f to be Gaussian and to be the Eu- whereas both series were learned reliably with signifi-
clidean norm, the activation Ch of hidden unit h is cantly fewer sigmoids.
given by But even for sigmoid hidden units, the number of pa-

t1 _ h 112- E i -,h)
2  rameters is often comparable to the number of data

Ghexp( -20.2 =exp -2 points, entailing the danger of overfitting. This central
d ) h issue is addressed in the following section on training.

d J7 exp ( Xi_- hj 2(4
S -2o2 (4) 2.2 TRAINING

The parameter o-h indicates the width (or standard- We use the error back-propagation algorithm of
deviation) of the Gaussian. It can be interpreted as Rumelhart et al. [RHW86] to train the network: the
the radius of the hyperspherical receptive field (in d- parameters are changed by gradient descent on the
dimensional input space) of the hidden unit. The nor- cost surface over the weights and biases. In the sim-
malization of Gaussian RBFs is similar to that of sig- plest case, assuming a Gaussian distribution for the
molds, i.e., the activation lies between zero and one. errors, the cost function is the total residual variance,
The crucial difference between RBFs and sigmoids lies or sum of squared errors, for a set of examples, S,
in the treatment of multi-dimensional inputs. For
Gaussian RBFs , as can be seen from Eq. (4), the in- '(target k - predictionk) 2 = S (xk - 2k )2 (5)
puts factor completely. Unless all inputs xi are reason-
ably close to their centers i the activation of hidden kEs kEs
unit h is close to zero; an RBF unit is shut off by a sin-
gle large distance between its center and the input in where Xk (target) is the true value of the time series
any one of the dimensions. This multiplicative feature at time k, and 2k (prediction) is the output of the
resembles a logical AND. For sigmoids, there is no such network for time k. This fitting error describes how
factorization. a large contribution by one weighted in- well the points {Zk, k E S} are approximated by the
put in the sum in Eq. (1) can often be compensated surface over the input space.
for by the contribution of other weighted inputs of the
opposite sign. 2.2.1 Overfitting
This difference between sigmoids and RBFs increases
with the number of input units. For one dimen- A serious issue in the application of a network to a
sional cases, the difference between fitting a func- problem domain is the size of the network as measured
tion with sigmoids and Gaussians is not important by the number of free - Rmeters of the network. As
[MD89, BL88]. For the Mackey-Glass time series, for other methods of fi )n approximation, such as
Moody and Darken [MD89] used four input units. No- polynomial, too many _. parameters will allow the
tice that thousands of RBFs were required to cover the network to fit the training data arbitrarily closely, but
four dimensional input space, compared to 40 sigmoid will not necessarily lead to optimal prediction. Al-
units (two layers with 20 each) in the network used though there is no general method to determine the
by Lapedes and Farber [LF87] For equivalent perfor- optimal size of the network for a particular task, there
mance in both cases, Moody and Darken showed that are statistical arguments which suggest that the num-
RBFs required a time series between 7 and 27 times ber of training patterns required to fully determine the
longer due to the larger number of parameters. 2  weights in a network is approximately proportional to

For real world data, we assume that the data set is the number of weights in the network [DSW, B1189]. A
noisy and limited in size. Some of the noise can be av- rule of thumb often cited is that the number of weights
eraged out by a relatively large input dimension and should be less than one tenth of the number of train-
a global approximation surface. If one is interested in ing patterns. With data sets of a few hundred patterns
optimal prediction, both the finite data set and the only, this constraint is quite restrictive.
noise favor sigmoid units over radial basis functions, We explored two methods for dealing with this general
essentially due to the difficulty to fill high dimensional problem. The first method involves providing a large
spaces with localized functions. This was confirmed in number of parameters for the network, but stopping
our experiments: none of the trials with up to 100 training before the network has made use of many of
fully adaptive RBFs was successful on either series, its degrees of freedom . Such networks, whose number

2The advantage of RBFs is computational efficiency, ob- of weights is of the order of the number of training
tained by only locally updating the relevant RBFs (MD89]. examples, are referred to as oversized networks. The
Sacrificing the flexibility of adaptive centers and widths, second method involves a learning procedure seeking a
the remaining problem of determining the contribution of minimal network capable of accounting for the input
each RBF can be reduced to matrix inversion [BL88]. data. Both ry -thods are discussed below.
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2.2.2 Oversized Networks need Validation idea is to begin with a network that is too large for
the given problem, but associate a cost with each con-

To a first approximation, the gradient learning process nection. The proposed cost function is the sum of two
employed by the back-propagation procedure works as terms,
follows: initially, the hidden units in the network all do
the same work, i.e., they all attempt to fit the major w2 /iiW 2

features of the data (such as the average of the time (targetk - predictionk) + A E "2 - 2" (6)
series). As those features are accounted for, the major kES , wi/W°

source of error in the network is determined by the sec-
ond most important feature of the training data. The The first term is the standard sum squared error term
units then start to differentiate with some of them be- over the set of examples S. The second term de-
ginning to fit this second most important aspect of the scribes a cost for each weight in the network and can
data. This process of differentiation continues as long be thought of as a complexity term [Ris89, Che90].
as there is error and as long as training continues, the The sum extends over all connections in the network.
effectire number of degrees of freedom starts small and The scale is given by wo, for activations between 0 and
gets larger and larger as training proceeds. Assuming 1, we set w0 = 1. If the weight Iw,; is large compared
that sampling noise is small relative to other sources to w0 , tile cost is A. For weights is close to zero, the
of variation in the data, we expect that early training associated cost is also close to zero.
will allow the network to fit the significant features of The parameter A represents the relative importance of
the data. It is only at later times that the network the complexity term with respect to the performance
tries to fit the noise. A solution to the problem of term. If a given performance on the training set can
overfitting is to stop training just before the network be obtained with fewer weights, this cost function will
begins to fit the sampling noise. encourage the reduction and eventual elimination of as
The problem is to determine when the network has ex- many weights as possible. The learning rule is then to
tracted all the useful information and is beginning to simply change the weights according to the gradient of
extract noise. The first method we employ is to split the entire cost function with respect to the weights.
the whole available data set into three parts[MB90].
The earlier timespan, "the past", is divided into two 1.0-
sets: a training set, used for determining the values
of the weights and biases, and a validation set, used
for deciding when to stop training. The performance 0.8-
on the validation set is monitored. As long as this per- weight
formance on the validation set improves, training con- 0.6
tinues. When it ceases to improve, we stop training.
If we continued training, the oversized network would
start to fit the noise. The last part of the record, the 0.4-

prediction set, acts as "the future". It is strictly
set apart and never used in training. In particular,
it must not be used to determine the stopping of the 0.2-
training process. Its only legitimate use is to estimate derivotive
the expected performance -n the future. For oversized o.o
networks, a validation set is necessary since the noise ,
level in any real situation (as opposed to compater 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

generated data) is not known a priori. size of weight Iw/wol
Figure 2: Cost for a weight in the network (solid line)

2.2.3 Minimal Networks through and its derivative (gray line) with respect to the weight
Weight-Elimination Iw/wol in units of A.

The second method that addresses the problem of The part of the change due to the additional term is
overfitting assumes that the network which general- proportional to the negative derivative of that term.
izes best is the smallest network still able to fit thetraiingdat. Rmelhrt Rum8] ropoed mehod The complexity part of the cost function and its deriva-training data. Rumelhart [Rum88] proposed a method tive are shown as functions of Iw,jlwol in Fig. 2. This
for accomplishing this within the framework of back- tive e s f os o foru edi is
propagation learning. It has since been used by Ilan- complexity term is most important for medium size
son and Pratt [IIP891, Chauvin [Cha90J, Lang and weights of order woI2.
Iinton [LII90] and others; an alternative is presented There are a few technical points in the application of
by Le Cun, Denker and Solla [LDS90]. The method of the procedure. It turns out to be useful to begin with
weight-elimination involves the extension of the gra- A at zero and to slowly increase the value of A until
dient method to a more complex cost function. The performance begins to decline and thereafter increase
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Figure 3: The sunspot series, the single-step network prediction and the residuals.

or decrease the value of A so the error on the training years. Sunspots usually appear in pairs, correspond-
set continues to decrease at a steady, slow rate. This ing to magnetic dipoles. Sunspot pairs reverse their
is the procedure we call weight-elimination, polarity from one cycle to the next, reflecting the un-
We are now equipped with the background to apply derlying magnetic cycle.
connectionist networks to the real world data set of The sunspot series has served as a benchmark in the
observed sunspot numbers, statistics literature. Within the time delay or lag space

paradigm, different models differ in the specific choice
of the primitives for the surface above the input space.3 SUNSPOTS In the simplest case, a single hyperplane approximates
the data points. Such a linear autoregressive model is

Sunspots, often larger in diameter than the earth, are a linear superposition of past values of the observable.
dark blotches on the sun. They were first observed The evaluation of the network model, however, is car-
around 1610, shortly after the invention of the tele- ried out by comparison to a nonlinear model. In a
scope [Fou90]. Yearly averages have been recorded recent evaluation of different models on the sunspot se-
since 1700. The sunspot numbers are defined as ries, Priestley [Pri81, Pri88] favors the threshold au-k(10g+ ), where g is the number of sunspot groups, f toregressive model (TAR) of Tong and Lim [TL80].is the number of individual sunspots, and k is used to WehrbieyskthhemdlFofuhrdsc-
reduce different telescopes to the same scale [Mar87]. We here briefly sketch the model. For further discus-sion see Tong [Ton83, Ton90]. This globally nonlinear
The series is shown in Fig. 3. The average time be- model consists of two local linear autoregressive mod-
tween maxima is 11 years. Note, however, that the els. Tong and Lim found optimal performance for in-
time between maxima ranges from 7 to 15 years. put dimension d = 12. They used yearly sunspot data
The underlying mechanism for sunspot appearances from 1700 through 1920 fur training, and the data frurr
is not exactly known. No first-principles-theory ex- 1921 to 1979 for evaluation of the prediction.
ists, although it is known that sunspots are related To make the comparison between network and TAR
to other solar activities. For example, the magnetic performance in sections 3.1 and 3.2 as close as possi-
field of the sun changes with an average period of 22
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Figure 4: Learning curves of a 12-8-1 network as function of training time in epochs. The average relative
single-step prediction variances are given for the training sets (solid lines) and the early (lower gray lines) and
late prediction sets (upper gray lines) (as well as for the internal validation set for the network trained without
weight-elimination on the left side). The vertical lines (A, B, a, b) indicate different stopping points.

ble, we use their exact data for training and evalua- the size of the set. The normalization (division by
tion, their choice for the input dimension, i.e., 12 input &2, the estimated variance of the data) removes the
units, and their error measure. The only remaining dependence on the dynamic range of the data. This
difference between the models lies in the choice of the normalization implies that if the estimated mean of
primitives used for the fitting of the surface. the data is used as predictor, arv = 1.0 is obtained.'

In Section 3 3, however, we present the result obtained Expressed in terms of the correlation coefficient p be-
by varying the number of input units from 1 to 41, and tween pairs of desired values and predictions, xk and
in Section 3.4 we use monthly data. k, the average relative variance is given by

3.1 LEARNING THE TIME SERIES arv=2(1-p) . (8)
This relationship is exact if and only if F > k = F

3.1.1 Validation and k k = 2

The learning of the sunspot series of a 12-8-1 network In Fig. 4, the success in mastering the training set is in-
is shown in Fig. 4 as a function of epochs. in one epoch dicated by the monotonic decrease of the lowest curve,
the network sees each point from the training set ex- indicating the fitting error. The case of standard error
actly once. We define the a.verage relative variance back-propagation without % eight-climinatiun is shown
of a set S as in the left panel of Fig. 4. To get a feeling for the

non-stationarity of the time series, the prediction set

s -(S) = ZkES (targetk - predictionk) 2  was split in two parts, 1921-1955 and 1956-1979. On

ZkCS (targetk - mean) 2  'If the variances of the individual sets differ, a choice has
to be made. We have chosen to always used the variance

1 N - 2k)2  (7) of the entire record, a2 = Oal = 1535. Thus, in any of the
three sets, a value of arv = 0.1 corresponds to an average
absolute quadratic error of arv x a;, = 0.1 x 1535. =

The averaging (division by N, the number of data 153.5 ; (12.4)2 . The alternative would have been to
points in set S) makes the measure independent of normalize each set by its own variance.



Back-Propagation, Weight-Elimination and Time Series Prediction 111

both prediction sets, the error first decreases, but then (a after 3900 epochs, b after about 5800 epochs) is
starts to increase, the network begins to use its re- compared in Section 3.2. It turns out that the exact
sources to fit the noise of the training set, i.e., it starts stopping point is not important.
to pick out properties that are specific to the training In the first 5000 epochs, the procedure eliminated the
set, but not present in the prediction sets. This over- weights between the output unit and five of the eight
fitting leads to deteriorated generalization, hidden units. Since these five units did not receive

The question to be addressed is when the training signals in the backward pass any more, their weights
should be stopped. Since prediction sets must not to the input units subsequently decayed. In this sense,
be used for this decision, a validation set is required the weight-elimination procedure can be thought of as
for a statistically proper determination of the end of unit-elimination, removing the least important units
the training process. To get a feeling for the effect
of the sampling error by picking a specific training We analyzed the specific solution of the network thatset-validation set combination, we investigated several was stopped at point b and subsequently trained with
rinngset-validation set nain, wa very small learning rate for a few epochs. (Detailstraining set-validation set pairs. are given in the Appendix.) The main contribution to

The validation sets consisted of 22 years chosen at ran- the first hidden unit comes from xt_!., to the second
dom from the time before 1920. Those points were hidden unit from xt- 2 , and to the third hidden unit
removed in the corresponding training sets, reducing from xt-1. In contrast to the output weights, only
their size by 10 per ctnt. For the validation set of very few of the weights from the input units to the
the example shown, the average relative variance ap- active hidden units were eliminated. The fact that the
proaches an asymptotic value, it happens not to in- remaining weights are of relatively small size points to
crease. In this specific choice, the fitting of the noise a relatively small use of the available nonlinearities.
of this training set happens to hav.. no effect on the We show in [WHR90] how more elaborate measures of
error of this validation set. Because the sunspot data nonlinearity can be read off the network solution.
set is rather small, different pairs of training and val- Predictions are obtained by adding the values of these
idation sets lead to results differing by factors of up three hidden units to the bias of the output unit. The
to two. These variations are large compared to the t ion of the ba the itpt as a
variations due to different random initial weights and solution of the network can thus be interpreted as abiases. nonlinear transformation from the twelve-dimensional

input lag space to the three-dimensional space of hid-
This approach is somewhat unsatisfactory because (i), den units.
a certain part of the available training data cannot
be used directly, (ii), the results depend strongly on 3.1.3 Avoiding Bad Solutions
the specific pair of training set and validation set, and
(m), it is not always entirely clear from the error of For sigmoid units, good solutions were obtained in all
the validation set when the training process should be of the hundreds of trials with different initial random
terminated. In the evaluation of the performance in weights and biases. We believe that this is mainly due
Section 3.2, we compare the performance for two stop- to choosing relatively small initial weights, a relatively
ping points, A after 1000 epochs, and B after about small learning rate, and a relatively large initial net-
2100 epochs. As an alternative to the simple sum of work size.
squared errors cost function that requires a validation
set, we next present the results of lenring with weight- * If small initial random weights are chosen, the sig-
elimination. moid units start out in their linear range. The

gradient descent method moves the weights at the
beginning towards the global minimum of the lin-

3.1.2 Weight-Elimination ear case. We chose the initial weights randomly
with magnitude less than 0(1/V/p for activations

As in the case of back-propagation without weight- in the unit interval, n denotes the fan-in into a
elimination, we start with a network large epr. :gh given unit.
to guarantee a decrease of the error with training.
The training curve for back-propagation with weight- • Provided the learning rate is sufficiently small,
elimination is shown in the right painel of Fig. 4. nonlinearities are added only as needed. Typical
With the same learning parameters as without weight- learning rates are '(0.l/n)... 0(1/n). No momen-
elimination (zero momentum and a learning rate of tum term is used. The definitions of learning rate
0.1), significant overfitting is avoided, even for train- and momentum are given in [MR88].
ing times four times longer. Sinct. the entire training * Starting with oversized networks rather than with
set is used, we are relieved from the uncertainty of a tight networks beems to make it easier to find a
specific choice for a validation set. A decision, how- good solution. However, as emphasized above,
ever, has to be made as to when the network reaches this approach requires a method to deal with the
its asymptotic state. The performance cf two solutions problem of overfitting.
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Since the output is real valued, numerical differences wish to obtain a performance measure that smooths
between good and bad solutions are not as striking as statistical fluctuations of a specific starting time. we
in problems requiring binary outputs. average over M starting points and define the average

relative I-times iterated prediction variance to
3.2 PREDICTING SUNSPOTS be 1 1 -

So far, we have concentrated on the learning beh:., -r M (Xt -(9)

of the network for different cost functions ane 'it.- m=1
vation functions. The ultimate goal, howe-,, r - This measure is shown as a function of the number of
predict future values of the time series. la rations in Fig. 5. The average is taken from 1921,
tion, we assess the predictive power of tu-. ".' immediately following the end of the trt-ining period,
and compare it to the benchmark model. We tir- zs through 1955. The differences between the different
lyze single-step predictions and then turn to multi-E p network solutions within each plot are not significant;
predictions. they only indicate the spread of network performances.

3.2.1 Single-Step Prediction ' ' ' ' i ' |

The term single-step prediction (or one-step-ahead, -- 1.0 relaive multi-step preclctlon varianc
diction) is used when all input units are given the ac- •
tual values of the observed time series. To assess the 0. ]
single-step prediction performance, we us- -he the av- 0.9 " T.
erage relative variance, axv, defined in Eq. (7). It is
independent of the dynamic range of the data and of 0.8-
the record length of the series, allowing for compar- Jb
:sons across different time series. 0.7 -,.-k~i
The solution of the weight-eliminated network with
sigmoid hidden units, explicitly given in the Appendix, 0.6 " "l: TAR-model
gives ."

0.5- ,"T B B

arv(train) = 0.082, arv(predict)19 21 _19 55 = 0.086 . 4 1 - a B.d
0.4- a.. -~

The corresponding values for the iAR model are,..' . B B

0.3- t A. -

B.. B-B-B'arv(train) = 0.097 , arv(predict)9 21 _.19 s = 0.097 . 0-B-B.B~~0.2 - 'B B-B  .
B

B 
"

As can be seen by comparing this measure for the
network with the TAR model, the single-step predic- 0.1-
tion qualities of the network and thebenchmark model , A, B, a, b : network solutions
are comparable. Despite this similarity, however, sig-
nificant differences will appear for predictions further 0.0- 1__ i -- I i I I I
than one step into the future. 2 4 6 8 10 12 14 16 18 20 22

I (number of iterations)
3.2.2 Multi-Step Prediction Figure 5: Multi-step prediction error (average relative

There are two ways to predict further than one step I-times iterated prediction variance) for the sunspot

into the future. We first present the results of iterated series as function of the prediction time. Gray Ts

single-step predictions and subsequently turn to direct indicate the performance of the TAR model. A, B,
multie-step predictions. Ind susetenlstn t re-t a, b refer to the different stopping points, shown inmulti-step predictions. In iterated single-step pre- Fig. 4. Black squares show the performance of the
dictions, the predicted output is fed back as input wei ht-eliminated network given in the Appendix.
for the next prediction and all other input units are g
shifted back one unit. lence, the inputs consist of An alternative to this iterated single-step prediction is
predicted values as opposed to actual observations of direct multi-step prediction: the network is trained to
the original time series. The predicted value for time predict directly several steps ahead. On the sunspot
t, obtained after I iterations, is denoted by ,t, . data set, the prediction error for direct multi-step pre-

The prediction error will not only depend on I but also diction was significantly worse than the error for iter-
on the time (t - I) when the iteration was started. We ated single-step prediction.
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t
prediction

error

119 okvox

Figure 6. Prediction error as function of the number of input units of the network and the predictio .. ;nto
'he future (iterated single-step predictions).

We also investigated the qualitative long term behav- average, the prediction variances of the network were
ior of the models. The sunspot TAR model exhibits about half the prediction variances of the threshold
a periodic eventual forecasting function for iterated autoregressi-ve model. This concludes the comparison
predictions [TL80], showing that TAR models can be with the benchmark model. In the next section, we
self-exciting. This is an important improvement over present the performance of the net vrk as a function
global linear autoregressive models. We analyzed the of the number of input units. In the last section wxe in-
eventual forecasting functions of several network solu- vestigate preprocessing the data, compare Gauss and
tions for several starting years. The whole range of Poisson assumptions for the errors and explore effects
possible dynamic behavior - fixed points, limit cycles of different sampling times.
and chaos - was displayed.

In summary, although we took extreme care not to 3.3 VAPtYING THE INPUT DIMENSION
gain any unfair advantage over Tong and Lim [TL80]
(by taking the same input dimension, using identical We varied the number of inputs units from one to
data sets, minimizing the same sum of squared er- 41. The prediction error for iterated single-step pre-
rors, etc.), the multi-step predictions by iteration of dictions (for the standard 1921-1955 set) is shotvn in
the network were found to be significantly better. On Fig. 6 as surface above the number of input units of
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the network and the prediction time into the future. I-r"

Networks with one input unit already managed to cap- 1.00 -
ture two thirds of the single-step variance, reducing 0.90- 9
it to arv(predic)1 92 s195.5 = 0.33 . The solution was 0.80-
practically linear with an offset. Networks with two 0.70
input units reduced the relative variance to 0.17; they
began to use the available nonlinearities. 0.60-

With increasing number of input units, the error 0.50
reeshes a roughly constant value. The performance
does not degrade with input dimension several times
larger than necessary: the network ignores irrelevant 0.40

information. This important insensitivity to the in-
put dimension is an advantage over other prediction 0
methods such as the simplex algorithm employed by 0.30,

Sugihara and May [SM90].8* ; 7 *

To investigate this issue further, one input unit was 8

only presented with noise. As expected, the weights 0.20- 7
from it to the hidden units became very small.

Numerical values of the single-step prediction error as
well as the average of the 7, 8, 9 and 10-step predic-
tion errors are given in Fig. 7. Note that the error for
single-step predictions reaches its plateau with fewer
input units than the error for iterated predictions. Due
to the very limited sample size of the prediction set, 0.10-

no solid claim about the chaoticity of the sunspot data 0.09-
can be made. However, the similarity of the 7, 8, 9 0.08 , p , p
and 10 year predictions speaks against the hypothe- 5 10 15 20 25 30 35 40
sis that the system is chaotic, particularly when con- number of input units
trasted against the example of a computational ecosys- Figure 7: Relative prediction variance (1921-1955 av-
tem, discussed in [WHR90], where the prediction error erage) as function of the number of input units. Solid
increases exponentially with prediction time. line: single step prediction. Grey line: smooth average

of 7...10 times iterated predictions. 1, 7, 8, 9, *: indi-
3.4 FURTHER RESULTS vidual values of 1, 7, 8, 9, 10 year ahead predictions

by iteration.
We briefly summarize some further experiments on
yearly sunspot data:

Preprocessing. The distribution of the sunspot networks tended to be slightly smaller. The pre-
daPa (Fig. 3) is skewed towards small values. We diction errors, however, computed the space of the
taig. 3)twos skwe towdards ma vue. We original variable (after back-transforming the pre-

trained networks on two data sets that were pre- dictions) were slightly worse.

processed to render less skewed distributions. xt

denoting "linear" values (after scaling into (0,1), Poisson Statistics. Replacing the assumption
as explained in the Appendix), we used square of Gaussian distributed errors (variance indepen-
root transformed data, Xt = , and logarith- dent of predicted value) by assuming the errors
mically transformed data, to be Poisson distributed (variance proportional

X= 0.98 + 0.35 log(xt + 0.06) to predicted value) led to very similar prediction
accuracy when evaluated with the sum squared

The constant in the argument of the logarithm error criterion.
was chosen to make the distribution as symmetri-
cal as possible. The other two numbers just scale Finally, we used monthly sunspot d.-ta from 1749 to
and shift {Xt} into the unit interval. 1976 (from (BCW881) as input. Two tasks were de-
It was easier for the networks to learn the square signed. (A). predict the average sunsp. t number of the
root transformed and the the logarithmically 12 month following the month corresponding to the
transformed data tlhan the original data since the latest input unit, and (M). predict the sunspot number
mean of both transformed sets was 0.5 as opposed of the month following the month corresponding to the
0 25 for the original data. The weight-eliminated latest input unit. Three networks were analyzed:
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1. Task (A) alone, with a 80-20-1 network. The forward networks, we are presently further investigat-
performance was slightly better than the perfor- ing the effects of different cost functions and of training
mance obtained with yearly averages as input, on additional tasks, as well as architectures for non-

2. Task (M) alone, with a 80-20-1 network. We stationary time series and fully recurrent networks.
found the absolute prediction variance to be the Possible applications of these methods are in econo-
same as in task (A). metrics and finance, protein sequencing, seismic data,nonlinear predictive coding, and music.

3. Both task (A) and task (M), with a 80-40-2 net-

work. The minimum error of this network was We thank Richard Durbin and the lecturers and par-
slightly above the sum of the squared errors of ticipants of the 1990 Connectionist Models Summer
the two previous networks: adding a related task School for their comments, particularly in the work-
and doubling the resources (number of hidden shop on time series prediction. This work was sup-
units) did not help improve the prediction. We ported in part by a grant from the Office of Naval
are presently designing an algorithm to prevent Research (N00014-87-K-0671).
the network from overfitting on one task while it
is still learning others. Appendix: Parameters of the Network

4 SUMMARY For the comparisons between network and TAR pre-
dictions, the number of input units was set to 12.

We investigated connectionist networks for short-term A ntwork with initially 8 hidden units was trained
prediction of time series. Extending the work of La- with weight-elimination on the sunspot data for 5800
pedes and Farber [LF87], we applied the networks to epochs with a learning rate of 0.1 and zero momen-
the sunspot series. On this noisy real world time series tum. The weights were updated after each 20 pat-
our networks outperformed the threshold autoregres- terns, presented in random order (stochastic approz-
sive model by Tong and Lim [TL80], considered the imation). In order to remove effects of the specific
best model in a recent review by Priestley [Pri88]. order of the last presentation, the network was subse-

quently trained with a learning rate of 0.0001 for
Several results in the domain of connectionist networks a few epochs with weight updates after each complete
were also obtained. We presented a weight-elimination presentation of the whole training set.
procedure as a solution to the related problems of
network size and overfitting of the data. It dynam- The weights and biases for the three remaining hidden
ically reduced the number of hidden units to three. units are given in Table 1. The yearly sunspot values,
Furthermore, we compared different activation func- tabulated both in Tong [Ton83] and Priestley [Pri88],
tions for the nonlinear hidden units. Whereas net- were linearly compressed in the (0,1) range by dividing
works with sigmoid units converged reliably, serious the raw values by 191.2 .
problems were encountered with decreasing radial ba- When simulated serially on a SPARCstation 1, the
sis functions. The difference in performance was ex- training of the 12-8-1 network for sunspot series with
plained through the different treatment of the input weight-elimination takes 1 minute for 100 presenta-
variables. tions of the data. Once weights and biases are deter-

Although the scope of this paper is limited to feed- mined, predictions are extremely fast.

Table 1: Solution of the weight-eliminated network for sunspot prediction.

output bias: 0.798
weights from hidden units to output: -1.565 2.247 -1.599
biases of hidden units: -0.858 -1.960 -0.512

(hidden unit hut hu2 hu3)

weights from input:
to hut 0.153 -0.646 -0.328 -1.101 -0.060 -0.255 -0.129 0.500 0.030 0.317 -.0.200 0.114
to hu2 -0.205 -0.094 -0.039 -0.048 1.078 0.414 0.000 0.533 -0.168 0.995 -3.103 0.814
to hu3 0.000 0.080 0.130 0.703 0.869 0.198 0.215 -0.208 -0.160 -0.923 -0.362 -4.010
(input i - 12 t- il t - 10 1 - 9 1 - 8 - 7 1 - 6 t - 5 t - 4 t - 3 t - 2 t -i)
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Predicting the Mackey-Glass Timeseries With Cascade-Correlation Learning
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Abstract =1.40

The cascade-correlation learning algorithm has 1
been shown to learn some binary output tasks 10- 1.20
100 times more quickly than back-propagation. .i M r
This paper shows that the cascade-correlation
algorithm can be used to predict a real-valued 1.00
timeseries. Results of learning to predict the I
Mackey-Glass chaotic timeseries using Cascade-
Correlation are compared with other neural net 0.80

learning algorithms as we!: as standard tech-
niques. Learning speed results are presented
in terms that allow easy comparison between 0.60

cascade-correlation and other learning algo-
rithms, independent of machine architecture or
simulator implementation. 0.40

1 THE MACKEY-GLASS TIMESERIES 0.2% 100 200 300 400 Soo
Timo

The Mackey-Glass timeseries is a good benchmark for Figure 1: The Mackey-Glass Timeseries with a = 0.1,
learning programs because it has a simple definition, yet its b = 0.2, and r = 17
elements are hard to predict (the series is chaotic.) Series
prediction has many real-world applications in areas like
signal processing, process control,and economic modeling. up to the point x = i to predict the value at some point in
Another interesting feature of the Mackey-Glass problem is the future x = t+ P. The standard method for this type of
that real-valued outputs are required instead of the discrete prediction is to create a mappingf from D points of the
output values found in most neural network benchmarks. timeseries spaced -J apart, i.e., (x[t - (D - 1)_J. x1t -
Several otherresearchers have used the Mackey-Glass prob- zAj,x[t]), to a predicted future point x[t + P]. To allow
lem as a benchmark (Lapedes and Farber, 1987; Moody and comparison with earlier work (Lapedes and Farber, 1987;
Darken, 1988; Moody, 1989). However, while they have Moody and Darken, 1988; Moody, 1989), the values A = 6
reported the quality of their solutions, the learning-time re- and D = 4 were used. Previous studies have used prediction
suits have been reported in implementation-specific ways interval values of P = 6 and P = 85. The choice oi P = 85
that make comparisons difficult. is greater than the characteristic period of the series (tc.2

The Mackey-Glass Series is derived by integrating theequa- 50). Predictions with P > t,,, have failed for standard
tion methods like linear predictive coding and Gabor-Volterra-

dx[t] x- I Wiener polynomial expansion (Gabor, 1960). However,
d a I + x[t - "rl0°  bx[t], by choosing P = ZA it is possible to predict the value of

Whena = 0.1,b = 0.2,and- = 17,theintegrationproduces the timeseries at any multiple of A timesteps in the future,

a chaotic time series (Mackey and Glass, 1977). Figure 1 by feeding the output back into the input and iterating the

shows the portion of the series used for this study. solution. We choose to use P = .. = 6 for study since
results can be compared with previous experiments where

The goal of the task is touseknokn valuesof thctimescries P = 6. B% iterating the solution toP- 84, results ma) be

117
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compared with previous P = 85 studies. ponentially with the number of hidden layers. The cascade

Finally, a measure of performance must b d. All architecture realizes the benefits of multiple layers with-
Finaroyr measure ill berpormanted uste on i al out suffering their exponential slowdown in learning speed,
error measures will be reported usyig the non-dmensional because only a single layer of weights is trained in each
error index!I, deftined as therrns error divided by the standard pae

deviation of the target series (Lapedes and Farber, 1987). phase.

Candidatchidden unitsare trained tomaximizeS, thesum of
the magnitude of the correlation between the output values

2 THE CASCADE-CORRELATION for each pattern and the residual error from the previous
LEARNING ALGORITHM output training phase. The measure S is defined as:

Cascade-correlation is a supervised learning algorithm S= "'I (V _V)(E._ E)I
which builds a net as part of the learning process (Fahlman o P 0

and Lebiere, 1990). The algorithm consists of two phases,
output unit training and hidden unit training, where o ranges over output unitsp ranges over patterns, V;,

The output units receive input from all input and hidden is the candidat, unit's output % alue fo; pattern p, and E,.
units (initially just the inputs, as there are no hiddens.) In is the residual error of output unit o on pattern p. T and .
the first phase, output unit weights are trained to minimize are average values over all patterns.
the usual sum squared error measure, with error defined
as the difference between the actual output values and the Each candidate unit is trained separately. After the train-
dz zired outputs. Once this training process levels off, a ing reaches a asymptote, the candidate ith the highest
final epoch is run to record the residual error tditfference correlation score S is added to the network and tenured (its
between actual and desired outputs) for each unit on each weights are frozen.) The network then repeats the output
training pattern. At the completion of output training, if training phase The two phases continue to thternte ur.ti.
the sum squared error remains above a certain threshold, a the overall output error is small enough or the ) r.ing rx
new hidden unit is inserted with weights determined by the is declared a failure (a rare occurrence).
hidden unit training phase. Since in both phases, the units being trained are direugy

During hidden unit training, a pool of potential hidden units connected to their inputs (no intervening la)ers with un-

is trained in parallel. Multiple candidates minimize the frozen weights), any gradient descent learning method ma'
danger that an unfortunate choice of random initial weights be used The current implementation uses the quickprop
will keep the new unit from contributing to the solution. algorithm (Fahlman. 1988) because of its speed. The onl.

The candidate hidden units receive input from both the restriction placed on the hidden unit squashing funltion k
input units and all previously-created hidden units. Thus, the quickprop algorithm is that it must be differentiable.
the hidden units form a cascade, as shown in Figure 2. The Most previous studies have used sigmoidal hidden units.
cascade architecture allows units to develop sophisticated but gaussive hi s repr
higher-order representations. most effective for this problem.

2.1 REAL-VALUED OUTPUTS

o 0 All previous studies of cascade-correlation learning used
tasks requiring binary outputs. For these tasks, sigmoidal

wput Umirs ~outputunits are thelogical choice. However, forreal-valued
problems the distribution of desired outputs is often gaus-

Hfidden Unit 2 I sian rather than binomial, and the range of desired outputs

"idd-[ may not be well-defined. The selection of a linear output
funit addresses both problems by allowing equal likelihood

r I for any output value and providing an unconstrained range.
--------- When the desired output distribution is bipolar, then sig

.i.j.. 0--, - ------------ moidaloutputunitsyieldamodelthatproducesamaximum
-. --.- likelihood estimate for the correct weights. When the de-

sired distribution is gaussian, linear units yield a maximum

Figurc2: The Cascade Architectureafteradding two hidden likelihood estimate.

units. Thevertical'inessumallincomingactivation. Boxed Care must be taken when using linear output units in a
connections arc frozen when the hidden unit is tenured, X constructive algorithm such as cascade-correlation. The
connections are trained repeatedly. error response of networks with sigmoidal outputs is fairly

resistant to the addition of new units, because to/antci is
One problem with standard backprop is that when more 6ery small for units whose outputs are close to 0 or 1.
than one hidden layer is added, learning seems to slow cx- Therefore new hidden units tend to move the undecided
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outputs toward the correct response, but have a small affect units used. The number of epochs per unit averaged 123,
on outputs that are already gving the correct response. N,.w with smaller nets requiring slightly more epoLhS per unit
units can be added without drasticall) changing the part of than larger ones. Epohs are a good measure of learning
the error space that must be explored during the output performance for networks with a fixed architecture. Un-
training phase. On the other hand, Oo/Onet is constant for fortunately, the notion of an "epoch" is more complicated
linear units. Any new hidden unit will effect all outputs with cascade-correlation. input epochs train a pool of fr ,li
equally. If the output weight initially assigned to the new candidate units, while output epochs retrain the input con-
unit is too high, the network may move to a completely new nections of the output units. In both cases the number of
part of error surface. This can result in incomplete learning weights beiag adjusted increases as hidden units are added.
during the output phase, which will require the addition of A better objective measure of performance for network
extra hidden units to bring the solution back on track. This growing o rit i e casr e o rran e numbrproblem can be avoided by using a very small initial output growing algorithms like cascade-correlation is the number
weight for new hidden units, of multiply/accumulates performed during the activationfeed-forward and error back-propagation steps (Fahlnan

and Lebiere, 1990). This measure does ignore some o" the
3 BENCHMARK RESULTS computation performed during the simulation, but it is a

better measure of amount of work required than epochs or
3.1 TRAINING RESULTS machine running time.

The problem was run 50 times using cascade-correlation Cascade-correlation constructed successful networks using

with gaussian hidden units selected from a pool of 8 candi- between 141 and 360 million multiply/accumulates. The

date units. The network was trained until the error index I average trial required 265 million multiply/accumulates to

dropped to 0.025. The size of networks constructed ranged solve the task.

from 23 to 39 hidden units, with an average of 31.5 and Precise comparisons between cascade-correlation's learn-
median of 32 units. Figure 3 shows the distribution of the ing speed and learning speed of the other algorithms are not
network sizes. possible. Previous researchers have reported their learning

speed results in terms of computation time, because it is im-
Hidden Number of possible to separate contributions from the algorithm, the
Units Trials hardware, and the details of the coding.

23 1
24 0 3.2 NETWORK BUILDING
25 1
26 1 * Figures 4 and 5 show the building of one 25 hidden unit
27 2 *" network. Each pair of figures shows the output of the
28 2 " network developed so far compared with the goal on the
29 3 * left and the o -put of the next hidden unit compared to
30 4 " the error of the ,-existing network on the right. Figure 6
31 7" 0* illustrates how the addition of each unit helps to reduce the
32 10 " " overall error in the network output.
33 6
34 5 * . * * . The first few hidden units seem to be attempting to mirror
35 4 * * • the shape of the network error curves. After addition of
36 2 . the fourth hidden unit, the units begin lose their smooth
37 1 • response. This scatter is probably a result of using the co-
38 0 variance measure S to train the candidate units instead of a
39 1 * true correlation measure.

The current training strategy rewards units with extreme
Figure 3: Distribution of Network Sizes values, the sign of the (Vp - V) term is more important than

the actual unit output, Vp. In fact the highest possible S
The median size network had a total of 693 adjustable pa- would be awarded to a unit that output 1 whenever (Ep,o -
rameters, or about 28% more than the 40 hidden unit net- T4) is positive and 0 when (Ep,o - T,) is negative (or visa
work usedby Lapedes andFarbcr. Thecascade arluteture, versa). This strategy works "ell in networks with sigmoid
which specifies that each unit is connected to all preN ious output units because it is not possible to overshoot the goal
units, accounts for the higher number of parameters even value. In linear output networks a more graded response
thought the units count is rm.iller. would be beneficial. Use of a true correlation measure for

hidden unit training would encourage the development ofThe simulations requir4( average of 3875 epochs (in- units with a more graded output.

eluding both output and hic'den unit phase epochs). The

number of epochs obv jo-iy varied hith the number of The contribution of each unit tc reducing the overall net-
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work error, I, is show in Figure 6. As expected, the first
units,whichmirrorshapeoftheindividualEp,o, reducelthe Table 2: Generalization Result Comparisons for P = 85.
most. It is also interesting to note that the addition of each Results for first four methods are generated by iterating
new hidden unit allows the network to reduceI log-linearly the solution at P = 6. Results for Localized Receptive

Fields(LRF) and Multi-Resolution Hierarchies(MRH) are
for networks trained for P = 85.

_ Method Training I
Cases

Cascade-Correlation 500 0.32
8.40 Back-Prop 500 0.05

6th-order polynomial 500 0.85
Linear Predictive Method 2000 0.60

0.16 LRF 500 0.10-0.25
LRF 10000 0.025 - 0.05
MRH 500 0.05

L MRH 10000 0.02
0.06

0.03 about 20 hidden units and then increases sightly as each ad-
ditional unit is added. The best generalization performance
observed was IP.6 = 0.04 and Ip4s = 0.17.

5 10 15 20 25
Number of Hidden Units

4 Conclusions
Figure 6: Network Error as a Function of the Number of
Hidden Units

Past studies have shown that for some binary output
tasks cascade-correlation learning is much faster than stan-

3.3 GENERALIZATION RESULTS dard network learning algorithms. This study shows that

Generalization was measured by using each network to pre- cascade-correlation is capable of solving a problem that re-
dict 500 points immediately following the training set. Gen- quires real-valued outputs. Past neural network researchers
eralization results for cascade-correlation are so far not as have used the Mackey-Glass task to test their learning al-
good as the best results for backprop reported by other neu- gorithms. Learning speed comparisons with these studies
ral network researchers. The results for P = 6 are presented are not possible because their results are stated in machine
in Table 1. The results show that all methods, except for the specific terms. A machine and simulation-implementation
linear predictive model, are able to generalize fairly well independent measure of learning speed is given so that
for a small time into the future. The more challenging test future researchers can compare results against cascade-
of P = 85, Table 2, show that the neural-network techniques correlation. However, the generalization performance of
outperform standard techniques. the networks created by cascade-correlation is not as good

as networks created by other learning algorithms. Future
work on cascade-correlation should focus on using a true

Table 1. Generalization Result Comparison for P = 6 correlation measure to train new hidden units instead of the
Method Training_ Imeasure used in the current implementation.Method Training 11

Cases
Cascade-Correlation 500 0.06 Acknowledgments
Back-Prop 500 0.02
6th-order polynomial 500 0.04Linear Predictive Method 2000 0.55 I would like to thank Scott Fahlman for guidance and in-sights that have helped to shape this work, and Dave Touret-

zky for his thoughtful comments and patience while editing
The poor generalization performance of cascade-correlation this paper. This work was sponsored in part by the National
compared to other neural network te.hniques is probabl, Science Foundation under Contract Number EET-8716324
related to the choice of S used to train hidden units. A more and by the Defense Advanced Research Projects Agency
effective training measure would result in smaller networks (DOD), ARPA Order No. 4976 under Contract F33615-87-
being built. There is evidence that the networks created by C-1499 and monitored by. Avionics Laboratory, Air Force
cascade-correlation are suffering from over training. The Wright Aeronautical Laboratories, Aeronautical Systems
generalization error for the networks reaches a minimum at Division (AFSC), Wright-Patterson AFB, OH 45433-6543.
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connections exist among the network units, then such
networks are called "recurrent nets". Recurrent nets are

Abstract more powerful than feedforward nets (though perhaps not
as efficient at certain tasks). One of the most important

A recurrent learning algorithm based on a finite properties of recurrent nets is their potential to model
difference discretization of continuous equations temporal processes with feedback.
for neural networks is derived. This algorithm
has the simplicity of discrete algorithms while Gherrity (1989) and Pearlmutter (1989) have derived
retaining some essential characteristics of the different learning algorithms for fully recurrent networks
continuous equations. A problem arising from defined by continuous equations such as (1). On the other
using a discrete algorithm to learn sine wave hand, Williams & Zipser (1989) derived a recurrent
oscillations is described and shown to be solved algorithm called RTRL (real-time recurrent learning)2

by this algorithm. This example explains a based on discrete-time network dynamics, which is more
limitation of the discrete algorithm when common for feedforward networks. That is, the network
learning to approximate continuous behaviors, dynamics is defined by

1 A FINITE DIFFERENCE yk(t+l)=f(xk( )); Xk=X wkjYj (2)
ALGORITHM J

The following coupled differential equations, with slight In both Gherrity (1989) and Pearlmutter's (1989)
variations, have been widely used for continuous neural algorithms, the error gradients are calculated from the
networks (for example, see Hopfield (1984), Pineda differential equations. The resulting equations then must
(1987), Pearlmutter (1989)): be numerically integrated for simulation. In this paper we

adopt a different approach, by first discretizing the
rkL (t)=-Yk (t)+ f(xk ()) (la) differential equations, then calculating the gradients from

the discretized equations. The resulting network can be
considered as a cross between continuous and discrete

xk (t) = , Wkj yj (W (lb) networks. One advantage of this approach is that the
j learning algorithm is as straightforward as the RTRL

algorithm, while the network retains some essential
where Yk (t) is the output of the unit k at time t, and Tk is characteristics of the continuous network.

the time constantl. Wkj are the weights (coupling) from

unitj to unit k; together with the transfer functionf() they Among the elementary finite difference schemes for
specify the interaction among the units in the network. If discretization, we consider the most basic one, the first
no restrictions are placed on wkj, then (1) may be an order forward difference approximation:
arbitrarily connected network. In particular, if cyclic d yk AYk (t) = k Yk(t+At)- Yk)

"dat(t At At(3

1 Time constants determine the time scale of the system. One

way to see this is by considering (la) in the absence of f).
There the solution is y=CeA(-tlr) for some constant C. That 2Which has been independently discovered several times, see
is, after each time period of r, y decays by lie. (Williams & Zipser, 1990) for references.
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where At is a small, positive number3. At[f'(xk(t))][X WkIPIj(t)+ ikY (01 (6)

Substituting the RHS (right-hand-side) of (3) into the k

LHS of (1a), and rearranging terms, we get: where 8ik is the delta function. The learning algorithm is

Yk(t+At) = (1-4 -yk(t) +&f(xk(t)) (4) thus
IckTA Wij(t+At) = 77 Z (dk - YkJp (t+At) (7)

To distinguish (4) from the continuous networks (1) and k (7

discrete networks (2), let us call networks defined by (4)
"delta net". While (4) is derived from (1), it is related to The only difference between the delta net algorithm and
the discrete equations (2) as follows. For numerical RTRL is in the unit update equations ((2) and (4)) and
integration, it is normally desirable that the integration equations (6). Compare (6) with the corresponding
step At be small compared to the time constant -t. equation from RTRL:
However, in the limit that At=T, (4) reduces to (2). That
is, we may consider discrete nets as a special case of delta k -

t+ l )a ay k

nets, and that each iteration of the discrete net corresponds P Y awk
to jumping one time-constant forward in continuous time.

There is an intuitive interpretation for (4) from the f '(Xk(t)) wkIPi(t) + '5ikYj( (8)
discrete-time point of view. For example, if all the time Ll J
constants are 1 and At is 0.1, then at each iteration step,
the new activation for a unit is formed by (1-At) or 90% we see that (6) differs from (8) in exactly the same way
of the original activation, plus 10% of the contributions that (4) differs from (2). Therefore, in the limit At=t, the
from the presynaptic units. Thus each unit decays delta net learning algorithm also reduces to the RTRL
exponentially, consistent with the original continuous algorithm.
system.

Having observed the similarity between (2) and (4), we 2 SIMULATIONS
proceed to derive a learning algorithm for the delta net in
exactly the same way that Williams & Zipser (1989) While the delta net equations (4) is a discretized version of
derived the RTRL algorithm. If the desired output for unit (1), it may not be true that (1) and (4) have the same
k at time t is dk(t), then define the error of the system to dynamics for all possible functions f. However, for the
be logistic function

E (t) 2 f(x)-
( XdkQ) - Yk(Oi (5) 1+ e -X

(1) and (4) do indeed seem to be analogs of each other. To
Weights are modified in proportion to the error's negative see this, we take a two-unit fully connected network (Fig.
gradient with respect to the weights themselves: la) and train it to oscillate as sine waves with the RTRL

algorithm (Fig. lb). This network has no inputs; the
Awii(t)=_77 DE (t)=-1 E E Yk (t) learned oscillation is a stable limit cycle of the two-unit

wij k aYk awij (6) dynamical system. The sine waves are normalized to
between 0.1 and 0.9, and discretized with period T=30;

Here 71 is a positive proportionality constant (the learning that is, the discrete network steps through one period of
rate). By (5), the first term in the summation is simply the sine wave after 30 network iterations4.

aWe then use the weights learned from the RTRL
S=-(dk(t) -Yk(')) algorithm as the weights for an identical delta network,

aYk and run this network with At=0.1. That is, we are really

The second term in the summation is calculated running the same network with the delta net update

recursively, using (4): equations (4) instead of the discrete equations (2). The
oscillation thus generated is qualitatively

__~ _k Qindistinguishable. But note that now it takesa kwij (k 1 iterations to complete one period (30 x 0.1). Phase-s,.,
plots (unit 1 against unit 2) of these oscillations are

shown in Figure 2a and 2b. The same holds for At=0.01

3Also known as Euler's method. This approximation can be 4The period T is in units of the time constant. In this and all
obtained directly from the mathematical definition of simulations that folow, we use a time constant of 1 for ali
derivatives, units.
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Figure 1: a. Diagram of the 2-unit fully connected network. The w1 's and biases are the weights. b. Sine waves
learned with the RTRL algorithm, with period T=30 and phase difference of t/4. Unit 1 is the solid curve; unit 2 the
dolled curve. The dots (unit 2) are actual values iterated by the network. For weights see Table 2a.
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Figure 2: Phase plots of oscillations generated by the Figure 3: Oscillations learned by delta net algorilhm.
network of Fig. 1, but run with different At. a. At=1 a. Period T=10, At=0.1. b. T=30, At=0.1. c. T=I0,
(same as Fig. lb). b. At=0.1. c. Numerically integrated At=0.01. The distortion is small even though one period
with step size 0.01. lakes up to 1000 iterations to complete. Unit I is the

solid line; unit 2, dotted line.
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(3000 iterations per period). In fact, the same oscillation One nmay visualize the effect of teacher-forcing by
is generated using the continuous equations (1), which are imagin~ng that the network is learning to follow a
numerically integrated with the 4th order Runge-Kutta trajectory; it goes astray (because the weights are wrong),
method at a step size of 0.01. but teacher-forcing puts the net back on its desired

The above tests shows that, at least for this two-unit trajectory by setting the state of all the units to that of the

network, the weights learned with the RTRL algorithm teachers'. Teacher-forcing is applied periodically (by

has the same behavior with the RTRL net, delta net, and default, at every iteration) until the error criteria is met 5.

continuous net. There the delta net is used simply as a However, as an artifact of teacher-forcing, it can
first order numerical integrator. In Figure 3 we show sometimes happen that after training, the error is
oscillations generated with the delta net learning consistently low (satisfying the error criteria), ),t during
algorithm. In Fig. 3a, the two unit net is trained with free-running (when the teacher is removed), the learned
period T=10, and At=0.1 (100 iterations/period). In Fig. oscillation appears very distorted from the teacher. An
3b, T=30 and At=0.1; in Fig. 3c, T=10 and At=0.01. interesting example is from training the two-unit network
Table 1 shows the weights for these three cases. with the RTRL algorithm to learn sine waves. When the

These weights, obtained with the delta net algorithm, can period T is around 30 (see Fig. lb), the net can

also be run with different At from what they were trained approximate the sine waves fairly well. With T=60, that

with. For instance, the net from Fig. 3a is trained with is, the net is to iterate 60 times during one period of the
sine wave, training time can double, and the learned waveAt=0.1; it can be run with At= ( RTRL net), or forms are slightly distorted. At T=100, if the net cant----.0l, and will generate the same wave forms. oscillate at all, the wave forms are so heavily distorted

The above tests supports the hypothesis that the delta net they can hardly be called sine waves (Fig. 5). Weights
formulation is a good analog of both the continuous for the three networks in Figure 5 are shown in Table 2.
equations (1) and discrete equations (2). Whether this is For periods much greater than 100 and smaller than 20,
true across a wide range of problems remains to be seen. the net is unable to learn the sine waves with the RTRL

algorithm. This is clearly undesirable for two reasons:As a larger example, Fig. 4 shows a four-unit fully- First, if higher sampling frequency than 30 points per
recurrent network, two units trained to produce sin(t) and period is needed; for instance, if one wants to model a
sin(2t), the other two are hidden units and are not plotted, three-second oscillation, and precision down to
Hidden units are necessary in this case because the phase millisecond level is desired. Second, one would like the
space trajectory crosses with itself; at the point of teacher-forcing trained behavior to be the same as the free-
intersection, additional information is needed for the net to running behavior, otherwise there is no obvious criteria
figure out where to go next. for when the network has actually learned the teacher.

3 DThis distortion in RTRL nets is perplexing, too, becauseDISTORTED WAVE FORMS WITH in section 2 we have shown oscillations by delta nets
THE RTRL ALGORITHM having up to thousari's of iterations per period, without

Empirical observations show that it is necessary to use a much distortion. Rccall, also, that weights learned by a
technique called "teacher-forcing" in order to use the
RTRL algorithm to train a network to oscillate (Williams
& Zipser, 1989). The same is found to be true for delta 51t is not entirely clear wh teacher forcing is necessary in
nets. Teacher-forcing means, during training, instead of learning oscillations. One possible reason is to adjust the
summing up the actual activations from the incoming internal clock of the network: The net may oscillate correctly
units (which may be erroneous), each unit sums up the but if the phase is off, then the error will be consistentlyhigh. Durn training the net must learn to both create the
correct, teacher activations as its input for next iteration. high.eDrintr n g th n ust ean t o th tim e

correct internal clock and "adjust it to the right time".

Table 1: Weights for the 2-unit delta nets, a, b and c correspond to the networks that generated the oscillations in
Figure 3a, 3b and 3c.

T At Wfl w12 W21 w22 bias I bias 2
a 10 0.1 7.053 -3.639 4.626 2.065 -1.703 -3.331

b 30 0.1 5.311 -0.954 1.828 3.642 -2.163 -2.726
c 10 0.01 9.372 -4.933 5.202 2.474 -2.271 -3.706
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Table 2: Weights for the 2-unit RTRL nets; a, b and c correspond to (lhe networks that gencrated (he oscillations ill
Figure 5a, 5b and 5c. As the period T increases, thc learned oscillations become more distorted.

Period T w~. w12 w2l. w22 bias I bias 2

a 30 4.756 -1.159 1.022 4.620 -1.796 -2.807

b 60 4.894 -0.768 0.638 4.781 -2.069 -2.684

c 100 5.044 -0.772 0.632 4.954 -2.246 -2.745
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Figure 4: a. 4-unit delta net learned to produce sin(t) 60 120 18 240 300 360
(solid line) and sin(2t) (dotted line). Thie two hidden units
are not plotted. b. Phase plot of a.

Figure 5: Oscillations learned by RTRL, algorithmr
show distortions ais thie periods increase, a. Period T=30.

I 

b. T=60, c. T= IGO.
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RTRL net (with period T=30) may be run with a At of of Table 2, increasing T forces the differences between a
0.01, so as to have 3000 iterations per period without unit's self-recurrent %eight (which becomes larger) and the
noticeable distortion (Fig. 2c). weight from the other unit (which becomes smaller) to

We mentioned that the delta net equations (4) reduces to become large enough so that the network becomes a

the discrete equations (2) when At=. However, highly nonlinear oscillator. Hence the distortion observed

mathematically, something fundamentally different in Fig. 5c.

happens at At--'t: the exponential decay term in the Linear units will be much better at learning sine waves,
equation disappears; the old activation is completely but a linear system will not be able to provide stable limit
forgotten with each new iteration. This suggests that a cycles, which is important in biological oscillations.
key advantage of the delta net (4) and the continuous net The oscillation in Fig. 5c is interesting in its own right
(2) is that the decay term acts as a direct memory input to
the unit. As the curve (sine wave) is more finely in that it resembles a class of nonlinear oscillators called
sampled, the outputs of a unit from one time to the next relaatin oscillars. relti osclatorsae
(t to t+At) are very close to each other. The correct way characterized by a phase where there is a relatively small
to process this is to make At smaller, so the contribution change in the system, and a phase of very rapid changes.fromthedeca tem i greter andmor ofthe revous After the rapid phase, the system returns to the slow phase
value is retained6. In the RTRL net, there is no such and starts over. Clearly, many biological oscillations fitdecay term serving as a "memory". What it ends up this qualitative description, two immediate examples aredeca tem srvig a a memoy".Wha itend up the heartbeat and the action potential. A well studied
trying to do, say if a sampling rate of 100 points per teara tion otenta A e suded
period is needed (Fig. 5c), is to try to expand the relaxation oscillator is defined by the Van der Pol
oscillation over 100 time constants, which is the incorrect equation, where its near-harmonic oscillation becomesintepreatin o"10 poits er erid",relaxation oscillation exactly as the coefficient of the
interpretation of "100 points per period". nonlinear term becomes large7. It would be interesting to

In the RTRL net, the unit trying to achieve a value close investigate the relationship between this class of
to its previous value after an iteration must do so differential equations and neural network oscillators.
indirectly through the self-recurrent weight. Indirectly,
because this input is "squashed" by the nonlinear transfer 4. DISCUSSION
function. For a sigmoidal unit to retain its value near the
maximum of 1,f must be close to 1, so the weight must The RTRL algori:'im is straightforward to implement for
be large (e.g. f(4)=0.98; f(5)=0.99, wheref is the logistic one familiar with back propagation 8. Once it is
function). Table 2 indeed shows that as T increases, the implemented, the delta net modification can be made by
self-recurrent weights increase monotonically. On the changing as few as three lines of code. The only
other hand, influence from the other unit should decrease, differences from RTRL net are the state equations (4) and
in this 2-unit network, so that it takes longer to finish the "p-values" (6). Also, note that the derivative of the
one oscillation. This trend is also observed in Table 2. logistic function,
Let us look at (1) again, in vector form: f" =f(1-f) at time t

y =-+*(w-) (5) can no longer be written as

Defining the net input x, f'(x(t)) = y(t+J)*(1-y(t+l))

X=Wy; so X' =WY' (which is done in back-prop and RTRL implementations),
because

and by multiplying W on both sides of (5) we get the

equivalent system: y(1+ l) =f(x(t))

. ' =- + W ) (6) is not the update function anymore.

As with RTRL, the delta net algorithm suffers from high
This system is nonlinear exactly when f is nonlinear. The computational complexity: on the order of (n4). For
weights, W, are then the coefficients to the nonlinearities, small networks (on the order of 10s of units in our
As sine waves are linear harmonic oscillations, it is experience), this complexity factor is not as important and
reasonable to assume that the network can approximate

sine waves best when it can operate in the linear region; 7 (Thompson,1986) contains a good but very brief
that is, when the weights are small or when the weights introduction to relaxation oscillators that introduces the
combine so that the nonlinear effects cancel. In the case FitzHugh.Nagumo model of nerve axon response. A more

thorough account on relaxation oscillators is by (Grasman,
6This simply means the continuity property of (1) is 1987).
preserved in (4). 8For implementation details, see (Williams & Zipser 1989).
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Abstract

The traditional feedforward neural network X,
is a static structure which simply maps input " 1
to output. To better reflect the dynamics in
the biological system a network structure is
proposed which models each synapse by a Fi- X2 W out
nite Impulse Response (FIR) linear filter. An
efficient gradient descent algorithm is derived
which will be shown to be a temporal gener- y =1 W'A
alization of the familiar backpropagation al- X3 I
gorithm. out = f(y)

1 INTRODUCTION Figure 1: Static Model of Neuron

A standard neural network models a synapse by a sin- algorithm. This algorithm may then be used as a com-
gle variable weight parameter. In a feedforward struc- putationally efficient method for training Time-Delay
ture this results in a static network which maps input Neural Networks.
to output. Real neural networks are of course dynamic
in nature which is reflected in the temporal properties
of the synapse along with such processes as impulse 2 NETWORK STRUCTURE
transmission and membrane excitation. While many
accurate models of such processes do exist, from an en- 2.1 STATIC MODEL
gineering standpoint most are unrealistic to work with.
The model we propose to use represents a synapse not Consider first the traditional model of the neuron
by just a single weight parameter, but by an adaptive shown in Figure 1. The output of the neuron is simplis-
filter (Widrow, 1985). Further, we restrict the filter to tically taken to be a nonlinear function of the weighted
be discrete time, characterized by a Finite Impulse Re- sum of its inputs. Mathematically this is expressed as
sponse (FIR) '. While biologically motivated, we make
no claims that the structure is necessarily biologically = Z WiXi (1)
plausible. With this we proceed to derive algorithms
for adapting the synaptic transfer functions so as to out = f[y] (2)
train the network as a whole. where Xi are the inputs to the neuron and Wi are

The structure of the FIR network presented here is the synaptic weights. By modeling the synapse with a
similar to the Time-Delay Neural Networks (TDNN) single weight parameter the neuron can be considered
used in speech recogrition (Waibel, 1989). The pri- a static structure mapping input to output. Clearly
mary difference. are a matter of formalism and nuta- this is an o~ersinil,lified model of a biological neuron.
tion. As we will see, however, the proper choice of no- A common configuration is to arrange the neurons into
tation allows for a very elegant solution to the training a feedforward structure as shown in Figure 2. While

'The Infinite Impulse Response (IIR) case has also been this increases the class of functional mappings, it is
studied and will be presented in a future paper. still a static mapping from input to output.
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X1(k)

X2k f(y)

X 2 (k)out(k)

X3(k) y(k) ViZ W- Y(k)

out(k) =f[y~k)]

Figure 2: Static Feedforward Network Figure 4: Temporal Model of Neuron

X(k) s(k)

X(k) X(k-1) X(k-2) X(k-3) X(k-T)

=unit delay s6)X
k = discrete time index s(k)

T
s(k) = W(t)X(k-t) = W-X(k)

Figure 3: FIR Synapse Figure 5: FIR Network

2.2 TEMPORAL MODEL
Using this model of the synapse we construct the neu-

A more sophisticated model of the neuron results if ron. The structure is the same as before except each
time is incorporated into the structure by replacing the static s3,napse is replaced b3 the FIR model. This is
static model of the synapse by a FIR linear filter. This shown in Figure 4. MathernaticAlly! the output of a
corresponds to a Markov model of transmission flow neuron, now a function of time, is defined as
through the synapse. The synaptic model is shown in
Figure 3. Defining k to be the discrete time index,
the "output" of the synapse is now a weighted sum of yk) >3WV -Xi(k) (6)
delayed inputs

oul(k) = fAy(k)] (7)
T

s(k) = IV(t)X(k - t). (3) Note the similarities in appearance between these
,=0 equations and those of the static model in Equation 1.

We have simply replaced scalars by vectors and multi-
The past input states can be represented in vector no- plications by vector products. The convolution opera-
tation tion of the synapse is implicit in the notation. As we

will show, these simple analogies will carry throughoutX(k) = [X(k), X(k - 1), ..X(k - T)].- (4) susqetdeiltos
subsequent derivations.

Similarly we form a weight vector for the filter coeffi- Finally, the temporal model of the neuron is used to
cients construct a feedforward network as shown in Figure 5.

W = [W(O), W(l), ..W(T)]. (5) Only feedforward structures will be considered at this
time. liowever, the mapping for the feedforward net-

This allows us to express the operation of a sy napse by work is no longer simply a static mapping. Dynamics
a vector dot product,W - X(k), where time relations are internal to the structure. Outputs depend on past
are now implicit in the notation. values of the input.



Temporal Backpropagation; An Efficient Algorithm for Finite Impulse Response Neural Networks 133

3 TRAINING which exploits the structure's FIR characteristics. For
now we will proceed with this approach to show where

Training will be based on a supervised learning algo- the problems arise.
rithm in which a desired response vector is provided While direct calculation of the gradient terms is pussi-
at each instance of time. Thus at each time increment ble (Wan, 1990), the mathematics only tends to ob-
the instantaneous squared error is defined as scure the main features of the algorithm. A more

(8) illustrative approach is provided by using a graphi-
-uik)]= e(k)2  cal technique which involves unfolding the network in

time. The general strategy is to try and rere.ove all
where out,(k) is the true value of output neuron i and time delays by expanding the network into a larger
d,(k) is the corresponding desired response. The sum static structure. Standard backpropagation (Ramel-
is taken over all output neurons for the network. The hart, 1986) can then be used to calculate the necessary
goal is then to minimize the total squared error taken gradient terms.
over all time As an example, consider the very simple network

e2 = E e2 (k). (9) shown in Figure 6. The network consists of three lay-
k ers with a single output neuron and two neurons at

each hidden layer. Each synapse is modeled as a sec-
Note the choice of a Euclidean squared error metric is ond order (two tap) linear filter. Thus while there are
neither unique nor essential to the arguments in this only 12 synapses in the network there are actually a
paper. Other error metrics such as cross-entropy may total of 30 variable filter coefficients. Now starting at
also be considered. Furthermore, it is actually not the last layer each tap delay is interpreted as a "vir-
necessary to provide desired response vector at all in- tual neuron" whose input is delayed the appropriate
crements of time. It is the overall sequence of outputs number of time steps. A tap delay is then "removed"
that is important. At any given increment the desired by replicating the previous layers of the network and
output may not be known in which case the error met- delaying the input to the network accordingly. This
ric can be taken as zerm. This is the case, for example, is shown in Figure 7. The process in then contin-
with phoneme recognition. ued backward through each layer until all delays have

been removed. The final unfolded network is shown in
Regardless of the choice of error metrics, learning will Figure 8. This method produces an equivalent static
be based on traditional gradient descent in which we structure where the time dependencies have been made
attempt to minimize total error over all time. external to the network itself by time windowing the

input. Notice that whereas there were initially 30 vari-
3.1 INSTANTANEOUS GRADIENT able coefficients the equivalent unfolded structure now

METHOD has 150 "static" synapses. This can be seen as a result
of redundancies in the weights. In fact, one can view

Returning to the squared error metric, the error gra- a FIR network as a compact representation of a larger
dient with respect to a given weight vector is normally static network with imposed symmetries.
expandpd as follows: Given the unfolded static structure it is then a straight

ae2  e2 (k) forward process to find the instantaneous error gradi-
0W .-q w (10) ents for each weight using standard backpropagation.

k It is necessary, however, to keep track of which static

Subscripts are included so that W!. specifies the weights are actually the same so that the gradients
synaptic filter connecting the output of neuron i in may be accumulated to find the total gradient for each
layer I to the input of neuron j in the next layer. By unique parameter in the network. This need to do
taking each term in the expansion as an unbiased in- global bookkeeping is an immediate drawback to the
stantaneous estimate of the gradient, we may form the instantaneous gradient approach. There is a loss of
on-line training algorithm: a sense of locally distributed processing. There is no

longer a symmetry between the forward propagation
= - 0e2(k) (11) of states and the backward propagation of gradient

W k w(k) terms. No nice recursive formula for propagating all
the error terms exists. The more layers in the network

in which the weight vectors are updated at each incre- the more complicated 'the process becomes
ment of time (p is defined as the learning rate). From a practical standpoint, perhaps the greatest

As we will show, this obvious expansion of 8e2 /OW drawback to this approach is in the computational
into the terms 0e2(k)/OW does not lead to a desirable complexity of the algorithm. In a static network the
learning algorithm for this structure. A less intuitive number of computations associated with the standard
expansion, in fact, yields a more attractive algorithm backpropagation algorithm grows only linearly with
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Table 1: FIR Networks vs. Static Equivalent

FIR Network Variable 1 Static
0imension Parameters Equivalent

Nodesf OrderlX2(k) Wr = -, =() -Xx.l ::2 3 150
5x5x5x5 10:10:10 605 36,355zx3x3 9:9 180 990

Xl(k) r ,. ..3x3x3 9:9:9 270 9,990
3 ix3x3x3 9:9:9:9 360 99,990

3n" 9 n- . (n - 1)90 1on - 10

t Number of Inputs x Hidden Neurons x Outputs.
Figure 6: Simple Three layer FIR Network t Order of FIR synapses in each layer.

the number of weights. As we saw, a very small
FIR network (30 parameters) was expanded to a much
larger static network (150 weights). In fact, the size

X2(k-2) of the equivalent static network grows geometrically

Xl (k.2) with the number of layers and tap delays. Conse-
quently the number of computations required to train,2(.1).=...-- m,' ~ k)the FIR structure also grows geometrically with the
size of the network. This would then be reflected in

X1(k-1) the actual training time. Table 1 shows the equivalent
static size for various FIR networks. The TDNN sys-

X2(k) tem of Waibel used for speech recognition consisted of

Xl(k) 521 variable coefficients. However, the expanded vir-
tual network which was actually used to calculate the
gradients consisted of a total of 6233 weights.

Figure 7: Unfolding Process 3.2 TEMPORAL BACKPROPAGATION

We now present an alternative learning algorithm
which overcomes the problems associated with the in-

X2(k-6) stantaneous gradient approach. Unfortunately it is
Xl(k-6) necessary to first complicate matters by introducing
X2(k.5) a bit of notation. The output of the synaptic filter

Xl(k-5) connecting neuron i in layer I to the jth neuron in

X2(k-4) next layer is defined as
yt'(k) = W X (k) (12)Xl(k-4) y'j (k )Wl.

X2(k-3) where Wj = [w'!j(0), w ,(1), ..wj,1 (T')] specifies the
XI(k-3) coefficients for the connecting synaptic filter. X!(k) =

-(k) [xi(k), x!(k - 1), ..x!(k - T')] is the vector of delayed

Xl(k-2) states along the synapse.

The total input to the jth neuron in layer I at time k
is specified as

XI(k-) N1 NNI,_ 1

X2(k) y,(k) jyl,(k) ,W 7 . Xh 1 (k). (13)
Xl(k) i=1 i=i

The sum in the equation is taken over all N neurons
in the layer. Finally, the output for the neuron is taken

Figure 8: Final Unfolded Network to be a nonlinear sigmoidal function of its input

x (k) - f(y (k)). (14)

This notation completely defines the structure of the
network. Note we can take x(k) to specify an external
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input to the network while x4(k) specifies an output Thus
for an L layer network. Values of x((k) for 1 < I < L 1 +( W
specify internal states within the network. Oz(k) .0 otherwise - (22)

We are now in a position to formally derive the new
training algorithm. The original expansion of the total which now yields
error gradient into a sum of instantaneous gradients is Nz+ T'+k
not unique. Consider the following: 6 (k) , f'((k)) 8 ( 6 (t - k)

8e2  0e2 O+'(k) M=1 tk
19.9e Y (15) N1+1 T'

$ = = f'(y,(k)) b 6' '(k + n)wm(n)

This now yields an on-line version of the form: M=1 n=O
a J+N(k)'+

w (k+ 1) = W (k) - PD+1(k) (16) f'(y(k)). A2(k) W+ (23)
tj$ yj' k ,,'j *rM=1

Note the time index runs over y(k) and not e2(k). We where we have defined
may interpret Oe2/8y+l(k) as the change in the total

squared error over all time due to a change in the input m [ 6 +

to a neuron at a single instant of time. Furthermore,

0e 2  ay.+l (k) ac 2 ) Summarizing, the complete adaptation algorithm can
ae( OW % WV W(k) (17) be expressed as follows:a'9 1(k) Mwi - o5w__j(k)"

Only the sum over all k is equivalent. WtA(k + 1) = W&J(k) - p63 - (k) . X,(k) (25)

Now for any layer 0 -(k)/0W! . X . Further-
more, we may simply define 8e 2 /Oy'(k) = 6J(k). This f -2ej(k)f'(y(k)) 1= L

allows us to rewrite Equation 16 in the more familiar ) = z
notational form 1 mi(y . 1 < I < L- 1

Wj(k+1) = WV(k)-p 6+ 1 (k).X (k) (18) =(26)

which now holds for any layer in the network. To An immediate observation is that these equations are
complete the derivation, an explicit formula for bJ (k) seen as the vector generalization of the already familiar
must be found. For the output layer we have simply backpropagation algorithm. In fact, if we replace the

ae2  Oe2 (k) vectors X, W, and A by scalars, the above equations
'(k) = reduce to precisely the standard backpropagation al-

j(f (k) gorithm for static networks. Differences, however, in

= -2ea(k)f'(yL(k)). (19) the temporal version are a matter of implicit time rela-
tions and filtering operations. To calculate 6j(k) for a
given neuron we propagate the 6's from the next layer

For any hidden layer we have backwards through the synaptic filters for which the
ae2  given neuron feeds (see Figure 9). Thus 6's are formed

6,(k) 8y'(k not by simply taking weighted sums but by backward
filtering. For each new input and desired response vec-

N1+ 9e2  ay+(t) tor the forward filters are incremented one time step
= W Z &+) and the backward filters one time step.1+1 ,,(t) ayj(k)

N1+1 By having manipulated the terms used to accumu-
= 1 +1 (t) (t) late the error gradients we have preserved the sym-FIE M .9yl (k) metry between the forward propagation of states and

m=1 t the backward propagation of error terms. The sense
+ (k))E+ 1() 'W 2 of parallel distributed processing is maintained. Fur-

= '(!4(k)) >1 L ~ '" (20(k) thermore, the algorithm overcomes the computational
M=1 t complexity encountered in the first algorithm. The

number of operations only grows linearly with the
But we recall number of layers and synapses in the network. This

T1 savings comes as a consequence of the recursion which
j. WIrn(k')Zj(t - k'). (21) efficiently groups terms into products of sums instead

k'=o of sums of products. Each unique coefficient is used



136 Wan

1+1 (27)
&' (k) based on the requirement A(k - T) = [6(k- T),

6(k - T + 1), ..6(k)] be composed of only current and
(k-T) f'(y) X -"-z!. (k) past terms.

Since at time k only the time shifted value 6L-(k-T)
can be computed, the states XL-2(k - T) must be

" ' (k) stored so that the product of the two may be formed
to adapt the synapses in the layer. Continuing one

61(k) = f'(y(k)).X A '(k).W more layer back, the time shift is simply twice as long.
Rewriting the algorithm in this causal form yields

Forward Propagation Backward Propagatlon W;-"(k+ 1) =Wl" (k) -p6f+l-"(k- nT) .X"(k- nT)

X(k) 0(k) 6(k) =(k) -2e,(k)f'(y4(k)) n 0

- -- H(k-nT) = f'(yf--(k-nT)) 1 < <L

Figure 9: Backward filter propagation of gradient terms I
• M. (k-nT). ~

only once in the calculation. There is no redundant M=1 (28)

use of terms as in the first case. Returning to the While less aesthetically pleasing than the earlier equa-
TDNN example where 521 weights expanded into 6233 tions, they differ only in terms of a change of indices.virtual weights, the use of temporal backpropagation Summarizing then, we propagate the delta terms back-

could result in a reduction in computer training time ward continuously without delay. However, by defi-
by as much as 90%. nition this forces the internal values of deltas to be

shifted in time. Thus one must buffer the states X(k)
3.2.1 Noncausality appropriately to form the proper terms for adaptation.

Added storage delays are necessary only for the states
The specification of the temporal backpropagation al- X(k). The backward propagation of delta terms re-
gorithm in Equation 26 hides an important subtlety quire no added delays and is still symmetric to the
encountered when actually implementing the algo- forward propagation.
rithm. Careful inspection reveals that the calculations
for the 6!-'(k)'s are in fact noncausal. The source of For simplicity in the above equations it was assumed

that the order of each synaptic filter, T, was the same
this noncausal filtering can be seen by considering the in each layer. This is clearly not necessary. If the order
definition of 6J-(k) = 8e2 /8y(k). Since it takes time is different for each layer in the network we simply
for the output of any internal neuron to completely replace nT by
propagate through the network, the change in the total
error due to a change in an internal state is a function T .- 2
of future values within the network. Since the network nT - T'. (29)
is FIR only a finite number of future states must be l=L-n

considered. For the general case let T. be the order of the synaptic

The exact time reference taken for adaptation pur- filter connecting neuron in layer I to neuron j in the
poses is not important. Making the system causal next layer. Then for the case of arbitrary synaptic
becomes a standard engineering task. This can be ac- filter order we have
complished in a number of different ways by adding L-i
a finite number of simple delay operators at various nT - E mtx{T} (30)
locations within the network. One possible solution
follows if we require that all weights vectors are to =L-n
be adapted based on only the current error e2 (k) and The basic rule is that the time shift for the delta asso-
past values of the error. Given this information we ciated with a given neuron is equal to the total number
may immediately form bL(k) for the last layer in order of tap delays along the longest path to the output of
to adapt the weights in the last layer. For the next the network.
layer back, however, causality constraints imply that
terms are only available to calculate 3.3 DIFFERENCES IN ALGORITHMS

3.L 1IFllN E 1N ALGORTLHML

- (k-T) = f'(y (k - T)) - T) W.1m Both the first algorithm presented and the temporal
mn=1 backpropagation algorithm are based on gradient de-

scent. They are not, however, equivalent. All gradient
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tive system with its own internal dynamics. Applica-
Instantaneous Gradient Method tions should thus include areas of signal processing,

20 control, and pattern recognition where there is an in-
herent temporal quality to the data.

In nonlinear controls, for example, the design of a neu-

to ral controller is commonly a two stage process in which
both a feedforward controller and a system emulator
are separately learned. A static neural network can be
used for both components under the assumption that
full state knowledge is available. However, the use of0 0o 10 10 200 250 300 350 400 an FIR structure for both the emulator and controller

T. .h "k can allow for the estimation of internal states based on
available output observations.

25

Temporal Backpropagation As stated earlier, the definition of the FIR Neural Net-
20 work also encompasses Time-Delay Neural Networks

which have been investigated for use in speech recog-
15 nition. TDNN's have been shown to be comparable to

the more traditional method of Hidden Markov Mod-
to els for identification of phonemes (Waibel, 1989). The

temporal backpropagation algorithm may be used as a
simple means for greatly improving the training time

5 of such networks. An interest in implementing the al-
gorithm for future versions of the TDNN speech recog-

0 5 01 , 2" 300 350 00 nition system has already been indicated (Hampshire,
71m. t k 1990).

Figure 10: Learning Curves 5 CONCLUSION

This paper has defined an FIR neural network struc-
derivations assumed that the weight parameters were ture. A more sophisticated model of the synapse is
fixed. During actual adaptation this is clearly not a used which replaces the static weight model by a lin-
valid assumption. Minor discrepancies in performance ear Finite Impulse Response filter. A computationally
arise due to differences in the timing at whiuh weights efficient gradient descent algorithm was derived which
are adjusted relative to the calculation of the error gra,- was seen to be a temporal generalization of the familiar
dients. Figure 10 shows averaged learning curves for backpropagation algorithm.
the two algorithms used on a two layer network2 mod-
eling an unknown nonlinear system. Even for this sim- References
ple example where combinatorial problems are not an
issue, temporal backpropagation resulted in roughly a B. Widrow and S. D. Stearns. (1985) Adaptive signal
40.5% reduction in computer simulation time. Fur- processing, Englewood Cliffs, NJ, Prentice Hall.
thermore, initial experimentation indicates the added D. E. Rumelhart, J. L. McClelland, and the PDP Re-
benefit of less misadjustment using temporal back- search Group. (1986) Parallel Distributed Processing.
propagation. For "small" learning rates differences in Explorations in the Microstructure of Cognition, Vol.
the learning characteristics are negligible. Mathemat- 1, The MIT Press, Cambridge, MA.
ically the algorithms become equivalent as ja -- 0. Al-
ternatively, terms may be accumulated to find the total A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and
gradient for batch mode adaptation. In this case the K. Lang. (1989) Phoneme Recognition Using Time-
algorithms are functionally identical apart from spe- Delay Neural Networks, IEEE Transactions on Acous-
cific implementation and computational differences. tics, Speech, and Signal Processing, Vol. 37, No. 3,

pp. 328-339, March 1989.
4 APPLICATIONS E. A. Wan. (1990) Temporal Backpropagation for FIR

Neural Networks, International Joint Conference on
By modeling each synapse as a linear filter, the neural Neural Networks, Vol. 1, pp. 575-580, San Diego.
network as a whole, may be thought of as an adap- J. Hampshire. (1990) personal communications.

21 input, 1 output, and 5 hidden units with 4-tap FIR
filters for each synapse. p = .05
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Abstract In this paper we propose a new algorithm ex-
tending Oja's result to learning an orthogonal

The problem of learning efficient representa- projection onto the space spanned by the first
tion of a high dimensional input by a lower q principal components. First, the problem of
dimensional space is investigated. It is shown dimensionality reduction is analyzed and con-
that a recurrent system of interconnected lin- ditions for global optimality for certain class
ear neurons, using Hebbian learning rule to of mappings are established. Using stochastic
update its connections, will converge w.p.1 algorithm theory, it is shown that a two lay-
to an orthogonal projection onto the space ered network with feedback connections and
generated by the first q principal components local Hebb type learning rule is guaranteed
of the p dimensional input covariance matrix, to converge to the optimal reduced represen-
The problem is analytically tractable since tation. Learning is done on-line using local
the input-output map is expressed by a lin- unsupervised rules, thus the algorithm may
ear eouation. be used both as a practical method for data

compression and as a building block in a net-
1 Introduction work enabling it to achieve efficient internal

representations. Self supervised backpropa-
The subject of dimensionality reduction has gation in a linear network would give similar
received extensive attention in the statistics results (Baldi & Hornik,1989) but would re-
literature (Jolliffe,1986) and has proven to be quire error propagation through the layers.
extremely useful when large dimensional data In section 2 the problem is formally posed.
needs to be analyzed. In recent years a few Main results and proposed architecture for
algorithms were suggested, trying to achieve implementing the algorithm are stated in sec-
efficient dimensionality reduction using net- tion 3. All proofs are deferred to the ap-
work techniques. Oja (Oja,1982) has shown pendix.
that a linear neuron (i.e an element whose
output is a weighted sum of its inputs) will
extract the first principal component of the
covariance matrix of its inputs if the weights Similarly to self supervised BP (Rumelhart et
are modified using a variation of the llebb al,1986) we define a representation to be op-
rule: timal if given the reduced dimensional output

ci(t + 1) = ci(t) + -Y(t)[u,(t) - c,(t)y(t)Jy(i) we are able to reconstruct the original input
c - the weight vector, with minimal mean square error. More pre-

u - the input vector, cisely:
y - the output. Given u a p dimensional random vector we
- - learning coefficient, wish to find f : 1ZP -+ 7Zq and g : Zq -+ 7ZP

An algorithm extracting the first q principal (q < p) such that

components was proposed in (Sanger,1989). Efilu - g o f(U)112}

The method suggested extracts the principal
components sequentially and subtracts them is minimized.
from the input thus errors tend to accumu- In this paper we will restrict ourselves to the
late and only the first few components can be case where g is linear, i.e it can be repre-
estimated accurately. sented by a p x q matrix C.
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Defining y = f(u), our goal is to minimize will simplify the expression of y to
J = Efllu - CyJJ'} y = CTu = CT(u _ Cy) + y. (An im-

plicit assumption is that the delays in

with respect to C and y. the system are neglegible compared with
the intervals on which the input u is

3 Main Results fixed). Define x =_ u - Cy. Combining
all the above we get the following set of

1. Optimal Feedforward Mapping. equations:
If the feedback mapping is linear then x( = uW - C(t)
the optimal feedforward mapping is also (t) = u(t) + 0(t)y(i)
linear and is given by y(t + 1) = y(t) + CT()x(t)

y = (CTC)-/CTu = Bu C(t + 1) = C(t) + Y(t)x(t)yT(t)

and the update rule for C becomes the
2. Learning Rule for C. familiar Hebb rule. The above algo-

If C is adjusted according to: rithm is realized by a two layered linear

C(t+i) = C(t)+y1(t)[U(t)_C(t)y(t)]y T (t) network with antisymmetric connections
yT Bu between the layers. x is the input layer

Where -y is a decreasing sequence (like consisting of p units and y is the out-
l/t) then C (and thus y) will converge put layer consisting of q units. Because
w.p.1 to a global minima of J. of the degenerate form of y stability is
Note: As proved in (Baldi et al,1989) trivial.
this means that the columns of C will Note: If y is a scalar (q = 1) this re-
span the space generated by the first q duces to the update rule proposed in

principal components of E{uuT ). (Oja,1982)

4 Discussion

A new, very easy to implement algorithm was
proposed. Due to its local and on-line nature

y it should prove very useful when large dimen-
sional data needs to be analyzed.

y(i) By limiting ourselves to linear feedback map-
ping the whole problem became linear and
thus analytically tractable. Though no as-
sumptions concerning the statistics of u

-Gji where made, it is well known that this re-
stricted class of mappings will be optimal

. .. only if u is a gaussian process. In many appli-
cations gaussian distribution can be assumed.
For other types of distributions the above

Oji would give only the optimal linear estima-
(tion. To get global optimality, more general

feedback mappings would need to be consid-
u 6) ered. In such cases self supervised backprop-

agation through layered networks consisting

U of nonlinear elements might prove better (e.g
(Saund,1989)) but for a specific task many
layers may be required making the backprop-
agation method prohitively slow.

Figure 1: Diagrammatic Representation of Proposed Thus, a further application might be achieved
architecture by inserting the above architecture as a

component in a larger network containing
3. Proposed Algorithm. nonlinear elements. As proposed in (Bal-

It can be proved that with the above lard,1987), achieving efficient internal rep-
learning rule cTc is constant.T' s the resentations should speed up learning rate,
optimal solution is not unique . A de- helping to overcome the inherent deficiencies
pends on the initial value chosen for of supervised methods. This direction is cur-
C. Particularly, choosing CTC = I rently being pursued, trying to incorporate
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the effect of sigmoidal non-linearities in the and J will converge to an equilibrium point.
above learning rules. For general linear mappings C', B' the land-

scape of

5 appendix j' =< Ilu - C'B'uJ12 >

5.1 Proof of result 1 was investigated by (Baldi and Hornik,1989).
Their main result is summarized in the fol-

If u is ergodic J can be approximated by lowing theorem.

N Theorem: B', C' correspond to a critical
1 i - ] Ilu(n) _ Cy(n)1 2  point of J' iff

0 n= C' = AqW

Given u, C for y to be optimal B' = W-'Aq

6J(y, Ay) = 0WAy E l1' D =_ C'B' = PAq

or Aq - a p x q matrix whose columns co,-sist
of q Principal Components of Q.

lim dJ(C,y + cAy) = lim lim E CT(uCy)Ay PAq - Projection matrix onto the space

-0 dc C-.0 N-co = spanned by the columns of Aq
W - Any q x q invertible matrix.

Since Ay is arbitrary we get 6J = 0 iff If D is a projection to the space spanned by
CT(u - Cy) = 0 And if the columns of C the first q Principal Components than it cor-
are linearly independent the unique solution responds to a local and global minima of '.
for y is: All other critical points are saddle points.

y = (CTC)-ICTu a Bu From result 1 we know that y would be op-
timal if y = Bu. Hence, minimizing Y7 is

5.2 Proof of result 2 equivalent to minimizing J.

Define J = J(C, Bu). If C is adjusted in the Now J has the same equilibria points as J
and further we can prove:

gradient direction of J i.e. Lemma:A pair C, B(C) is a local minimum
dC -di of f iff it is a local minimum of J.
- j-a- The proof is long and not central to the

derivation so it will not be given here.

we are guaranteed to converge to an equilib- Sr uation of gived he mma
rium point of j. So far calculation of A-C- involved summa-

tion over long periods. 1o make the scheme

dJ 1 N more feasible we can used some results from
= lim -lim d stochastic algorithm theory (Ljung,1977)

dO N- "N &d= that in this context would translate to:

Theorem:Let y(t) be a sequence of positive
Hu - (C + CAC)(y + CAyAC)JJ2[y=Bu numbers satisfying:

ACE L(R9,R P) 7(t) -oo (1)
Ignoring second order terms in c we get )3 7 (t)2 < oo (2)

d = lim [A -y(t)decreasing (3)d =  N [Z(u - Cy)yT AcT +1 1
Sn=1 lim sup[- I ] < o (4)

N 00 7(t) 7(t - 1)

Z CT(u - CY)]y=Bu If C is updated according to the rule
,,=1 C(t+l) = C(t)+7y(t)[u(t)-C(t)y(t)]y T (t) ly=Bu

Second term is identically 0 so if we choose it will converge w.p.1 to a local minimum of

= Im N Tj.
AC -= N- (u - Cy)yT And thus, togather with the derivation above

, =1 (i.e minima of i coincide with minima of J
we get and all minima are global) the above update

di rule would guarantee convergence to a global
C= -(AC) 2 <0 minima of J w.p.i.
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5.3 Derivation of Proposed
Algorithm

To complete the derivation we only need to
prove that CTC is constant.

d(CTC) = bTC + CT -
dt

y(yTCT - UT)C + CT(u - Cy)yT Iy=Bu =

(cTC)-CTU[UTC(CTC)-1 CT - UT]C

+cT[tU-C(CTC)-ICTU]UTC(CTC) - I = 0

6 references

P. Baldi, K. Hornik. Neural Network and
Principal Component Analysis: Learning
From Examples Without Local Minima. Neu-
ral Networks, 2(1):53-58, 1989.
D.H. Ballard. Modular Learning in Neural
Networks. Proc. Sixth National Conference
on Al (AAAI-87), vol. 1: 279-284, 1987.
I. T. Jolliffe. Principal Component Analysis.
Springer-Verlag, 1986.
L. Ljung. Analysis of Recursive Stochastic
Algorithms. IEEE T-AC, Vol AG-22(4):551-
575, 1977.
D.G. Luenberger. Optimization by Vector
Space Methods. John Wiley, 1969.
E. Oja. A Simplified Neuron as a Principal
Component Analyzer. J. Mathematical Biol-
ogy, 15:267-273, 1982.
D.E. Rumelhart, G.E. Hinton & R.J.
Williams. Learning Internal Representations
by Error Propagation. In Parallel Distributed
Processing, MIT Press, 1986.
T.D. Sanger. Optimal Unsupervised Learning
in Feedforward Neural Networks MIT, M.Sc
Thesis, 1989.
E. Saund. Dimensionality Reduction Using
Connectionist Networks. IEEE T-PAMI, Vol
11:304-314, 1989.



Basis-Function Trees for Approximation in High-Dimensional
Spaces

Terence D. Sanger
Electrical Engineering and Computer Science Dept.

Massachusetts Institute of Technology
Cambridge, MA 02139

tds@ai.mit.edu

Abstract number of basis functions is used. This problem is of-
ten referred to as the "curse of dimensionality". One

I describe a new algorithm for approximat- might attempt to avoid such problems by noting that
ing continuous functions in high-dimensional in some regions of the input space, the desired output
input spaces. The algorithm builds a tree- function can be approximated using only a few dimen-
structured network of variable size which is sions of the input. This would occur if, for instance,
determined both by the distribution of the the data were to lie on the line z2 = f(Xj) for any 1-1
input data and by the function to be approx- function f, in which case the desired output y could
imated. Efficient computation in this tree be estimated from either x, or X2.
structure takes advantage of the potential for In this report, I describe one method for reducing com-
low-order dependencies between the output putational work which makes use of this idea. It is
and the individual dimensions of the input, applicable in the case where the basis functions are
This algorithm is related to the ideas behind separable, in the sense that they can be written
k-d trees (Bentley, 1975), CART (Breiman et
al., 1984), and MARS (Friedman, 1988). I Wi(x) = '.(x) ... 0,(P) (3)
present two examples.

where xi is the j'h component of x,

1 INTRODUCTION 0,i(Xd) = V(Ixd - (i)dl)

Basis function networks have proven to be useful for is a scalar function of scalar input, and rd specifies
approia ti functions in a variety of different do which basis function 4 should be chosen along the j'happroximating- dimension. (An example of separable basis functions is
mains (for reviews, see (Poggio and Girosi, 1989, Pow- the radially-symmetric Gaussian basis.) In this equa-
ell, 1987, Klopfenstein and Sverdlove, 1983)). Such tion and in the rest of this report I assume for simplic-
networks are represented by equations of the form: ity that the centers of the basis functions are located

= ' wii(x) (1) on a fixed regular lattice with N along each dimension
so that there is a total of NP basis functions. How-

where y is the desired (scalar) output for input x E RP, ever, the technique can also be applied to basis func-
is the output approximated by the network, and the tions with arbitrarily fixed centers, in which case, each

wi's are learned scalar weights. The (Pi's are often function Or;(Xd) is the projection of pi(x) along the
radial basis functions of the form Xd dimension.

cx(x) = P(llX -  l) (2) 2 NETWORK STRUCTURE

whose value depends only on the distance of the input
x from the "center" i. In order to understand the structure of the proposed

When the dimension p of the input space is high, the network, I will build the approximation up one dimen-
work required to calculate the output !aj(x) of any sion at a time. If the output can be determined from
basis function increases. In addition, since the size only the x1 dimension, then it can be written
of the space increases geometrically with p, the data N
will be very sparsely placed and the estimate f will be L '] 4)¢n@1) (4)
undefined for most inputs unless a prohibitively large n=1
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Otl CtN

01 (X2) Or2(X2) O(2

Figure 1: Two-layer tree constructed by the algorithm. x's are inputs, O's are basis functions, and a's are
weights. See text for explanation.

where the an's are the weights for the basis functions term
S.(xl) along this dimension, and the superscript indi- (6)

cates that only one dimension has been used to com- Aari I C rinO.(X2)
pute the output. n=1

to the weight ar. which varies with X2 (see figure 1).In order to train the weights, we can use the LMS We use the LMS rule to learn the weights ar1 ,n ac-

learning algorithm (Widrow and Hoff, 1960) to reduce cording to

the mean-squared output error E[(y- [11)2] by Aa,,. = Aa, 0.(X2) (7)

where the "delta" term is given by Aarj. This is equal
A c n= -Y( - 0,[1) q ( X ) (5 ) to A - 0 0 % X I O X 2( 87(Y - )Sr(Xi)¢n(X 2) (8)

where 7 is a small rate term. Given sufficient input and we see that the error term for the product basis
samples zl, this algorithm will converge until the av- function 0r1 (x,)On(X2) is exactly the term which the
erage value E[Aa,] = 0 for all n. The output .['l will regular LMS rule would supply. The approximation at
then be the best linear approximation to y based on the output is now
the values 0n(Zj). b(2) - [l + 0'X (z 1 )-

If y cannot be well approximated using only the value N
of x, then there will be some residual error (y- 0). -1j+ Or(X)EZ r,nen(2)
Although this error will be uncorrelated with 0(xl) +=1
for all n, the variances E[(Aea) 2] will be non-zero, in- n=1

dicating that there is pressure to change the weights. This procedure can be followed for every value of n at
Although on average this pressure is 0, for particu- h ocedenn e led o ve ona
lar instances the output error would be reduced if the each of the p dimensions. This leads to the following
weights could be either larger or smaller. We can recursive learning rule:

thus improve the approximation of y by allowing the
weights to vary based on information from the X2 di-
mension. Suppose we pick r, to be the value of n for AaO = 7(Y -
which E[(Aan) 2] is largest. We now want to add a Aor, = 7(Y-9)0'JXi)
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= (Ac 0) br,(xi) ture, the selection rule for determining when to create

Aair 2  = 7Y- Y) r7(X1)O5r 2 (X2) a subtree will determine the overall performance. Un-
fortunately, there is no general way to determine the
optimal next subtree to grow. In the algorithm above,
it was suggested that a tree be grown beneath the leaf

Ac.. r+i = (Ar,.....d)0rd+X(Xd+l) of the current tree with maximum error variance given
by

E (ar... (9)
This formula makes it clear that the weight correc- where the maximization is carried out between leaves

tion term Aar ..... functions like the error term at all depths d.

y(y- P) for the next "layer", since the update equation

for ar,1...,r 4 ,n can be thought of as performing LMS If we assume that the existing tree is fixed and the new
learning with the target being given by AQr, .... r" subtree is made complete down to p-d levels, then the
The weights from successive basis functions are being decrease in expected error at the output E[(y - W))1
trained to correct the weights of previous ones based will be proportional to (9). In practice, it may not be
on the context specified by additional dimensions of practical to complete the subtree so that the weight
the input, error variance (9) is reduced to zero, but this error

nevertheless is proportional to the maximal effect onNote that this network structure is not limited to any the expected output error which a subtree at this node

particular set of basis functions. Any basis at all could could have. It thus provides an upper bound on the

have been used, and the choice of basis will determine usefulness of a partially grown subtree.

the approximation ability of the network and the num-

ber of nodes needed to attain a given accuracy. Other Unfortunately, because this heuristic is determined by
possible bases include a Fourier basis along each di- the effectiveness of a theoretically perfect complete
mension (the nodes will represent diagonally oriented subtree, it does not tell us where to place the next
filters), the eigenvectors of the input distribution (the single-layer subtree. In addition, if the desired y can-
nodes will represent cross-products of orthogonal out- not in fact be approximated using this set of radial ba-
puts), the analog value Xd along each dimension (the sis functions (or if there is significant noise), equation 9
nodes will represent monomials, and the network will will not predict the maximum effect of a subtree on th.-
find a polynomial approximation to y), or the individ- output. The subtree selection heuristic described here
ual bits of the binary representation of each input. If is thus intended ,,ly as a suggestion, and it is hoped
the basis is formed by dividing each dimension into that in particular applications more reliable selection
disjoint regions along sharp boundaries, then the al- methods could be found.
gorithm is exactly equivalent to a "k-d tree". The al-
gorithm can thus be thought of as a generalization of 4 EXAMPLES
the k-d tree to arbitrary overlapping or non-orthogonal
bases. 4.1 Predicting the Mackey-Glass Equation

The resulting network forms a tree of depth p where
each node has N children. If the tree is completed, As a simple example of performance, I will attempt
then the approximation b will contain all terms of the to predict future values of the Mackey-Glass chaotic
form aCr,,...,rPr, (x1 ) ... ,,(xp) and thus has at least differential delay equation
as much approximation power as equation 1. , also 0.2x(t - 30)
contains additional terms involving combinations of X = -. 1_zt-(t)
fewer than p dimensions, and thus may have more ap- 1 + X1°(t - 30)

proximating power. as suggested by (Farmer and Sidorowich, 1989, La-

However, if the tree is grown to its full size, there will pedes and Farber, 1988). Many other authors have

be more coefficients than in equation 1, and this leads used networks to solve the same problem, includ-

to more computational work. The work is decreased ing (Weigend et aL, 1990, Farmer and Sidorowich,
only if a sufficiently good approximation can be gained 1989, Moody, 1989, Moody and Darken, 1989, La-
without growing the full tree. It thus makes sense to pedes and Farber, 1988). 1 use the same parameters
grow a subtree to modify a weight only when changing and method of error estimation as in (Farmer and

that weight would make a significant contribution to Sidorowich, 1989) The network has six-dimensional
decreasing the output error for the network. input z(t - 6n) for n = 0,...,5. Each input value

is coded using 20 elements from the Fourier basis
sin(wx),cos(wx), w = 1,...,10, as suggested in

3 GROWING THE TREE (Sanger, 1990). The task is for the network to learn to
predict x(t+6) while observing the continuously evolv-

Since the ability of this type of network to save compu- ing time seties. A new subtree was added (below the
tation depends upon selectively growing the tree struc- leaf with maximal error %,ariance) every 400 time steps.



148 Sanger
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Figure 2. Mackey-Glass time series, 6-step ahead predictions (which are indistinguishable from the time series
here), and iterated prediction time series up to 600 time steps into the future. The network has converged for
42,400 samples.

1.0

0.0 .

0 600 Soo

Figure 3. Iterated predictions for the Macke)-Glass equation, shuviing normalized mean-squared error as a
function of prediction time up to 600 steps into the future.
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Although the predictions and the true values are visu- 5 DISCUSSION
ally indistinguishable after only 20 subtrees have been
added, the network was grown to 106 subtrees (about
40 minutes on a sparcstation) so that iterated predic- This formulation of bcksis function training has several
tions could be made. The 6-step normalized mean- advantages over mor itandard methods. It was moti-
squared error (NMSE, as defined in (Lapedes and Far- vated by an attempt to save computational work when
ber, 1988)) wai 0.025, and iterated predictions 400 approximating ft ns which can be calculated from
time steps into the future had NMSE < 0.5. Figure 2 only a few dimens. s, and in this case both the learn-
shows the time series, 6-step predictions, and 600 step ing time and the time required to compute the output
iterated prediction time-series. Figure 3 shows NMSE are reduced. If a minimum error is specified for ap-
as a function of iterated prediction time. proximation, then just enough ca's can be calculated to

achieve this criterion, and further terms do not need
to be computed even if they do contribute.

An additional use for this network structure occurs
when new dimensions may be added by the addition

4.2 Nonlinear Image Filtering of, for example, new sensors. It is possible to construct
the network so that the weights which have already
been learned do not need to be re-learned to incorpo-
rate the new sensors. (Further improvement may be

For an example with higher-dimensional input, I ap- gained by modifying existing weights, but it will not
plied the network to nonlinear smoothing of noisy im- be necessary to start over from scratch.)
ages. 8-bit images of two faces were corrupted with
additive random noise chosen from a uniform distri- As described here, the algorithm imposes an order on
bution between -64 and +63. The task was to predict the dimensions, and if the dimension xP is the most
the correct pixel value at the center of a 7x7 block of useful, the entire tree will have to be grown merely to
pixels, given only the 49 noisy pixel values. This is access it. To avoid this problem, one can provide the
therefore a 49-dimensional problem. The network is entire basis set {n(Xd)} '', - at each level. This
given randomly selected 7x7 blocks of a noisy image increases the size of the network by a factor of p, but
as training inputs, and the correct center pixel (with- it eliminates the need to choose an ordering of the
out noise) as the target output. A second image which dimensions, and hopefully will reduce the depth of the
did not provide training data was used to test rfener- required tree.
alization. There are several other network algorithms which are
The network used a "bit-basis" of 16 basis functions related to the one proposed here. Basis function ap-
per pixel consisting of the eight bits of the binary proximation is a well-known techniqut in statistics,
greylevel and their complements. While this basis is as is approximation by polynomials of increasing or-
not particularly well-suited to the problem since it der (Gabor, 1961). The Perceptron algorithm (Rosen-
does not necessarily lead to smooth approximations, blatt, 1962) and Backp:cpagation (Rumelhart et al.,
it has nice computational properties. In particular, 1986) are related since they are both variants of the
no multiplications are ever performed in the network. LMS rule (Widrow and Hoff, 1960). There are sev-
Forward propagation consists of adding together all eral algoiithms which grow similar tree structures
weights for which there exists an uninterrupted path (Breiman et al., 1984, Sun et al., 1988, Bentley, 1975,
of l's at the nodes to the root (any 0 on this path would Knerr et al., 1990, Tenorio and Lee, 1989, Fahlman
"multiply" the weight and cause it to have no effect.) and Lebiere, 1990), although most (except (Fahlman
Further, all weights were chosen to be integer-valued, and Lebiere, 1990)) are intended for classification tasks
so that weight updating involved only increment and rather than approximation. There also exist algo-
decrement operations. The network output was scaled rithms for which the output of one network controls
by a factor of 128 to slow down the learning rate. the behavior of another (Jacobs et al., 1990, Iinton et

al., 1986). Perhaps the most closely related algorithm
Examples were chosen from random points throughout is the MARS algorithm (Friedman, 1988) which builds
the training image, and noise was added independently a tree of outdegree 2 using basis functions which are
to each example. A new subtree was added every 2000 truncated polynomials. The tree structure is grown at
examples, and the network was trained for a total of each level by testing all possible subtrees and selecting
40000 examples (20 subtrees). Figure 4 siows the orig- the best according to a '-'lack of fit" criterion to the

inal image, noisy image, filtered image, and residual data.
error after only a single layer network has been built.

This approximation is not much better than the op- The work I have presented allows a simple shortcut
timal linear filter. Figure 5 shows the filtered image for approximating .ertain types of functions with a
after 40 subtrees have been added, and demonstrates certain type of basis function network. It is easy to
improved edge and detail resolution. implement and forms a direct extension of standard
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Figure 4" Nonlinear filtering with a single-layer tree. Top is training image, bottom is test image. From left to
right are the original image, the noise-corrupted image, the filtered reconstruction, and the residual error.

Figure 5: Nonlinear filtering with 20 subtrees. Top is training image, bottom is test image.
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solve the "curse of dimensionality", but in applications learning revisited. A stepwise procedure for building
it may make the use of basis function networks for and training a neural network, manuscript.
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Abstract circuitry to carry out the learning process included on-chip
This paper discusses an error back-propagation [3,4] have been reported. Furman et al. have described anTaig paprduse s an eror bac-pratistoon oeffort to implement the back-propagation learning algorithm
learning rule that limits weight updates to one of [1]usnciutrfowigtmdiainadsoae

three values: a small positive increment, a small [13], using circuitry for weight modification and storage

negative increment, or zero. This rule is motivated that includes a dynamic memory cell.

by the relative ease with which it may be We have investigated the use of a floating-gate MOS
implemented in electronic circuitry. The effect device as a modifiable and non-volatile mechanism for
on the convergence rate of this rule of iikely storage of weight values in analog Artificial Neural Network
circuit characteristics such as multiplication (ANN) circuitry [12,14]. In such a device, charge stored
nonlinearity and function approximation are on an electrically isolated piece of conductor is used to
investigated. Results show convergence is still represent a weight value. However, precise control of
possible over a range of parameters even with increments or rate of change of this charge, as would be
these expected circuit constraints, required by many learning rules, is difficult to achieve

with simple circuitry. In addition, if a unique change were
1. INTRODUCTION to be made to each weight in parallel across an entire
There are currently many eflorts underway to implement network, then complicated control circuitry would have toTereare ent l melsian logiorts un dato ilent be replicated at each weight circuit, requiring a large area
neural network models in analog or hybrid analog/digital of silicon.

integrated circuitry. While some have designed circuitry

to take advantage of device phsits [1,21 many architectures The diffhultics asso iated with ,omputing and imposing
and algorithms have developed with primar) regard given graded weight updates in prallel in analog hardware have
their computational capabilities or their suitabilit) fur led us to investigate simplified parallel learning proLedures
modeling cognitive or neurobiological processes, rather in whkh weight changes are very coarsely quantited. Some
than their suitability for implementation. Nonetheless, a prec edent, fur this appruach are found in the simulation
number of experimental efforts at implementations, in stud) of Peterson and Hartman [15], which examined the
addition to those cited above, have been reported recently effect of update quantization into two states kincrement or
[3-91 Some researchers have used fixed intertonnection decrement) on the performance of a mean field theory
weights between processing units 16], while others have learning algorithm, and in the hardware implementation of
addressed the problem of modifiable kcight irtutr) [3- a stothasti. learning network [31 whose hybrid digital/analog
5,7,10-12] which is required for a network that is adapti, weights are also subject to fixed increments or decrements
or programmable after manufacture. at each step in the learning process. In a previous study,
Another focus of current research is on the inductive 1161 we examined a quantized form of back-propagationcano tefos of cdaptvneurrt rserch iohel iuTise where weight updates are limited to one of three values: an
capabilities of adaptive neural network models. These increment, a decrement of the same magnitude, or zero.
employ "learning" algorithms, for modification of weight Due to its trinary nature we have dubbed this the Tnit
values based upon data presented to the network. Only a leatoiitaltrithme
few efforts at implementation of adaptive networks with learning algorithm.
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2. TRIT ALGORITHM Sgn(8,O) (1OI > e and 11 > 2) (5)

We consider feedforward networks with processing elements AW =
partitioned into an input layer of linear, unity-gain elements, " 0 (1OI < E, and 18) < C2)
and hidden and output layers of nonlinear elements. We
adopt the notation of Rumelhart et.al. [131, writing for the r il Sgn(5,) (18,1 _> C2) (6)

output 0, of element i in this network: , = (1,12)

(unit i an input unit) (1) where 1, e, and e2 are all positive constants. For constant
Oi . Oi +0) (otherwise), il, the learning process corresponds to motion on a lattice

S) (ohin weight/bias space, which is in a direction of decreasing

sum square error for each training pattern pair, although
where l is an external input to unit i, if it is an input not generally in the direction of steepest descent.
unit, W, is the weight associated with the interconnection
from the jth processing unit in the network to the ith Three different problems were studied using each learning
unit, 0, is a bias or offset term, and F is a sigmoidal rule in order to compare the convergence properties of the
activation function for the hidden and output units. We Trit and back-propagation algorithms. The first problem
use the form of back-propagation corresponding to btochasuc constituted recognition of sixteen orthogonal 32-component
approximation [17,18] in which gradient descent is input vectors, obtained as samples of sixteen harmonically-
performed on the sum-square of network output errors for related sine waves These were presented as analog values
individual input/output associauons, rather than in a "batch" to a network with 32 input units, and the desired mapping
or cumulative fashion. Learning constitutes an iterative was to a one-of-sixteen output code on the network's
procedure over a training set of input and desired output sixteen output units. In the second problem, the network
vectors or patterns. The components of the gradient of the had fifteen input and fifteen output units, and the training
square error with respect to the network parameters are set consisted of 40 pairs of fifteen-bit strings, each derived
computed as a product of two factors in the case of the from a three-by-five pixel representation of an alphabetic
weights: character, digit, or punctuation mark. The third problem,

chosen for computational difficulty, amounted to finding
aE/aWo = -5, Oi, (2) the parities of a limited set of four-bit binary numbers.

Of the sixteen possible four-bit patterns, one with even
while for the biases, parity and one with odd were selected at random and withheld

aE/a, -(3) 
from the training set, to allow for future testing of network
responses to novel patterns. A network with four input

where units and one output unit was used in the trials. The
target output for these networks was I if an odd number of

F', E, (unit i an output unit) (4) I's were present in the input data, and -1 if the number
8. = were even.

F',7W,8J (otherwise). Results of the study, summarized in Tables I and 2, show
this Trit variant of back-propagation learning is capable of

Here E is the square-error summed over the network outputs, ..unverging on solutions of the bena.hmark problems. Table
8 is a bak-propagated "error" term, E, is network output 1 .ompares the iterations to ,.onvergente 'or Trt and
error for unit i, if unit i is an output unit, and F, is the bdakpropagauon on thrce diflcrunt problems. It .onverges
derivative of the activation function F with respect to its in .onbiderably fewer iterations than a ,.uiparable vrsiun
argument for unit i. The 8, in (4) ;an be regarded as of standard back-propagation twith fixed learning rate and
calculated in parallel by a linear network topologicall) without momentum) on all of these problems. Standard
similar to the forward or signal propagation network, but back-propagation displays bcha vior %,hara.teristi. of gradient
with the signal flow between units in opposite direction dec..ent, in which rapid .onrergence in initial iterations is

followed by slow and inconsistent improvement in
The update scheme detailed in this paper is used in an performance; however, with the Tnt rule the slowdown in
analogous iterative procedure and requires the quantities 8 convergence appears to be much less pronounced. Evidence
and 0 as calculated in standard back-propagation. These suggests that this is at least partly due to the scaling
are used to quantize weight and bias updates according to imposed upon the vector of weight and bias updates by the
the rules quantization scheme. Table 2 presents the resistance to

faults that each network provides. In table 2 the variable
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n is the numberof runs completed for the indicated parameter 3. EFFECTS OF CIRCUIT
values. LIMITATIONS

Table 1: Iterations to Convergence The trinary rule compares quite well with back-propagation,
Orthogonal Input Character- Limited giving a substantial reduction in required circuit complexity.Vector Problem Mapping Problem Parity There are however, several other factors which must be

overcome in order to implement fully parallel learning in

Standard Back-Propagation: analog VLSI. We have been attempting to identify the
Mean: 16.3 123.8 245.9 most important issues by simulating circuit imperfections
St. Dev.: 4.1 12.4 72.3 and evaluating their effect on learning. We present here

Trinary Back-Propagation: preliminary results on two such effects; nonlinearities in

Mean: 5.3 42.6 24.1 multiplications and approximations to F', the derivative of

St. Dev.: 0.8 1.3 4.0 the sigmoidal transfer function.

Networks with fifteen input units and forty output units,
Table 2: Fraction of Outputs in Error fully interconnected by a hidden layer which varied in size

from 40 to 90 units, were used to judge these effects. The
Orthogonal Input M a rctem Parity input pattern was identical to that used in the character

Nco= 8 M n =20 N =P 5 mapping problem of the first study but in this study thedesired output was a 1 of n vector code. Both inputs and
Standard Back-Propagation: desired outputs were binary, with values of +1 and -1.
Mean: 0.18 0.20 0.56 Networks that failed to converge within 1000 iterations
St. Dev.. 0.04 (n=10) 0.02 (n=10) 0.08 (n=6) were judged nonconvergent. The trinary rule can fail to
Trinary Back-Propagation: converge because all back-propagated delta terms over aMean: 0.14 0.18 0.21 training set become smaller than an update threshold e2.
St. Dev.: 0.01 (n=10) 0.02 (n=10) 0.10(n=2) This problem may be circumvented by simply reducing

the e2 parameter. An adaptive feature was added to the

Nh = 32 Nh = 55 Nh = 15 trinary rule in that the values of e, and F 2 were reduced by
20% after any iteration (presentation of the entire pattern

Standard Back-Propagation: set) in which no update occurs. In all the trinary runs the
Mean: 0.31 0.29 0.50 initial values of , a d e2 were set at .33 and .02 respectively.
St. Dev.. 0.03 (n=10) 0.02 (n= 10) 0.13 (n=8) Each test of a set of parameters was repeated three times

Trinary Back-Propagation: with a different set of initial random weights. The initial

Mean: 0.25 0.21 0.19 weights were uniformly distributed between ±0.3.

St. Dev.: 0.02 (n=10) 0.02 (n=10) 0.11 (n=10) 3.1 NONLINEARITIES IN MULTIPLICATION

Nh = 96 Nh = 100 Nh = 40 Much of the attraction of neural networks is their inherent
Standard Back-Propagation: fault tolerance. This has rekindled an interest in analog
Mean: 0.22 0.24 0.51 computing with the hope that such fault tolerance could

St. Dev.: 0.03 (n= 10) 0.02 (n=10) 0.09 (n=10) make up for the inaccuracies of analog computing elements.There have been studies which have looked at the effect of

Trinary Back-Propagation: limiting the resolution of the weight values [191. These
Mean: 0.22 0.18 0.19 studies are more applicable to digital or hybrid (analog
St. Del.. 0.03 (n= 10) 0.02 (n= 10) 0.05 (nm= 10) inputs and outputs with digital weights) implementations

since these would lead to round off errors rather than more

Tolerance of networks to variations ol the weights from systematic errors which may occur in a purely analog

their final learned values was also examined. Normally implementation.

distributed random numbers, ith zeru mean and ,cv cral In any multiplir kir ,uit, one must trade off simplicity and
%arian-es, werc added to the wxcights, and the perfunnan ,,e .me/.c fur ak.-.urai-) to sumc extcnt. The multiplier proposed
of the resulting networks on their respc.tive training scts by Shimabukuro [14J Lan be realized with only two
were tested. We see fiom the rebults of table 2 that the transisturs at the l ynapbe level. First order analysis of the
performamnle of the trinar) networks Lompares favorabl) multiplier shows nonlhnearities of the form.
with that of the standard back-propagation networks. x w -> x w (I + d X2 (8)
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where x is an input, w is a weight, and d, and d2 are I for IF(x)l > .85
functions of the ratio of the transconductances of the two V(F(x) ) = (10)
MOSFETs. In the ideal case, (perfectly matched transistors) for I(x)l < .85

= 1, and d2 = 0. For a reasonable estimate of this effect,
we looked at a mismatch in transLunduanes ol plus and where a is. .onstant bias term whilh was varied between
minus 10% which corresponds to a dl , d 2 of 1.05, 0.075) training runs. A similar function was used by Samad
and (.95, -0.075) respectively. This effect was included in [211. Rather than the constant bias a, he used a function
the multiplication of back-propagated error terms as well whjch dropped off lnearly in the outer regions.
as in the feed forward path.

3.2 APPROXIMATIONS TO F' 1o0.

Another practical concern of any gradient type learning 0.9]
rule is the evaluation of F'. In one approach to this 0.81
problem, suggested by Andes et al. 1201 in their Madeline 0.7
Rule Ill, F is accounted for implicitly by perturbing the 0.6.
inputs to the neurons and looking at the corresponding 0.5.
change in the output error. While this does account for 0.4-

F', it does not lend itself well to a parallel implementation. 03.
0.21.
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0.4 - Figure 2 - Derivative of the Activation Function
0.2 of Eqn. 9 and the Rect function of Eqn. 10.
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Figure 1. Activation Function F.

We have looked at a somewhat cruder approach, merely
approximating F' by a simple function given in Eqn. 10.
The activation function used in our simulations is shown Figure 3 - Convergence Times for Back-
in Figure I. The function it.,clf cannot be written in Propagation. IteraLions to Convergence Are Plotted
closed form but its inverse F ta kes the form Against Learning Rate and Number of Hidden

F "'(x) = C~x + Csinh(C 3x). (9) Units.

The form of this function is that of the input/output 4. RESULTS
relationship for an operational amplifier in a current To establish a baseline, the problem was first run using
summing mode, with resistor and diodes in its feedback standard back-propagation learning. Figure 3 shows the
path. The derivative of this function is plotted by the c

solid line in Figure 2. We aipproximnatedl this with the convergence times for a range of 'q and different sized
function V( F(x) ) shown by the (lotted line in Figure 2 hidden layers. We see that it Is fairly insensitive to these

gand given by parameters over this range with a minimum of 72 ± 5.6
iteratti(; is. Figure 4 shows the results of running the
same mii ial weight ets using the trmary algoi ahm. Again
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there is little sensitivity to the varied parameters. As performane to figure 5a (at eta of 0.04) with a minimum
observed in the previous study [16], the convergence times of 55 ± 2. Figure 7b has a minimum value of 224 ± 43
were significantly lower than those for bak-propagation. itcrations. In both figures runs with less than two out of
In this case the minimum was 27 1 I iterations, three convergent runs were omitted.

200 !200

200O 10 ZOO 160160f 120 1.60 120

f20 80 itdc0 8060 40 80 40
4 0 4.0

A

Figure 4 -Iterations to Convergence for Trit Algorithm.
4.1 NONLINEAR MULTIPLICATIONS 200

Nonlinearities of the form described in eql. 8 were introduced zo 10
into the Trit learning algorithm. Figure 5a and 5b show 108
convergence times for a second order term cl of -0.075 and 6 0 40

+0.075 respectively. As expected, convergence times were 40

significantly longer than in the linear case. Figure 5a has
a minimum of 41 ± 5.3 iterations and figure 5b has a
minimum of 96 ± 10 iterations. This data seems to indicate eJZ_
that positive values of d2 have more of an effect on
convergence, although it appears that the global minimum
for figure 5b is probably at lower values of 71 and larger B
hidden layers. The asymmetry in the effects of positive
and negative second order terms may be due to a bias in Figure 5 - a)Trit Convergence with a Second
the number of input and desired output components of one Order Term of -0.075. b)Trit Convergence with a
sign versus the other. Second Order Term of +0.075.

4.2 F' APPROXIMATIONS 5. CONCLUSIONS

When the F' function is replaced with the Rect function There have oeen many anecdotal statements to the effect
estimate in networks with linear multipliers, there is no that the fault tolerant nature of neural networks will allow
significant effect. Figure 6 shows results [or runs with T" for imprecise analog electronic components. This study
fixed at 0.04 while varying the F' bias and hidden layer is a first attempt at quantifying these claims. We have
size. We see a similar flat response within the same range looked at two approximations which must be made in
of hidden units as figure 4, with a minimum of 24.3. iimplementing the Trit learning algorithm; nonlinearities
2.3 iterations. in the multil "cation terms and a quantized form of the F'

The two approximations -ombined hac a mu,.h more fun%.tion. Both of these ,ill affe.t the ba ,k-propagated
dramatic effect. For runs with both nonlinear multiplications error terms.
and F' approximations a larger range of hidden layer sizes Withii tle range of the parameters in this study, it is
was needed to get an appreciable number of convergent appren that convergence times are more sensitive to the
runs. Once again when the second order term is positwe, nonlinearities in the multiplications. It should be pointed
convergence times increase substantially. It Is possible 0 that thcsc results may not apply to different types of
again that larger hidden layers or smaller values of r1 may multiplier circuits. In other cases, the form of the resulting
not have such a big discrepancy. Figure 7a shows similar
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nonlinearities may be quite different. We believe that studies such as these are crucial to the
development of learning analog neural network circuits.
Such analysis can lead one to identify the more crucial

200 components. Based on our results, we have been led to
200 160 incorporate additional circuitry to improve on the linearity

120 of our multipliers. We are currently working on similar
080 studies of other effects.

40 40References

1. Mead, C.A. (1989) Analog VLSI and Neural Systems.
Reading, IA: Addison-Wesley.

2. Mead, C.A., & Mahowald, M.A. (1988) A silicon
model of early visual processing. Neural Networks, 1,
91-97.

Figure 6 - Convergence with F Approximation. 3. Alspector, J., Allen, R.B., Hu, V., Satyanarayana, S.

(1988) Stochastic learning networks and their

implementation. Proceedings, IEEE Conference on Neural
160 Information Processing Systems -- Natural and Synthetic,

0 210 Denver, 9-21. New York: American Institute of Physics.
120 80 4. Furman, B., & Abidi, A. (1988) CMOS analog IC
0 0 Implementing the batfk propagation algorithm. First Annual
40 Meeting, INNS, Boston. (Abstract) Neural Networks, 1,

Sup. 1, 38.

5. Holler, M., Tam, S., Castro, H., & Benson, R. (1989)
An electrically trainable artificial neural network (ETANN)
with 10240 "floating gate" synapses. Proceedings,

A International Joint Conference on Neural Networks,
Washington, 2, 177-182. New York: Institute of Electrical
and Electronics Engineers.

1,000 6. Jackel, L.D., Graf, H.P., & Howard, R.E. (1987)
11,000)"800 Electronic neural network chips. Applied Optics, 26,

600 600 5077-5080.
4002 00 7. Mueller. P., Van der Spiegel, J,, Blackman, D., Chiu,
200 T., Clare, T., Dao, J., Donham, C., Hsieh, T., & Loinaz,

M. (1989) A general purpose analog neurocomputer.
- e':- Proceedings, International Joint Conference on Neural

Q§: Networks, Washington, 2, 191-196. New York: Institute
,, .of Electrical and Elecronics Engineers.

B 8. Murray, A.F., & Smith, A. (1988) Asynchronous

Figure 7 -a)Convergencc with P Approximation VLSI neural networks using pulse-stream arithmetic. IEEE

and a -0.075 Second Order Term. b)Convcrgencc Journal of Solid-State Circuits, 23, 688-697.

with F Approximation and a +0.075 Sc.ond Order 9. Siwhartz., D.B., Howard, R.E., & Hubbard, W.E. (1989)
Term. A programmable analog neural network chip. IEEE Journal

We feel that these results are significant in that they show of Solid-State Circuits, 24, 313-319.

convergence over a range of parameters in spiteof expted 10. Hu, V., Kramcr, A., & Ko, P.K. (1988) EEPROM5

circuit limitations. The issue of how the e approximation., as analog storage de i,.Cs for neural nets. First Annual
affect the learning c.apacity of the nctorks remains an Meeting, INNS, Boston. Neural Networks, 1, Sup. 1,
open question. 385.



158 Shiniabukuro, Shoemaker, Guest, and Carlin

11. Moopenn, A., Thakoor, A.P., Duong, T., & Khanna,
S.K. (1987) A neurocomputer based on an analog-digital
hybrid architecture. In M. Caudill & C. Butler (Eds.),
Proceedings, IEEE First International Conference on Neural
Networks, San Diego, 3, 479-486. New York: Institute
of Electrical and Electronics Engineers.

12. Shoemaker, P.A., & Shimabukuro, R. (1988) A
modifiable weight circuit for use in adaptive neuromorphic
networks. First Annual Meeting, INNS, Boston. (Abstract)
Neural Networks, 1, Sup. 1, 409.

13. Rumelhart, D.E., Hinton, G.E., and Williams, R.J.
(1986) Learning internal representations by error
propagation. In D.E. Rumelhart & J.L. McClelland,
(Eds.), Parallel Distributed Processing, Explorations in
the Microstructure of Cognition, I , 318-362. Cambridge:
MIT Press.

14. Shimabukuro, R.L., Shoemaker, P.A., & Stewart,
M. (1989) Circuitry for artificial neural networks with
non-volatile analog memories. Proceedings, IEEE
International Symposium on Circuits and Systems,
Portland, 2, 1217-1220. New York: Institute of Electrical
and Electronics Engineers.

15. Peterson, C., & Hartman, E. (1989) Explorations of
the mean field theory learning algorithm. Neural Networks,
2,475-494.

16. Shoemaker, P.A., Carlin, M.J., & Shimabukuro, R.L.
(1990) Back-propagation learning with trinary quantization
of weight updates. Neural Networks, to be published.

17. White, H. (1989) Neural-network learning and statistics.
Al Expert, December, 48-52.

18. Robbins, H., & Munro, S. (1951) A stochastic
approximation method. Annals of Mathematical Statistics,
2 2, 400-407.

19. Caviglia, D.D., Valle, M., & Bisio, G.M. (1990)
Effects of weight discretization on the back propagation
learning method: Algorithm Design and Hardware
Realization. Proceedings, International Joint Conference
on Neural Networks, San Diego, 2, 631-637.

20. Andes, D., Widrow, B., Lehr, M., & Wan, E. (1990)
MRIII: A robust algorithm for training analog neural
networks. Proceedings, International Joint Conference on
Neural Networks, San Diego, 1, 533-536.

21. Samad, T. (1990) Backpropagation improvements
based on heuristic arguments. Proceedings, International
Joint Conference on Neural Networks, Washington, 1,
565-568. New York: Institute of Electrical and Electronics
Engineers.



Equivalence Proofs for Multi-Layer Perceptron Classifiers and the Bayesian
Discriminant Function

John B. Hampshire II Barak Pearlmutter"
Dept. of Electrical and Computer Engineering School of Computer Science

Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213-3890 Pittsburgh, PA 15213-3890

Abstract parameterization (or connectivity) of the MLP classifier.
For our purposes the term "multi-layer perceptror" is used

This paper presents a number of proofs that to describe a backpropagation network using any continu-
equate the outputs of a Multi-Layer Perceptron ous sigmoidal nonlinearity, although the proofs herein can
(MLP) classifier and the optimal Bayesian dis- be extended to networks employing other non-linearities.
criminant function for asymptotically large sets of Proofs of the relationship between both linear and non-
statistically independent training samples. Two linear classifiers trained with the mean-squared-error
broad classes of objective functions are shown to (MSE) objective function and the Bayesian discriminant
yield Bayesian discriminant performance. The function are not new. Duda and Hart formulated the proof
first class are "reasonable error measures," which for a simple perceptron in [6] (pp. 154-155). More recently,
achieve Bayesian discriminant performance by [1, 3, 7, 11] have given variations of the proof for MSE-
engendering classifier outputs that asymptotically trained MLPs. We extend these proofs to theN-output MLP
equate to aposteriori probabilities. This class in- classifier trained with any objective function belonging to
cludes the mean-squared error (MSE) objective one of two broad classes. The proofs herein give detailed
function as well as a number of information the- relationships among the MLP outputs, the Bayesian dis-
oretic objective functions. The second class are crrunant function, and the class conditional densities of x.
classification figures of merit (CFM.4, no), which In this sense, they have their conceptual basis in the proof
yield a qualified approximation to Bayesian dis- of [6].
criminant performance by engendering classifier
outputsthatasymptoticallyidentifythemaximum We show that the MSE proofs of [1, 3, 6, 7, 11] pertain
a postenon probability for a given input. Condi- to one specific member of a broad class of error measure
tions and relationships for Bayesian discriminant objective functions. This class of "reasonable" error mea-
functional equivalence are given for both classes sures yields MLP outputs that converge to the Bayesian
of objective functions. Differences between the a posteriori probabilities P(w, ! x) (where w, represents
two classes are then discussed very briefly in the the ith class) for networks with sufficient functional capac-
context of how they might affect MLP classi- ity (see section 3.1.2) to classify asymptotically large sets
fier generalization, given relatively small training of statistically independent training samples. The MSE and
sets. Cross Entropy (CE) [10] objective functions are members

of this class of functions , as are other objective functions
stemming from information theoretic learning rules (such as

I INTRODUCTION Maximum Mutual Information and Maximum Likelihood),
and the Kullback-Liebler distance measure. These reason-
able error measures all yield optimal Bayesian discriminant

The use of multi-layer perceptron (MLP) classifiers in statis- performance2 , given sufficient training data.
tical pattern recognition requires that there be some mathe-
matcally defensible link between MLP outputs and the true Given these results, one is inclined to conclude that all these
apostenon probabilities associated with the input random objective functions yield equivalent classification perfor-
vector (RV) x being classified. We present a number of
proofs that detail the link for an N-output MLP classifier 'Strictly speaking, the Cross Entropy oby..ctve function does
and the N-class RV x, possessing an input feature space di- not require that MLP outputs be compared ilth binary target
mensionality of M. The number of classes N and the feature values. Thus. it ,s fair to categorize the Cross Entropy objcctive
space dimensionality M of x are arbitrary, as is the specific function in this way only when binary target values arc specified

in its form.
"Hcrtz Fellow 2Sce section 2.
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The N-class classification problem is depicted in Figure 1.
A random vector x is to be classified by a classifier with

Classirter parameterization specified by the state variable 0. The
th - (.'2(Xp,0) classifier has N outputs, each one of which corresponds to

X Pwameto~zaflon * one of N possible classes. Table 1 defines the variables used
to describe the basic classification process. Simply stated,

U "the objective is to associate a particular sample of the RV
ON~xp,0) x - denoted xp - with the correct class w, The method

for deciding the class of xp yielding the fewest errors [6]
(pp. 16-20) can be stated simply:

Figure 1: The general N-class classification problem.

associate xp with the class wc that has the largest
a posterioriprobability:

mance, and that all MILPs are - in effect - no more
than exotic estimators of Bayesian a posteriori proba- P(wcI xp) = P(w xp) > P(w4 ixc) Vj # c
bilities. In fact, neither conclusion is correct. A broad
clazs of objective functions called "N-monotonic Classifi- In simple terms, any function that implements this clas-
cation Figures of Merit" (CFM,,o) [8] are shown to ap- sification procedure constitutes the Bayesian discnmmant
proximate Bayesian classification performance under the function.
same conditions for which the reasonable error measuresyield Bayesian performance. However the CFn class Clearly, being able toestinmate allN P(wl x ,) accurately for
offcions oesnt produace Houtputeactivateons thcats each and every xp allows one to implement the Bayesian
of functions does not produce IeP output activatons that discriminant function. Indeed, a large number of pattern
reflect a posterioriprobabilities P(, jx);minstead it asymp- classifiers do precisely this. The degree to which they
totically identifies the maximum a posteriori probability for succeed in the classification task is directly related to the
a given input P(w,,.Jx,), as long as P(w,,,lx,) > 0.5 accuracy with which they estimate the a posterioris. An-
(see section 4). Despite this limitation, [8] indicates that other perhaps less obvious way to implement the Bayesian
CFM, ,,o-trained MLPs can be more robust approxima- discriminant function is to consistently identify the largest
tions to the Bayesian discrinant than their reasonable P(,; ! x,) foreach and every x, - an approach that does not
error measure counterparts, given small training sample require accurate estimation of the aposterioris. The salient
sizes. point here is that while accurate estimation of the a posteri-

While the findings of [8] are not broad enough to be consid- ons is sufficient for Bayesian discnminant performance, it
ered conclusive, they do argue against the maxim "all objec- is not necessar). All that is necessary for Bayesian discnm-
tive functions yield equivalent classification performance," ination is accurate identification of the largest a posterr.
when one's training set is limited in size. Section 5 con- These two approaches to implementing the Bayesian dis-
tins some brief comments regarding the following proofs' criminant function lead to two broad classes of objective
applicability to real-world classification problems. Partic- functions that one can use to train the classifier in Figure 1:
ular attention is paid to how the different objective func- the class of "reasonable error measures" achieves Bayesian
tions might yield (or fail to yield) near-optimal classification performance by explicitly estimating the a posterioris as-
boundaries for small training sets. These observations are sociated with the input x., while the Classification Figures
made with an eye towards furtherinvestigation of MLP clas- of Merit (CFM,,,,) achieve Bayesian performance by esti-
sifier generalization in the probabilistic context presented mating the identity of the maximum a posteriori probability
by this paper. P(W,,,I xP).

By the "asymptotic behavior" of a classifier we mean its
behavior for an asymptotically large set of statistically in-
dependent training samples. 3 REASONABLE ERROR MEASURES:

BAYESIAN PERFORMANCE VIA

2 A GENERAL DESCRIPTION OF THE ACCURATE ESTIMATION OF A

N-CLASS PROBLEM AND THE POSTERIORI PROBABILITIES

BAYESIAN DISCRIMNANT IThe first class of objective functions that yield Bayesian
FUNCTION discriminant performance comprises those error measures

engendering classifier outputs that are true estimates of the
In this section we give a brief description of the general a posterion probabilities Pt.-,, xp). The necessary and suf-
N-class problem and the Bayesian discriminant function in ficient onditions on the form of these functions are gi%,cn
the context of the connectionist and pattern recognition lit- below, followed by a number of familiar examples of the
erature. The syntax and notation used herein is an expanded class and detailed proofs of their asymptotic Bayesian per-
version of that used in [6]. formance.
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Table 1: Definitions of symbols used to describe the general N-class classification problem.

Symbol Definition

x The RV to be classified.
Oi The ith output of the N-output classifier.
wi The ith of N classes to which x can belong.
xp Thepth unique sample (or prototype) of x.
0 The parameterization of the classifier. In the case of an MLP

classifier, 0 would represent the connections of the network.
O5(xp, 0) The ith output of the N-output classifier, given the input xp and

the classifier parameterization 0.
P(w Ixp) The a posteriori probability of the ith class (w;), given the input

xP.
P(07 xP)  1 - P(W;Ix).
p(x w;) The "class conditional" probability density function (PDF) for

the RV x (given class w).

3.1 THE NECESSARY CONDITIONS FOR is no observation scale large enough to yield a bounded
REASONABLE ERROR MEASURES number P of regions x, within which p(x w,) is const.,

on all sub-regions of each xp for both classes. The RV x is
Consider a class of error measures C[O,(xp, 0), V,(xp)] therefore not "well behaved". Obviously, if x comprises z
that give the "loss" of a single output O,(x,,, 0) when its finite number ofdiscrete states, then it will be well behaved.
desired or"target" activation is P5 (xp). Tables 1 and 2 define
the symbols used to denve this class of error measures. The The necessary conditions forreasonable error measures that
concept of a prototype of x introduced in these tabulated follow - and all subsequent proofs in this paper - rely ondefinitions wanants explanation. this notion of prototypes. We assume that the RV x is well-

behaved to the extent that P is bounded. This restriction

places some limit on the complexity of the class-conditional
3.1.1 Prototypes: bounds on the complexity of the densities of x that one can expect to model accurately using

class-onditional densities of the RV x an MLP classifier - an issue that we discuss further in

A prototypeis a uniquesample x, oftheRVx. Thus, if one section 5.
obtains two identical yet statistically independent samples
of the RV x, these samples are two instantiations of the 3.1.2 The reasonable condition
same prototype. The notion of obtaining more than one
statistically independent sample of x with the exact same In general, we assume that the outputs of the classifier are
value x. is difficult to envision - even for large training bounded on the closed interval [0,1, that there is minimal
sets. However, if one considers regions on the domain loss incurred when the output equals its target value, and
of x over which the class-conditional densities p(x I ,,) are that there is a symmetry to the loss function:
essentially constant for all classes, one can associate each of
these regions with a prototypical value of x. The prototype 0 < 0(xv, ) < 1 Vx, O (1)
for the pth of such regions is given by x.. For an input 0 )
feature space of dimensionality M and a sufficiently large
numberofstatisticallyindependentsamples of x, one might E[z, zJ < 8y 0 Z, z] (2)
envision an (M+ 1)-dimensional histogram of the samples as
an embodiment of this concept of prototypes. Such a view £[oi(xv, 0), VA;x
is consistent with the limited resolution of data acquisition
systems used to measure real-world RVs. = E[D(x,) - Oi(x,, 0), Vi(xp) ]  (3)
Clearly this view of regions on x with constant class-Clealy iisvie of egins n xwithcontan clss- The symmetry constraint of (3) can be taken to mean that
conditional densities places an implicit restnction on the the reasonable error measure is a function of the absoluteprobabilistic nature of x. A simple yet elegant descripuon difference between the output and its target:
of a 2-class problem (N = 2) involving a 2-dimensional
RV x (M = 2) that does not have a bounded number of
regions of constant class-conditional density is illustrated E[O(xp, 0), {}j] = f(1Oi(x, 0) - {V}J1) (4)
by the following: if one envisions a two dimensional fractal
coastline forming the boundary between land and sea, one where
finds that in the vicinity of the boundary (shore line) there {V} = V9(x,) or V,(xp)
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Table 2: Definitions of symbols used to derive reasonable error measures.

Symbol Definition

i index denoting MLP output i of N, associated with clss wi.
N the total number of classes.
p index denoting the pth prototype of x.
P the total number of prototypes on the domain of x.

ri the number ofstatistically independent occurrences of prototype
x. belonging to class w;.

n.- the number of statistically independent occurrences of prototype
x, not belonging to class w;.

np n1r, + npt : the total number of statistically independent occur-
rences of prototype x.. in the training set.

ni p ni,;: the total number of statistically independent samples
in the training --t belonging to class w;.

n- Fp np : the total number of statistically indepmdent samples
in the training set not belonging to class &-;.

n, Ep n,: the total number of statistically independent samples
in the training set.

2..y,,) The target value for O,-(3:, 0) when x3, belongs to class wi.
V,(xp) The target value for Oxp, 8) whena ], does not belong to class

W i.

C[O(x, 8), Vi,(x)] The error measure (or loss) for output O,(xp, 0) when its target
value is V,{x,) (i.e., when xp belongs to class wi).

S[O,jx,, 0), V(x.,)] The error measure (or loss) for output O,xr 0) when its target
value is Tjx,,) (i.e., when x, does not belong to class w).

Furthermore, if we choose binary targets for our error mea-
sure (which incidentally correspond to the upper and lower N P
bounds on the classifier outputs) "nP { - f (1 - O xp 8))

Sn . }p

VmxXP) n-
& (5) -- -f(O.{x,, )) (8)= 0 p I

then (4) leads to the following functional description of the The law of large number- leads to the following asymptotic
reasonable error measure: form for the average error:

C[PxP, 8), V(xP)] - f(l - Oj-x(, 0)) N e
(6) lim & I P(' P ) -f(I - O-(X, =))

E[OXp. 8), V.(x) ]  - f O,&(x, 0)) "-O

Using the definitions in tables I and 2 with (6), we can + P(. [Xp) f(OxP, 8))} (9)
express the average error produced ky n. samples of x.
Note that these n, samples are grouped into P prototypes; A necessany and sufficent condition for mmiuzmg £ in
there are n samples of thepth prototype xp: (9) is 'Von! = 0, which requires that

= P z .n -1(f -Ox, 8)) d )

n . = d,x, O) = P(X){-P('i xi,) -f'(I -O(x), 0))P*1 i=I

Equ ation) + P b rst a f 0 0i ()))

Equation (7) can be restated as =0 vi (10)
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where the Bayesian discriminant functions of any well-behaved

(u d x, given a sufficiently large set of statistically independent
(U)= - f(U) training samples.

du
Finally, one can show that any positively scaled reasonable

Equation (10), in turn, is satisfied if error measures is, itself, a reasonable error measure. That
is, if f 1 (0) is a reasonable error measure, then af,(O)

f'(OV P, 6)) P(wi I X) will also be reasonable if a > 0.

'(1 - Oi(xP, 0)) P( I xP) 3.2 THE GENERAL REASONABLE ERROR

P(wi I xP) V xp MEASURE APPROXIMATION TO THE
1 - P(w, IxP) BAYESIAN DISCRIMINANT FUNCTION

Note that (11) is both a necessary and sufficient condition If one defines the Bayesian discriminant function for the ith

for satisfying (10) forallpossibledistributionsofxp (which of N possible classes as

are directly related to the class-conditional densities of x
(see section 3.1.1)). While it i" possible to satisfy (10) gi(x) A (14)
without satisfying (11) for some distributions of x (eg, whe P(w;Ix)

some sets of class-conditional densities {p(x I w,) f), (11) whereN
must hold for (10) to hold independent of {p(x I wu) }. As a
trivial example, if P(x,) were zero for all but one prototype, P(x) = P(x(15)
satisfying (10) would require satisfying (11).

Clearly, the Hessian of the average error (Ho 7) must be one can define the reasonable approximation error for the
positive definite in order for (11) to yield a minimum aver- ith discriminant function as
age error:

IHo El > . (12) ei = ((1 - Oi(x, 6)) gi(x)
One anshowthat ifin (4) is a strictly increasing function +f.(O(x, 6)) (1 - X))] p(x) dx (16)

of IOi(xp, 0) - {V)I, (12) will hold.
Additionally, one can define the aggregxae reasonable ap-

Equations (11) and (12) ensure a minimum of " but they proximation error as
place no explicit condition on the form of OfQcp, 0). Since
we wish the outputs of the classifier to equal the aposteriori N
probabilities, we can assure this equivalence by constrain- (17)
ing the reasonable error measure's functional form based = i=1
on (11):

Given (9), one can express the asymptotic average rea-
sonable error of the training set. One can in turn express

f '(0i) 01-i f'(1 - ),) 0 < 0, <1 (13) the asymptotic average reasonable error in terms of the
a gregate reasonable approximation error to the Bayesian

yfunction satisfying the conditions o(3) - (6) and discriminant function expressed in (16) and (17). Duda and
Any -unc)is sasongbtherr or (a) -a and Hart first showed such a relationship for the simple per-
(10)- (13) is a reasonable error measure. Such a meaure ceptron trained with the MSE objective function in [6] (pp.will yield classifier outputs that asymptotically equate to tie 154-155). The symbol "×" should be read as, "asymptoti-

a posteriori piobabilities P(w; I x), provided the functional 145) eqs

capacity of the classifier (i.e., the classifier's abilityto model ely equals."

the function that maps the RV x to theaposteriorsP(w;i Ix)
for all x. ), embodied in the para'ueterization variable 0, is P N
at last as great as the complexity of 4 the class-conditional lim = E P(x,,) E {P(wi Ix ,) . f(1 - O(xp, 6))
densities p(x I wi). This statement relies on the assumption =-I
that these class conditional densities are restricted to those i=-

that are well behaved (see section 1.1.1). This, combined + P(07 I xP) . f(O(xp, O))}
with the finding that a ML? vh a single hidden layer of P N
adeuate connectivity L.n - under mild constraints consis- = {P(w, xP). f (1 - oi(xp, 0))
tent with our assumptions - approximate any continuow- P=1 =1
funclion mapping x onto the N-diweaisionai aypercubi f4],
assures that there exists a MLP that will accurately modei + P(o, xP) • f (OP(x, 0))
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N 3.3 SPECIFIC EXAMPLES OF REASONABLE
{P(wi) E V (1 - Oi(x, 0)) 1 wi] ERROR MEASURES

i=I

+ P(-w--) E V (Oi(x, 0)) 1 Z71 }One family of reasonable functions, which can be derived
N by inspection of (13), is

-f (I f(1-Oi(x, 0)). P(x IW)
i JX f(O) = ] Q"(I - ()r - dO (22)

* P(w1) dx

+ ff(oi(x, 0)) p(x I)• P(-) dx1  This family has two special cases of great practical impor-
x J tance.

N

{xf(1 - O(x, 0))p(x, wi)dx 3.3.1 r = 0: Information Theoretic objective functions
x One function that satisfies the reasonable conditions is

+ ff (Oi(x, 0))p(x, -- dx} (18)

Since f(o) = J(1 - O) -

d - -log(1 - 0) (23)
p(x,w = P(x,

- the functional expression used to implement the Cross
d x) Entropy, Maximum Mutual Information, Kullback-Lieblerx - ,distance, and Maximum Likelihood objective functions

d [7, 10].
= x [P(WiI x)" P(x)]

dx 3.3.2 r = 1: Mean Squared Error

= P(w I x) • p(x) (19) The MSE objective function is also a special case of (22):

and

p(x, i- = P(Qx) p(x) (20) f(O) = fOdO

one can re-state the expression of (18) as = 102 (24)
2

lim £ = 3.4 SOME "UNREASONABLE" ERROR
4,'0 MEASURES

{f f(1 - Oi(x, 0))P(w, Ix) . p(x)dx Obviously, any objective function which does not satisfy
i= x the necessary reasonable conditions will be an unreasonable

function for estimating aposterioriprobabilities. Neverthe-
+ f (Oi(x, 0)) P(j I x) • p(x) dx less, many such unreasonable error fanctions will still yield

asymptotic Bayesian discriminant performance. If its out-
' puts asymptotically reflect the correct ranking of the a pos-

terioris, an unreasonable error measure will yield Bayesian
N fV V (1 - Of(x, 9)) • gi(x) disciminant performance. We discuss two classes of ob-{jective functions that are unreasonable.i +f (Oftx, 0)) - (1 - gi(x))] p(x) dx

i=I J 3.4.1 Minkowski-R error measures
= (21) When the objective function is of the formf (0) = OR

which corresponds to a Minkowski-R (LR) metric [9] - one
Clearly then, minimizing the reasonable error measure of finds that the reasonable condition is satisfied only when
(7) also minimizes the reasonable approximation errors of
(16) and (17). In order for c in (17) and (21) to be zero, it
is necessary that the MLP's functional capacity exceed the oR -I - (- O)R-

functional complexity of all the class-conditional densities 1 - d
p(x I w) (see section 3.1.2). 0 R-2 = (1 - 2
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Figure 2: The LR minimum error value of 0,(xp, 0) is Figure 3. The minimum MSE value of 0,(xp, 0) is plotted
plotted as a function ofP(w, Ixp) forR = 1.125, 2.0, 9.0. as a function ofP(,, Ixp) forvanoustraimng target values.

or R = 2 (r = 1, in section 3.3.2). Another perspective is rankings depends on the choice of non-binary targets. We
that C is minimized when illustrate this point in the following sections as we derive the

approximation error to the Bayesian discriminant function
for the MSE and information theoretic error measures.

0,(xX, 6) = - " ( P [,,)' -* ( I 3.5 THE MSE APPROXIMATION TO THE

-_ I BAYESIAN DISCRIMINANT FUNCTION
+ R -.P(Wi-I x+j Using (16), one can define the mean-squaredapproximation

error for the ith discriminant function as
which simplifies to Oi(xp, 0) = P(wi I c) only when R = 2
(note that the L 2 metric is the MSE objective function).
Since an Lk metric is reasonable on!y when R = 2, this [ [(x) -1

argues against using LR metrics other than L 2 when the Jx i
output of the classifier is being interpreted as an aposteriori - gi (25)
probability. gi(x) + gi(x)} p(x)dx (25)

Figure 2 gives an intuitive feel for how various LR metrics Additionally, one can define the aggregate mean-squared
bias the output Oi(x, 0) towards certainty (for R - 1), additi one as
or away from it (for R -- oo): the minimum error value approximation error as
for Oi(xp, 6) is plotted as a function of P(wi I xp) for var-
ious values of R. It should be noted that while LR metrics N
are generally not reasonable error measures, they do in fact C = 5; (26)
yield classifier outputs that asymptotically reflect the cor- i=i
rect ranking of a posteriori probabilities. 3 Strictly speak-
ing, th-.y will yield Bayesian discriminantperformance, and One can express the average mean-squared error of the
one can defend their use in training classifiers if the biases training set as
towards or away from certainty depicted in Figure 2 are not
excessive for one's application. PN

MSE 1 n {" [O,(x,, 0) - Vi(x)1 2
3.4.2 Error measures with non-binary targets p=1 i=1

Another class of unreasonable error measures is found if + np . (xp, 0) - (x)]2  (27)
one employs otherwise reasonable error measures with non- (x7)

binary targets {V}. In such cases the resulting error mea-
sure will not be reasonable. Whether or not the resulting Following the litan) of section 3.1.2, one can express the
error measure reflects the correct a posteriori probability asymptotic average mean-squared error as

3This is because 0,(x,, 0) is asymptotically a strictly increas-
ing function of P(wi I xp).
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f M{ (0i(x, 0) - 1)2 p(x, wi)
Jirm MSE -"i-

SP~ ,) N {w; [0 9 2  + f 0,(x, 0)2 p(X, W)dX (30)E P(xP) w .) -[Ovp ) ',(xp')
p=l 1 N

P(U:I XP) [0i(Xp) - i(Xp) 2} (2)> j[i(x, 6) 2 20(x, 0) + 1]

From this asymptotic form, one can show that the necessary gi(x) p(x) dx

condition for minimum MSE is + f 0i(x, )2 (1 - g,(x)]

im O(xP, 8) p(x)dx} (31)
I2,_00

VdxP) •p(,. I x,) + 2i(x,) • P(iU I x) Vxp(29) - z (x, o)2 p(x)dx

For the case in which binary targets as specified in (5)
are used, the MSE objective function const-tutes a reason- f
able error measure, and the classifier outputs asymptotically -2J (x, 9) g(x) pQx) dx
equate to the a posterioris. If V; and 5- are both set equal
to the same value on the closed interval [0, 1], this will lead + gi(x) p(x) A
to a most undesirable asymptotic state in which all classifier x
outputs converge to i - a state of complete uncertainty
analogous to that attained by the Minkowsld-R error metric
L... For the case in which Di > -" and both targets are lim MSE =

non-binary on [0,1], one finds that Oi(x, 0) is no longer n-.O

an accurate estimate of P(w; I xp), although it does remain 9 x
a strictly increasing function of P(w1 I xp). For the bizarre N f gi(x)]2 p(x) dx
case in which Vi < V", Oi(xp, 0) becomes a strictly in- (32)
creasing function of P(iT. Ix,) (or 1 - P(w I xp)). Figure 3 -- (gi(x))2 p(x) dx + P(wi)
illustrates the effect of different target values on the asymp- 1 J
totic value of Oi(x,, 9) plotted as a function of P(w Ix,).
As we shall see in the next section, this figure is relevant to -

information theoretic objective functions as well.

Returning to (28) one can derive the asymptotic mean-
squared error (binary targets: V, = 1, , = 0) in terms of the This result is the MLP analog of Duda and Hart's result for
aggregate approximation error to the Bayesian discriminant the MSE-trained perceptron ([6], pp. 154-155). A compar-
function (expressed in (25) and (26)). Using derivational ison of (32) and (25) confirms that each of the N terms in
procedures analogous to those of equations (18)- (21), one (32) is equivalent to the mean-squared approximation error
finds term of(25). Thus, minimizing the MSE objective function

of (27) (binary targets) also minimizes the mean-squared
approximation errors of (25) and (26). Note that only the

lirn MSE first term in (32) depends upon the output activations O of
t,-** the MLP. In order for c in (26) to be zero, it is necessary

, N¢ that the MLP's functional capacity exceed the functional
Z {P(wi I xP) [pi(x, 9) - 1] 2 complexity of all the class-conditional densities p(x I wi)

(see section 3.1.2).

+ p(W XI) 0;(xP)2 Equation (32) illustrates the manner in which MSE is min-
I imized during classifier training. The mean-squared ap-

N proximation error term (e) indicates that MSE is in fact
E f P(w,)E [(O,(x, )-1)2 w;] a weighted integral sum of the squared errors between the
i-- I NMLP outputs 0i and their corresponding discriminantfunc-

+ P(O-) E [( ) j-] tions. The weighting factor is p(x). The form of ,, in (32)
, W~ Iindicates that the approximation error minimization process

focuses on the mode(s) of x, where p(x) is large. This issue
is discussed further in section 5.
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3.6 INFORMATION THEORETIC
APPROXIMATIONS TO THE BAYESIAN lrn CE
DISCRIMINANT FUNCTION n,-00

P NV
Reference [7] shows that the information theoretic learn- P(xp) P(WiIx) [9,(x) log {i(x, )1
ing paradigms of Maximum Mutual Information, Kullback-
Liebler distance, and Maximum Likelihood lead to a rea-
sonable error measure known in the connectionist literature + (1 - Vi(xp)) log {1 - O (xP, 0)}]
as the Cross Entropy (CE) objective function [10]. Z.is er- + P(o7 I xe) -[Th(x) log fO(x, 0)1
ror measure applied to a single input sample xp belonging
to class wi is expressed by + (I - Ti(x,)) log {1 - O,(x , 0)}]} (37)

CE From this asymptotic form, one can show that the necessary
N condition for minimum Cross Entropy is

- Zi(p) log la((x,, 0)1
1=11

lim 05(xP, 0)=
+ (1 - V,(x)) log{1 - O(x,, o)} 1 (33) i - II91 (x ) • P(w1Ixp) + V,(x ,) •P(ZTIx,) Vxp(38)

Given the Bayesian discriminant functions of (14), one can
define the cross-entropy approximation error for the ith - precisely the same condition reiread for minimizingdiscriminant function as the MSE objective function. For this reason, the comments

following (29) and Figure 3 accurately describe the depen-
dence of information theoretic classifier outputs on target
values: binary targets yield classifier outputs that asymp-

El = totically equate to the a posterioris P(w1 I xp).

- / [gi(x) log {OC(x, 0)} Returning to (37) one can derive the asymptotic Cross En-
Jx tropy (binary targets: V1 = 1, 5; = 0) in terms of the ag-

+ (1 - gi(x)) log {1 - Ci(x, 0)1] p(x) dx gregate approximation error to the Bayesian discriminant
.1 function (expressed in (34) and (35)). Using derivational

(34) procedures analogous to those of equations (18)- (21), one
finds

The aggregate cross-entropy approximaticn error is then
given by

lim CE =
ni t0

N P N
El (35) - P(X,) E fP(w;Ix')log oi(XP, 0)J

i=1 P
1  

i=1

Given the definitions of tables l and 2, one can express the + P(KiIxP) log{1 - O9(xP, 0)}} (39)
total cross entropy of the training set as N

-EZ P(wi)E [log {01(x, 8)} 1W;
E P N + P("Zi)E[logfI - O,(x0

_np,. (v(i(,) log {O,(xp, 0)} N

P =1 h- -E Z {L log f{0 1 (x, 0)J}p(x, w1) dx
+ (i - D,(xp)) logf1 - O,(xP, 0)}]

"+ni, [5i(xp) log{fOi(xp, 0)} + f log {I - Oi(x, 0)J}p(x, w;) dx}

+ (i - 51(xp)) log {I - O,(XP, 0)}1} (36)

Following the litany of section 3.1.2, one can express the
asymptotic cross entropy as
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im CFM,,o =
lirn CE n ,-oo

IT,_0 -P N

N : P(xp) > P(wi I xp) -a[6i(x,,, 0)] (43)

E j log0(x, )} P(w Ix) (x)
i=l 1=

Is, CX) CFM.wo (x,)

X E ×W -[ix ) (44)
+ / log {1 - Oi(x, 0)} P(7 I x) p(x) dx

Jx 1-1---- I i4
I - gx) I N

(40) = fJ P(, x)• o- [,.(Cx, 0)] p(x) dx (45)
i=i

= C t(X)

A comparison of (40) and (34) confirms that each of the N Because <r A] is a strictly increasing function of A,
terms in (40) is equivalent to the cross entropy approxima- o' [A] > 0 and it is impossible to find the maximum
tion error term of (34). Thus, minimizing the cross entropy of (43) by solving for the zero of its gradient with respect to
objective function of (36) (binary targets) also minimizes the outputs {}. Furthermore, the identity of Oi(x,) in
the crosg entropy approximation errors of (34) and (35). As (42) is stochastic, so (43)is not a continuously differentiable
with the MSE objective function, it is necessary that the function of the classifier outputs. As a result one cannot an-
MLP a functional capacity exceed the fun, "-'ial complex- alytically determine the maximum CFMh,1o values of the
ity of all the class-conditional densities ,,, 'w;) in order classifier outputs Oi(x, 0). Nevertheless, it is useful to con-
for c in (35) to be zero (see section 3.1.2). sider how CFM,,,.o (x,) - the CFM for a single prototype

Note that CE, much like its MSE counterpart, is a weighted xp - in (43) is maximized. Table 3 depicts the a posteri-
integral sum of the cross entropy between between the oris and N CFM,,o, (xp) terms from (43) associated with
MLP outputs 0,(xp, 9) and their corresponding discrim- the prototype xp. The a posterioris are ranked in decreas-
inant functions. As with the MSE objective function, the ing order, their associated CFM,, ,o terms are ranked in the
form of e, for the CE objective function in (40) inoicates same order. Thus P(wri 1 xp) is the largest a posteriori for
that the approximation error minimization process focuses xj, while P(wN I xp) is the smallest, and o- 14-1 (xP,, 0)] is
on the mode(s) of x, where p(x) is large (see section 5). the term involving output 0,1 and its largest competitor

0,2.

4 CLASSIFICATION FIGURES OF We wish to show that if the a posterioris are ranked as

MERIT: LIMITED BAYESIAN shown in table 3, then the classifier output 0,. (underlined
in the last column in table 3) corresponding to class w,1

PERFORMANCE WITHOUT will be the most active of all outputs when CFM,,o (x,) is

EXPLICIT ESTIMATION OF A maximized.
POSTERIORI PROBABILITIES

4.1 ASYMPTOTIC PERFORMANCE OF
The N-monotonic CFM objective function [8] is given by CFM ,, FOR e-[.] = u[A]

P, N Figure 4 illustrates three different functions (normalized

1 f I so that -1 < o-[A] 0) one might use to implement
CFMn O , 1 {npi - o [A(xp, O)]} (41) CFMo. The first of these functions is the Heaviside

P=1 i=i step function (denoted by u[A] ). Clearly this function is
an exception to the general rule stating that CFMm, is

where a strictly increasing continuously differentiable function of
A. This functional form is of inte.st for two reasons. First,
it is the MLP analog of the original perceptron learning

(xt,, 0) O,(xp, 0) - max OA(xp) (42) criterion (e.g., [6], pg. 141); second, it leads to a very
simple determination of the maximum CFM,,,,o (xp) values

Thus, for np, cases of the prototype xp, output 0,(xp, 0) for the classifier outputs. When this objective function is
represents the correct class w,, while output Qn, (xp) is used to implement CFM , leaming, one can see readily
the most active output representing an inc: ect class w,. from table 3 that CFM,,,o will be maximized if output O.
The function or.,-A(xp, 0)1 is typically a strictly increas- is marginally bigger than any of its competitors. Because
ing continuously differentiable function of -,(xp, 0). The u'[,I] = 0 V .1 - 0, there is no numencal incentive for
asymptotic form for CFM,oflO is 0,1 to be made any more than marginally larger than its
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Table 3: A ranking of the N a posterioris (and their corresponding CFM terms) of CFM,,,n,, (xp) in (43).

P(.,i Ix,) 0 Ari(xp, 0)] 0 o) - 0r2)
P(wi2 Ix) 0 652(Xp, 0)J 0( 0r,2-O,1)
P(,3 Ixp) : L4,3(xp, 0)1 j -O1)

I x ) 0.[pj(x,, 0)] J- 0,0)

competitors. The relative activation of outputs 0,2 -, Ov the equilibrium point always results in a net reduction in
is irrelevant beyond their being less that 0,1. Thus, the CFM,RO
Heaviside step functional form of CFMb,,, implements the
Bayesian discriminant function - albeit marginally - for
asymptotically large training sets. dCFM,,, (Z = 0)

4.2 ASYMPTOTIC PERFORMANCE OF
CFM,,w, , FOR STRICTLY INCREASING - • P(Wrj Ix,,) + •P( Ix,,)
DIFFERENTIABLE FUNCTIONS OF A < 0 (48)

In practice, learning with a discontinuous <f[A] like the
Heaviside step is unstable. One can achieve stable learning dCFM,,n (Z = 0)
using strictly increasing continuously differentiable func- -__-_0___ _ < O)
tions of A [8]. One can analyze the asymptotic behavior dOri)rl
of these functions by considering their effect on a set of
classifier outputs m the initial equilibrium state for which Equations (46) - (49) do not indicate what the optimum
all outputs are equal. If we define o-, as the value of the values for Or - 0,,v are when P(wl I xp) > 0.5. These
CFM.,, function o,[.1] when its aigument A = 0, and o-r' optimal values depend on the specific functional form of
as the derivadve of the CFM,,,,,, function at this same point of[,]. When a[c1] is a linear function of -A, the optimal
(see inset in Figure 4), we can observe how the outputs values of the outputs are 0,1 = 1 and Ojl A = 0. Non-
will be perturbed from the equilibrium point as CFM,O is linear functional forms (such as the "maximally flat" one
maxirmzed. A differential positive change in the value of shown in Figure 4) tend to produce non-binary outputs
0,1 results in a change to the over-all CFM,, of O,1 < 1 and 04 l > 0

Equations (46)- (49) show that the equilibrium point yields
dCFMe,., (Z = 0) sub-optimal CFMK,,,,O only if the largest a posteriori is

dO, 1 i greater than 0.5. Since the class boundaries for an N-
( class problem are defined as the connected set of points

P(Wrl I xp) - a, - P(U-, I xp) (46) on x at which all non-zero aposterioris are equal, continu-
ously differentiable CFM .,o functions will (in theory) fail

> 0 iff P(wr I x) > P(E- I xP) to form decision boundaries in regions on x where there are
or P(Wrl 1xp) > 0.5 more than two non-zero a posterioris for asymptotically

large training sets. Moreover, these equations indicate that

A differential negative change in the value of O, results continuously differentiable CFMmOo functions will set all
in a re-ordering of the output rankings; O,1 becomes the classifier outputs equal in all regions on x where no a
least active output (all the other outputs remain unchanged), posteriori exceeds 0.5 - conceivably a large fraction of
so all the terms in the right-most column of table 3 are the domain of x when the number of classes N is large.
altered to reflect this change in the identity of the most While these asymptotic limitations would seem to render
active competitor (refer back to (42)), and the net change in the CFMWIo class of objective functions useless for classi-
CFMNI, is given by fication, in practice the functions compare quite favorably

with reasonable error measures. Equation (44) may provide
some insight into this apparent inconsistency.dCFM,,,, (A =0O)

= -or, P(,,, I x.) < 0 (47) Using the definition of correlation (denoted by di), we candOn ! define the correlation between the ith CFM,,,,o term and its

One can show that altering any of the outputs corresponding a posteriori by
0,2, 0r3, ... Ow independent of any alteration to 0,1 from
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0(9) = MSE X

(E [P(Wi I x) - TZ[,d(x, 9)]]Nj)

- E [P(w; Ix)1 E [0[A,(x, 0)]]) S O,(x, 0) - (p(w; x))1 (p(x)) d

(Var [P(w I )]. Var [[Ai(x, 0)]]) -II2 (50) ' I,(X) i

As a result, it is possible to express (44) as - j((P(wi 1x)) 2) (p(x)) dx
gi(x)

CF~mono N +(P(w;)} (52)

' Var [(Qi I x)] - Oi(8) - Var [o--[ i(x, 9)]]52

+ P(w,) .[u[d4(x, 9)]] (51) CE

Since the terms [PV(arf(wjix)] and P(w) are not func- -I / ( log {O(x, 0)}

tions of the classifier's parameters 0, they are constants fx x g

vis-a-vis optimizing CFMm,,oin (51). Thus, maximiz- 8,(x)
ing CFM,,. tends to maximize the correlation between (
P(w; Ix) and -[Ad(x, 0)] , along with the expectation and + 1 - (p(Wi Ix) log{1 - 01(x, 9)
variance of a [Ai(x, 0)] for each class wi over the entire + ) ]
domain of x. In fact empirical studies bear this out. Clas- ,()
sifiers trained with CFM,no objective functions and rela- (p(x)) dx
tively small sets of statistically independent samples tend to (53)
yield outputs with higher variance than their reasonable er-
ror measure counterparts; CFMI,,,, -trained classifiers also
tend to yield multiple outputs with high activations when CFMo
uncertain as to the class of a test sample. There is strong N
correlation between P(wo I x) and a- [Ai(x, 0)] as indicated f j (P(w, Ix)) • o-[A(x, 0)] (p(x)) dx (54)
by the CFM,,no classifiers' median error rate of 1.5% on a x=l
speaker-dependent /b,d,g/ phoneme recognition task [8]. g,(X)

Equations (52)- (54) indicate that the optimization of all of
5 COMMENTS ON THE these objective functions depend- on accurate estimates of

APPLICABILITY OF THESE PROOFS the a posterioris and PDF of x - functions of the training
set itself. Optimization also depends on sufficient func-

TO THE STUDY OF tional capacity in 0. Finally, optimization - and thereby
GENERALIZATION IN MLP approximation of Bayesian discriminant performance - re-
CLASSIFIERS lies on the behavior of each objective function given some

fixed number of training samples n, and some fixed param-
When one sets out to classify an RV x, the total num- eterization of the classifier 9.

ber of statistically independent training samples n, and the In simplistic terms, there are four possible circumstances
functional capacity (denoted by 0; see section 3.1.2) of one will encounter:
one's classifier are two factors that will determine in large
part the classifier's ultimate performance. We reproduce . n, - oo; 0 sufficient: For the case in which one has
expressions for the MSE and information theoretic reason- plenty of independent training samples, one's training
able error measures and the analogous expression for the data will yield accurate estimates of the a posterioris
CFMN,,O objective functions in order to illustrate the un- and PDF of x over its entire domain. Furthermore,
portance of these factors. Probabilities that rely on the one's classifier will have sufficient functional capac-
asymptotic statistics of the training data are now presented ity to model these estimates, and one will achieve
as estimates (denoted by brackets "''") of the true underly- Bayesian discriminant performance.
ing probabilities: n, -- oo; 0 insufficient: For this case, the estimates of

the aposterioris and PDF of x will be accurate, but the
classifier will have insufficient functional capacity to
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0.0- _ ___-_

<I -0.5 ('e "

-1.0.

-1.0 -0.5 0.0 0.5 1.0

A

Figure 4. Three different functional implementations of the CFMoNo, learning rule. Heaviside step, linear, and "maximally
flat". Inset: a CFMI,, function in the vicinity of A = 0.

model them. As a result, the classifier will not achieve
Bayesian performance. VC PAC analysis has been applied to feedforward net-

" nt < oo, 0 sufficient. In practice one rarely has ac- worksofbinarythresholdelements, towhichwedirect
cess to a sufficient amount of training data. In such interested readers' attention [2].
cases the data will constitute poor estimates of the a
posterio, s and PDF of x. If the classifier has sufficient The study of classifier generalization is typically viewed as
parametenzation it will learn these inaccurate proba- a problem of determining the optimal parameterization for
bilistic estimates and will generalize poorly on disjoint a classifier, given some fixed number of training samples.
test data ([6], section 3.8). Interest in the functional form of the objective function used

to train the classifier has rarely gone beyond establishing" n, < o; 9 insufficient: For the case in which one has its validity as a learning metric on some information theo-
insufficient data, it is often advantageous to train a clas- retic basis. But (52) - (54) clearly illustrate that different
sifier with reduced parameterization. In such cases the objective functions approximate the Bayesian discriminant
data will constitute poor estimates of the a posterioris function in markedly different ways. In this sense, given
and PDF of x, but the classifier will not have sufficient fixed n, and 0, each objective function represents a dif-
functional capacity to learn the less representative fea- ferent estimator of the Bayesian discrimmant function. In
tures of these inaccurate probabilistic estimates. In- detection and estimation theory, estimators are evaluated
stead it will have only enough capacity to learn the in terms of their bias and variance for finite sample sizes.
gross features of these poor stimates, and generaliza- Good estimators are those that c.- unbiased with minimal
tion to disjoint test data will be as good as warranted variance (as determined by the Cramdr-Rao bound [5]);
by the training data. such estimators are characterized as "efficient". We feel

that the study of generalization in MLP classifiers can be
This case has been studied in great detail from a num- adNanced by placing more emphasis on theoretical compar-
ber of different perspectives. PAC analysis of learn- isons of objective functions as estimators of the Bayesian
ing using VC dimension applies a worst case analysis discrtminantfunction. The derivations of this paper serve
to the problem of learning from examples by deriving as a point of departure for such comparisons.
bounds on the number of exemplars needed to attain
(with a desired probability) a desired accuracy. The
VC dimension is defined only for concept classes that 6 SUMMARY
are discrete, or in connectionist parlance, for binary
outputs (but potentially continuous inputs). Discrete Multi-Layer Perceptrons can be trained with two broad
concept classes require that the class-conditional den- classes of objective functions to yield Bayesian discnm-
sities of the input RV -(x I,, be non-overlapp:ng. inant performance. Reasonable error measures yield MILP
For this reason the PAC formalism does not apply to outputs that (under conditions summarized below) asymp-
our situation.in %hich estimates ofaposterwri proba- totically converge to the a posterion probabilities associ-
bilities, or of the "best guess classification" kwerc the ated with the input RV. Mean-squared error and information
best guess might not be very accurate) are required. theoretic objective functions prove to be reasonable error

__ _ measures. Classification Figures of Merit (CFM,,on ) yield
4Probably Approximatcly Correct. MLP outputs that generally reflect the identity of the max-
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imrnum a posteriori associated with any sample of the input [7] H. Gish, "AProbabilisticApproach to the Understand-
RV for asymptotically large training sets. ing and Training of Neural Network Classifiers," in

Proceedings of the 1990 IEEE International Confer-The conditions necessary for ML., Bayesian discrinmant ence on Acoustics, Speech, and Signal Processing,

performance (given that the classifier is trained with a rea-

sonable error measure or a CFM,,, objective function) are April, 1990, vol. 3, pp. 1361-1364.
[8) J. B. Hampshire II and A. H. Waibel, "A Novel Ob-

" The class-conditional densities of the input RV must jective Function for Improved Phoneme Recognition
be "well-behaved" to the extent that their complexity Using Time-Delay Neural Networks", IEEE Trans.
must be oounded (section 3.1.1). Neural Networks, vol. 1, pp. 216-228, June, 1990.

" The functional capacity of the MLP classifier, ex- [9] S. J. Hanson and D. J. Burr, "Minkowski-r Back-
pressed in its parameterization 0, must be sufficient to Propagation. Learning in Connectionist Model with
model the class-conditional densities of the input RV Non-Euclidean Error Signals", Proceedings of the
(section 3.1.2). 1987Neural InformationProcessing Conference, Am.

" The MLP training set must contain an asymptotically InstituteofPhysics, D., D. Anderson, ed., pp. 348-357,
large number of statistically independent training sam- 1988.
pies. [10] G. E. Hinton, "Connectionist Learning Procedures",

Carnegie Mellon University Technical Report CMU-
Given these results, we are inclined to view architecturally CS-87-115 (version 2), Dec. 1987, p. 14.
identical MLPs trained with different Bayesian objective
functions as alternative estimators of the Bayesian dis- [11] R. Lippmann, "Pattern Classification Using Neural
criminant function. We offer these results as a basis for Networks" in IEEE Communications Magazine, vol.
evaluating MLP classifier generalization in the context of 27,No. 11, 1989.
traditional detection and estimation theory.
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Abstract pling. Self-directed search in the form of queries has
been studied theoretically by researchers such as An-

We examine the problem of self-dwrected gluin (1986), and Eisenberg and Rivest (1990) as well
learning using queries in contrast to learn- as empirically by Hwang et at (1990) and others. This
ing from random examples. We argue area is closely related to the field of control theory and
that, to provide any significant improvement optimal experiment design (Fedorov, 1972).
over learning from random examples, a self- In Cohn et al (1990), we examined self-directed learn-
directed learning algorithm must make use of ing as a method for learning concept classification
sequential queries, that is, new query points with a neural network. The strategy, called selective
must be selected based on the answers to pre- sampling, exhibited significant improvement over ran-
vious queries. Additionally, to perform well dom sampling in the tests performed. This paper ex-
in a complex domain, such an algorithm must tends that work, demonstrating the utility of a sequen-
distinguish between degrees of the relative tial and graded-worth querying strategy. We define
utility of querying various points in the do- the learning problem in Section 2. In Section 3, we
main. We present an algorithm that imple- describe the difference between batch and sequential
ments these two guidelines to produce "opti- queries, and argue the need for any directed learning
ral" queries for a single linear threshold unit, algorithm to use sequential queries. In Section 4 we de-
in the sense that these queries minimize the scribe selective sampling and show that one of its limi-
bound on possible error. The algorithm is tations stems from the inability to distinguish between
generalized to networks of such neurons using different degrees of utility for querying points. Based
a local approach where each unit attempts to on these observations, in Section 5 we give an algo-
minimize its perceived error. rithm for "optimal" querying in a single linear thresh-

old unit and describe how this local approach may be
generalized to incorporate multiple neurons and mul-

l Overview tiple layers.

A large part of the research directed towards learn-
ing and generalization has concentrated on learning 2 Concept Learning and
from examples, where a system is presented with a Generalization
number of examples drawn at random from some dis-
tribution and is expected to exhibit generalization by We define the concept learning problerm as follows: Forbeing able to behave correctly when presented with

bein abe t beave orrctl whn prsened ith some domain X we are given a concept class C consist-novel examples from the same distribution. This ap- in a iten concept c C .proach is characterized by the work of Valiant (1984), ing of a (possibly infinite) number of concepts c C_ X.
Buroach it cara(1989)i d b aussheorkofVait (198 There is some unknown target concept t E C such thatBlumer et a t (1989) and Haussler (1989). A recent for any point x E X, if x E t, then the correct classifi-area of interest in the field, contrasting with learn. cation (written t(x)) for x is 1, otherwise it is 0. Theing from examples, is that of self-directed learning. In problem is to learn to approximate the correct binarythis type of learning, the learner does not simply pas- classification over X.
sively receive examples from the distribution, but takes
at least some control over which examples it will see. We learn tu approximate t by means of classified samn
Obviously, many natural systems exhibit self-directed pies s of the form (z, t(x)). The sample points x ma)
learning, and in some formal situations, self-directed be drawn from some distributin P and the classifica-
learning is provably more powerful than random sam- tion t(x) obtained by querying an uradc. Based on a

173
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set of m such samples (written S"), we choose a hy- ing, the learner is oblivious to the results of its queries
pothesis h E C that is consistent with S', that is, for until all queries hae been made. We showv that %%hile
all s E S', h(z) = t(x). We define the error of h with sequential queries can, in many situations produce ex-
respect to P as error(h) = P({x. z E hAt)), where ponential improvements in generalization performance
P(A) is the measure of A according to P, and A is the over random sampling (linear binary search, for exam-
symmetric difference operator. The generalization of pie), batch querying will give us at most a constant
h is simply 1 - error(h). factor improvement in our error bounds.

For a given set A of unclassified points in X, define
HeC(A) = {A n c . c E C), that is, lc (A) is the set 3.1 Bounding the error with batch queries
of subsets of A that are "in" the various concepts in
C. If H1(A) = 2A

, then we say that A is shattered by The concept of an c-transversal, as described in
C. The Vapnik-Chervonenkis dzmenswn i of a concept Blumer et al (1989), is central to the idea of bounding
class C (written VC (C)) is the largest number d such error. For some set of regions (concepts) C in a domain
that there exists a set A, IAI = d and A is shattered X and a distribution P over X, an c-transversal is a
by C. set of points A such that there is a point x E A inside

every region in C that has probability mass greater
Blumer et al (1989) derived a bound for the number than 4. An t-net is a special case of an c-transversal
of random samples needed to learn a concept based where the distribution 7 is uniform.
on the the YC-dimension of the class in consideration.
For any class C, if VC (C) = d and if h is consistent For a given target concept t E C, we can define a set of
with regions Ga: = cAt : c E C (where A is the symmetric[l 28d 13 (1) difference operator), as our regions of error. If a set of

m = max o 1 , -0- L points A is an c-transversal of Cat then by classifying
those points we will have samples that distinguish t

randomly drawn training examples, then with proba- from every other concept in C that differs from t by
bility at least 1 - 6, the error of h is bounded by c more than c. The bound on m in the previous section
(for 0 < b, c < 1)_ Thus, if we know the dimension is simply a bound on how many samples we must draw
of our concept class, we can determine how many ran- to have an c-transversal of Ca: for an arbitrary t E C
dom samples we will need to draw and classify in order with high confidence.
to have enough information to achieve good general-
ization with high confidence. This form of learning, The minimum number of points, m, necessary for an c-
bounding error by c with confidence 1 - 6, is known as transversal of an arbitrary class C has been bounded
Probably-Almost-Correct, or PAC learning, by Haussler and WeIzI (1987) and most recently by

Pach and Woeginger (1990) in terms of d, the VC-
dimensionof the class:

3 Generalization From Queries I d 1 8d 13
-- g- < m <-log,- -. (2)

In many situations, it is possible to not only draw and 48 0 f < M C

classify random samples from P, but to query the or-
acle about arbitrary points in the domain. An imme- Blumer et al show that for any t E C, VC (C) =
diate question is "How much can this new power im- 'C (CAt). Thus, using the above bound, we cani see
prove our generalization?" Research along these lines that by drawing U log, L samples we have a non-zero
has been pursued by Valiant (1984), Angluin (1986), probability of getting an (-transversal of the regions of
Hwang et al (1990) and most recently by Eisenberg error.
and Rivest (1990). It is important to realize, however, that a set of points

Eisenberg and Rivest address the question of PAC that is an c-transversal of Czc for one target concept t
learning from random examples and queries. They is not necessarily an c-transversal for some other tar-
show that for any unknown distribution meeting some get t' In order to bound the error of a hypothesis with
smoothness criteria, the minimum number of examples absolute confidence, we must bound the error for all
needed to learn a concept is bounded from below by possible target concepts. For batch querying, this re-
Q(l In 1). quires an c-transversal of C!, = {cIAc 2 : cl,c 2 E C),

which is equivalent to a single c-transversal of Ct for
In this paper we make the distinction between sequen- all t E C.
tial and batch queries. In sequential querying. the
learner is allowed to know the result of a previous Claim: For a class C, if C (C) is finite and 0 E C
query before making the next one In batch query- then ;C(C) < YC(C ) < 4-1og 2(6) YC(C).

'For a more thorough explanation of the Vapnik-
Chervonenkis dimension, see Blumer et of 1989), from Proof: We can show the lower bound by realizing that
which the above notation was taken. if 0 E C, Ca contains C. This means that any set of
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points that class C is able to shatter is also shattered
by class C. Thus, VC (C) < VC (Cl).

The upper bound may be demonstrated by applica-
tion of Lemma 3.2.3 in Blumer et at (1989), an ab- C1 , c2 consistent with Sm ,
breviated version of which is described here. Consider c1x) # c2(x)}. (4)
a set A C X and let IAI = m. By Proposition A2.1
of Blumer et at, fcr a class C such that VC (C) = d,
I1¢(A) < (5-!)d (where e is the base of the natural The complement of this is the set of points that can
logarithm), for all m > d > 1. Every set in IIC3 is provide us with no additional information, whose clas-
of the form A1 AA 2 where A1 , A2 E flc(A). There- sifications are fixed by C and the already known train-
fore, dI

1c3(A)j < (IIc(A)I 2 < ("') . For all m > ing examples (see Figure 1). By drawing points from
41og02 (6).d, it can be shown that (LI)2d < 2m. There- P but only querying their classfication and training
fore, if JAI 4 1og 2 (6) - d, then 11,f2 (A)l < 2', and on them if they lie in iR(S'), we are "selectively

A samplin~, effecting a simple form of self-directed
A is not shattered by C. So, VC (CI) <4-10g2(6 ) .  learning1§
VC (C). D o 2 6. lannThis procedure may also be applied iteratively by re-
Thus, in order to bound the error of a hypothesis defining Z(S") (and thus our sampling strategy) to in-
with perfect confidence 2 , we need an c-transversal of corporate the reduction of uncertainty after new points
C-1, which would require, for an arbitrary class C, m have been classified. In the limit, when ?/Sm ) is re-
points, where defined after every sample, we have pure sequential

1d 1 321og,(6)d 13 querying: each point is chosen from a region based on_1 log2  < m 3o log 2 13 (3) the cumulative information from all previous points,48c c - c

Comparing this with Equation 1, we can see that it is and each one must reduce the region of uncertainty
within a constant factor of the number of random sam-
ples needed PAC learn a concept over some unknown
input distribution. This shows that, for learning by
batch queries, we can expect at most a small improve-
ment over random sampling in the number of samples
needed to achieve a desired error rate, even if the dis-
tribution is known. We thus argue that any significant
improvement in generalization ability made possible .
by querying must make use of sequential queries.

4 Selective Sampling as Sequential 0
Querying1

Consider the problem of concept learning from ran- 10
dom examples, as described in Section 2. According
to Equation 1, for fixed confidence b, as we draw more
samples from P, the bound on our error decreases,
but at an increasingly slower pace. This effect can in-
tuitively be explained in light of declining efficiency of
the sampling process. When learning from examples.
the probability that a new sample will reduce our error
is exactly the probability that our current h will mis- Figure 1: Example of a simple region of uncertainty-
classify the sample. As our learner progresses, fewer When learning the shape of a convex body, the classi-
and fewer samples provide any new classification in- fication of all points in the shaded areas is determined
formation. by the data already seen. The region of uncertainty isthe star-shaped unshaded region.
Selective sampling (described in detail in Cohn et at,

1990), incorporates a formalization of the above argu-
ment. Ve can define the region of uncertainly, for C 3 If the distribution is known, then we can do away
and set of samples Sm as with sampling altogether and simply choose points inside

R(S'')according to the distribution. In terms of the costs2The confidence parameter in Equation I is a function of training, selec.tite sampling is only practical in problem
of the probability of drawing "goud" data. When one does domains where the .ost of drawing a point from the dis.
not draw samples from a distribution, the confiden.-e pa- tribution is small in iomparison to the cost of classifying
rameter disappears. it.
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4.1 Selective sampling with neural networks

It is not difficult to see how neural networks fit into this 0
learning formalism: the set of all possible weights and Ch 0k 0 0 0~- '-' '-'
parameters that may vary during training determine 00 - U0
the concepts constituting the class C that the network 0 0 0 ,0cP0O
is capable of learning. Baum and Haussler (1989), and 0 05 0 '' ,.

Haussler (1989) examine this problem theoretically: 0 0 0 990 c
given a network N, one can effectively bound VC (N) 00 0 1 0 0
and determine how many random examples one needs 1 00%
to train it on in order to achieve some error rate with 0 0 0 1 100 0
high confidence. o o  &0

In Cohn ei al, a neural network implementation is used D 0 0 C)0 - .
to approximate R(S m ) and selectively sample P, thus 0 cy 0 -'
effect ively choosinj the examples to train itself with. p 0---, 0
The network, called an SG-neiwork', demonstrated sig-
nificant increases in generalization over random sam- Figure 2: Example of the shortcomings of querying

based on the region of uncertainty. We are trying to

learn the union of two circles. One circle has been
4.2 Limitations of selective sampling located, but until the other has been pinned down, the

region of uncertainty covers almost the entire domain,
One technical limitation of selecti'.e sampling is that even though the bound on our total error i, small.
for more complex classes, computation of I?(Sm), or
even its approximation, becomes very difficult. At
some point, the computational cost of approximat- Thus, rather than merely asking "Will this point help
ing 7(S m ) can outweigh the benefit of requiring fewer us?" it is appropriate to ask "How much will this
training examples. point help us?" We introduce a formalism to addressthis question in the next section.
There is however, a more serious theoretical limitation.

Selective sampling draws its power from the ability to
differentiate a region of uncertainty from regions which 5 Optimal queries
can provide no further information. In cases where
the representational complexity of the concept is large, In previous sections, we have argued that unless a
however, 1Z(S m ) can extend over the whole domain querying algorithm makes its queries sequentially, and
unless the concept is already well-learned. One very distinguishes between graded -.alues of querying points
simple example of this problem is the class of the union to reduce error, it can, in the most general case, offer
of two circles in the plane (Figure 2). If one of the two little improvement over random sampling. In this sec-
circles is of size i t, then, until it has been "located- tion, we formalize a learning strategy that does both,
by a query, it could conceivably lie almost anywhere and offer a measure of "optmality" for the value of
in the plane. Even though our maximum error may be querying arbitrary new points.
close to c, our region of uncertainty :ould contain the For a given class C, training set S- and distribution
bulk of the domain. As a result, even though every P, we can define a bound on the error as
query in IZ(S ) will reduce our uncertainty, its proba-
bility of reducing our error is little better than that of ( 3.p(CS'".' ) = sup{P(ciAc), cc E C.
a randomly drawn sample. As the complexity of the cl,c2 consistent with S3). (5)
class being learned increases, this type of pathology
becomes more and more common, in the limit reduc- This is just the maximunk difference (weighted b, the
ing the effectiveness of selective sampling to that of disti ibution) between an, two hypotheses that are con-
random sampling. sistent with the training data. For the binary classi-

fication problem we are considering, we may measureSelective sampling was designed to be a "more opti- the value of a new point a e X in terms of
mal" method of gathering training points than random
sampling. Its failing is that it cannot accommodate max[ , P(C, S"' U {(z, 0)), P)
the fact that, among useful data points, not all sam- (JU(C, S' U (Z. 1)} ")], (6)
ples will have the same value to the learning algorithm and attempt to find an x that minimizes this value
for reducing generalization error. While some "use-
ful" queries will provide significant new information, Determining this minimum is obviously not an easy
in the limit of complex problems, a vast majority will problem. Calculating it for even a modestly slzed net-
provide only a very small incremental improvement, work may be impractical (It may be noted that the
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.G-network used for selective sampling was designed
to approximate esup, and this took considerable time
to determine a single case). What we propose as a
tractable alternative is a local approach.

In the body of this section, we describe an algorithm
for determining query points for a single linear thresh- 1

old unit. We then demonstrate how this algorithm 1
may be applied to a number of units in a single layer
and to multi-layer networks as well.

5.1 Single element optimality

0

Consider the case of a single neuron learning to clas-
sify linearly separable data in R". For simplicity, we
will assume that the distribution P on which we will
measure error is known to be uniform ovei the ui6t
n-cube. A set of labeled samples Sm restricts which 0
hyperplanes may be used to separate the training data.
Here, Emaz is just the maximum volume between two
hyperplanes that are consistent with Sm. i gure 3: Contour map of the values of querying vari-
A heuristic for appi.,ximating thiis volume is to enu- ous point in the domain with respect to improvement
merate the "extreme" hyperplanes. thosc =onzistent o. the bound of the possible error. Querying near (1.0,
with Sm that border on exactly n points. Since the vol- 0.58) will produce the greatest guaranteed decrease in
ume difference between hyperplanes is piecewise linear, the error bound.
we may visualize maximizing the difference between
two hyperplanes by moving them apart until they abut structure; it operates on the classifier rather than be-
constraining points in the training data. We may thus ing an intrinsic part of it. Howeier, the procedure does
restrict ourselves to examining a finite (albeit large) appear to be structurally amenable to implementation
number of candidate hyperplanes representing extreme using linear programming, which could be computa-

tionally tractable, or even relaxation search, which
Using this metric, we may then determine the value could be implemented in a neural network. These are
of classifying a new point x by adding (x, 1) to our currently being investigated by the authcr.
training set, determining the new cmar, and comparing
it with the cEnax if we were to instead a'ad (x, 0) to our 5.2 Multiple element optimality
training set. The maximum of these two is the bound
on our error if we know x, and thus is the value (to When a number of units take input from the same
this particular neuron) of querying x. space, we may extend the above notion of querying

with only m':aor adjustments. Intuitively, we may
We have created a simple implementation of this al- imagine simply computing the query value with re-
gorithm, employing a brute-force search for a point spect to each unit and choosing the point with the
with near-optiral value. Figure 3 shows an exam- overall greatest value to the layer.
ple of the contours of value for a 2-dimensional case.
Applying this algorithm iteratively, we compared the The problem with this approach is that when thes
bound on generalization error for neurons trained on units serve as ap input layer for a more complex net-
dat- from three runs of "optimal" queries with tie work the input data will likely not be linearly sepa-bound for neurons trained on 12 runs of random!y sam- rable. Eachi unit will be distinguishing some part of

pled data The difference (see Figure 4) is dramatic. the data set from some other, but none will be consis-
while the bounds for the randomly sampled data fol- tent with the entire set. What we end up with is he
low the roughly I curve predicted by Blumer et al, Credit Assignment Problem. which neuron should be
the bound for themqueried curve approaches zero eApo- responsible for separaing what data?
nentially fast. There are two solutions to this problem. The globally
An obvious drawback of the querying procedure de- optimal solution is to simply enumerate all sets of hy-
scribed in this section is that it is computation-Ily perplanes, one plane for each neuron in the layer p.,
expensive; the number of hyperplanes that must be set at.d ensr:t that all distinguishable points are sepa-
considered scales exponentially with input dimension. rated by so ne plane in the set. One would then repeat
Additionally, (unlike the SG-network), the algorithm the maximization process with each of these sets. This
for determining queries is not built into the network is, of course, computationally intractable.
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Figure 4- Comparative bounds on maximum error for Figure 5. A more complex querying problem may be

runs of a single linear threshold unit using random decomposed by first applying the classifier training al-

sampling and locally optimal querying. gorithm and determining which neurons take respon-
sibility for which subsets of the data.

A more reasonable (though not globally optimal) so-
lution is to pursue a local approach to optimality let training samples. It is this modularity that enables

each neuron, orce it has settled on a part of its input standard error backpropagation to employ the percep-

domain, try to pursue what it believes is an optimal tron learning algorithm when training multi-layer net-

strategy for the points it separates. To illustrate, we works of neurons.

consider the problem of learning a convex body using Thus, we might expect the same techniques to suffice
a single layer of neurons with outputs wired to a single for determining, for each layer, what point in its input
AND gate. space it should query next. Since the queries we will

Given an initial set of examples Sm, train the network be considering here are strictly in the input domain,

on S' and determine where the hyperplanes specifid we will have to "backpropagate" the interests of more

by the first layer units lie (Figure 5). For each hyper- remote layers to the input spaces of the lower, immedi-

plane h defined by a unit, we may apply the above ate ones. Experiments along these lines are currently

locally optimal querying algorithm, considering only being pursued.
the elements of S mI that are correctly classified by h
(Figures 6a, b and c). The values of these queries may 6 Conclusion
be summed over all input units, and point with the
greatest overall value is chosen as the "optimal" point
(Figure 6d). Note that this point may not be optimal In this paper, we have arg ied the need for a sequen-

in the global sense, it is a compromise between locally tial querying method that makes judgements on the

computed optima. The great advantage of this ap- graded values of querying diTerent points in the do-

proach is that, since, all but the final summation may main We have presented a .-imple but effective lo-

be done with strictly local information, the computa- cal algorithm for making such queries to train a sin-

tion scales linearly and may be parallelized. gle linear threshold unit, and have described how this
approach may be generalized for use with multiple-

5.3 Multiple layer optimality element, multiple-layer neural networks.

One of the motivations behind pursuing learning by

We can view the multi-layer case as an extension of queries is the possibility of training using far fewer

the single layer, multiple-element case. With any examples than training by random sampling would re-

strictly feed-forward network, the computation may quire. The cost of determining which points 41k query
be decomposed into layers, where the job of each must be weighed against this benefit. That the compu-
layer is to transform its k-dimensional input into an tational cost of the algorithm scales linearly with the
n-dimensional - put subject to constraints imposed number of units in a layer is good, but the brute-frrce
from above and below by the surrounding layers and method of computing optimality scales exponentially
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A Modularization Scheme for Feedforward Networks
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Abstract given the same amount of training data. Learning com-
plexity per learning cycle decreases, then, simply because

This article proposes a modularization scheme small networks contain less links and units. On the other
for feedforward networks based on controllable hand, overall learning efficiency may deteriorate because
internal representations. Control is achieved of a decreasing convergence rate.
by replacing hidden units with pretrained mod- A couple of problem-independent strategies are known fur
ules that constrain internal patterns of activ- the construction of small nets. Either an auxiliary error
ity to desired subsets. In the case of auto- term is added to the cost function in order to penalize net-
associative feedforward networks these subsets work configurations with many active links and/or units
can be seen as module interfaces. If enough a [Chauvin, 1989], or the relevance of links/units with re-
priori knowledge about a system is available, hi- spect to the error is determined, and the least relevant
erarchical systems with separately trainable an& links/units are deleted [Mozer and Smolensky, 1989; le
exchangable modules can be built. Cun et al., 1990]. The problem with minimal network

construction using auxiliary error terms is the difficulty
of relative weighting of terms, which may cause conver-

1 INTRODUCTION gence problems. Also, it might still be very difficult to
understand the emerging patterns of activity in the hidden

Feedforward networks with backpropagation as a learning layers.
procedure have been successfully used for many problems. A more general approach is to minimize the number
Generally speaking, they can approximate continuous non- of free parameters in the network, e.g. by incorporating
linear functions to any desired precision. But there are equality constraints between the weights of the network
deficiencies: learning time efficiency ., at least of poly- based on a priori knowledge of the problem [lie Cun,
nomial order; generalization abilities of standard networks 1989]. A significant reduction in learning complexity and
are insufficient; interpretation of network behavior is dif- better generalization can be obtained. On an even more
ficult, if not impossible. general level, it is now recognized that the optimal net-

Much work has been done on the optimization of learning work architecture for a given problem should be the one
time efficiency. The majority of the techniques developed that can be described with the least number of bits, that
are based on second order methods to minimize the num- is, the one with the Minimum Description Length (MDL)
ber of steps the gradient descent procedure has to take. But proposed by Rissanen.
even if significant progress could be achieved, it would not A third approach is proposed in this article. A priori
help improve generalization abilities of networks. knowledge is used to select a constraint space for inter-

Le Cun [1989] has pointed out that the number of train- nal representations. The goal is to use the constrained
ing examples required for good generalization scales like internal representations as - within bounds -- flexible
the logarithm of the number of functions which a spe- interfaces between modules of feedforward networks. In
cific network architecture can implement. Assuming that the first place, a break-down into modules would result
a small network is less general than a bigger one, i.e. that in reduced learning complexity. In addition, if enough a
it can implement less functions, provided it is still able to priori knowledge is available, it should also be possible
compute the desired function, we can conclude that small to tailor the interfaces in such a way that the number of
networks yield better generalization than bigger networks, free parameters is also reduced without losing the net-

work's ability to im'lement the desired function, resulting
*Sckretariat FR 5-9. Franklin Sir. 28/29, <ao@coma.cs.tu- in enhanced generalization abilities.

berlin.de>
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2 CONSTRAINING INTERNAL
REPRESENTATIONS m2

This interface can be represented as a constraint space for m1
patterns of activation at module boundaries. The patterns
have to be controllable and interpretable, but must still be
general enough to capture underlying regularities of the
environment of the module during the learning procedure.
On the other hand, they have to facilitate the encoding of
external values and the decoding of adopted patterns of
activity in terms of external concepts.

A promising way of defining these patterns is the use of
coding schemes that restrict patterns of activ,:.ion to spe-
cific subsets with well-defined values related to them. I
have chosen a coarse coding [Hinton et al., 1986 scheme
of scalar values. In comparison to value-unit codings, it
shows improved convergence [Hancock, 1989]. It also
provides the resolution needed for the development of
internal representations. The intended scalar value can
simply be represented by sampling a unimodal function
centered at this value [Saund, 1989). Decoding of scalars
is possible via auxiliary networks that map scalar repre-
sentations to an activation value or by a least squares error Figure 1: An aute-associative 2-2-2 module m as an
procedure. abstraction of the hidden layer of in2 .

2.1 A CONSTRAINED NETWORK weights in the 4-4-4 module are fixed at their current val-
ues. Only weights from the input layer to the input layer

Constraints are enforced by replacing the hidden layer of of the 4-4-4 system and from the output layer of the 4-
a standard feedforward network with a pretrained auto- 4-4 system to the output layer and the respective biases
associative network. are subject to change by the backpropagation procedure.

An auto-associative network m, trained for identity map- The 4-4-4 system merely serves to propagate activations
ping of any desired scalar representations will generalize and backpropagate errors, thereby constraining the internal
to reasonable representations at the outputs if clamped to representations of the encoder to scalar representations.
unknown input data. If backpropagated to the input units, The convergence of the modular system is very similar
the error can be used to modify the inputs in a way that to the original encoder and about one order of magnitude
minimizes the error at the output units. If placed in the better than a system without separate training. Of course,
middle of a surrounding network n2, adopted represen- the training effort for the pretrained module has to be taken
tations at the output units of m I serve as encodings of into account, too. But since backpropagation is typically
internal representations of M2, while the backpropagated of polynomial order, the additional complexity (40 free
errors can be used to modify the weights between the in- weights) is low in comparison to the complexity of the
put layer of m2 and the input layer of m, (see figure 1). training cycles for the 8-4-4-4-8 (120 free weights) and
Thus two optimizations take place: (a) the output layer of 8-[4-4-41-8 (80 free weights) systems.
mi will eventually generate almost perfect scalar repre-
sentations without any weight changes in m I proper, (b)
m2 converges to its desired input/output mapping. 3 APPLICATIONS

2.2 A CONSTRAINED ENCODER NETWORK 3.1 NONLINEAR DIMENSIONALITY
REDUCTION

The scheme was tested on an 8-4-8 encoder whose hid-
den layer had been replaced by a 4-4-4 module. Three rhis system can be applied to nonlinear dimensional-
simulation runs were carried out (see figure 2). a) stan- ity reduction problems [Saund, 1989], which turn out to
dard 8-4-8 system, b) 8-4-4-4-8 system (three hiddei lay- be the special case of equal representations at input and
ers), c) 8-[4-4-41-8 system with pretrained 4-4-4 abstrat hidden layers. The constraining module has to be pre-
module. The ,eights of the links of the three hidden lay- trained to auto-ass.iate the cnosen scalar coding, while
,;rs are copied from a 4-44 system that has learned to the original modules auto-associate the higher dimensional
,uto-assomiate arbitranly-positioned coarse-coded scalars data. The contraining module pressures ,ntemal patterns
;.i a separate learning procedure. After being copied, the of activation into the desired coding, without need for spe-
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Figure 2: Convergence of 84-8 encoder, 8-4-448 en- Figure 3: Nonlinear dimensionality reduction from
coder, and 8-14441-8 encoder with pretrained abstract two-dimensional curve data to one-dimensional data de-
module. noting points along the curve.

cial convergence strategies'. Figure 3 shows a nonlinear define module input/output relations, making the learning
dimensionality reduction from two-dimensional data to a phase senseless.
one-dimensional constraint using a 16-[8-8-81-16 archi-
tecture. This dilemma can partly be overcome if interfaces are de-

fined more loosely. One way of achieving a loose coupling
is to take advantage of the characteristics of scalar cod-

3.2 INTERFACE DEFINITION ings. In the case of an auto-associative feedforward net-
work, where internal representations are forced into scalarIn truly modular systems, e.g. large computer programs, codings and where inputs/targets are also presented in the

there is typically a design phase requiring the strict defini- form of scalar codings, a sufficient approximation of the
tion of interfaces before the construction of modules can targets is only possible if the scalar codings at the hidden
take place. This includes a fixed input/output relation for layer evolve in orderly fashion. In other words, inter-
all data to be processed. In addition, the representation nal codings are almost equally distributed over the given
of data at module boundaries is given by data types, that interval and are in ascending or descending order with re-
is, the range of possible values a parameter can adopt. spect to corresponding inputs/targets, as shown above for
Once a design is completed, modules can be constructed the two-to-one dimensionality-reduction problem. The be-
separately, which in general results in a significant reduc- havior very much resembles a simple topology-preserving
tion in implementation complexity. Also, modules can be mapping as known from Kohonen's self-organizing fea-
exchanged, e.g. if implemented inefficiently, at any time ture maps [Kohonen. 1989].
without interfering with other parts of the system.

Given that, an interface can be defined by a type definition,How might this scheme be transferred to modular neural that is, the range of valid scalar values, and the assertion
networks? An important feature of neural nets is their that a neighborship relation between patterns of activation
ability to learn from examples, that is, to develop internal at inputs/targets and internal patterns will be preserved.
representations according to the underlying regularities of On the other hand, a learning system consisting of more
the environment. If internal representations are to be used loosely coupled modules will lose some of the capabilities
as interfaces, all internal representations that can emerge a strictly defined system has.
during learning have to be known in advance in order to

'To obtain convergence, Saund (1989] has to use a simulated 3.3 EXAMPLE
annealing schedule (smoothness of scalar coding) and a method
of "encouraging" scalarized behavior by increasing peaks and Let us consider a s3 tcm Nhcre some raw data ib to bi
decreasing valleys in a partic'lar trial, processed in several steps. First, data is compressed int.
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A LEARNING PROCEDURE
ADJUSTMENTS

All simulations were carried out using the standard back-
propagation algorithm with a fixed learning rate of 1 =
0.2, a fixed momentum of a = 0.1, weight update af-
ter each presentation (on-line mode), and sequential pre-
sentation of patterns. To speed up learning, the gradient
was normalized before updating the weight. This follows
from the empirical observation that the product of optimal
learning rate and absolute value of the gradient remains
almost constant over all learning cycles, see [Salomon,
1989]. Scalar codings were created using the derivative
of the sigmoidial function 1/(1 + e-z/t) at a temperature
of t = 1/8.
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Abstract cilitates knowledge composition must preserve the
adaptive power of such networks. It must be able to

CompoNet is a connectionist architecture accommodate multiple relations, and yet only a small
that facilitates modular knowledge composi- part of the network should be activated at a time to
tion. The network uses multiplicative links handle the current problem, without invoking irrele-
to control modular activations, as well as to vant information processing. Later training should not
dynamically recruit hidden units. Multiple negatively disturb information stored pre, iousl) in the
relations between different sets of units can network. And most importantly, the network must be
be loaded onto the same network at different able to take advantage of pre, iously learned knowledge
time. Relations added later to the network in later training.
can take advantage of established mappings More specifically, we need a way to control which nodes
and hidden unit representations, without dis- and links in the network, pre-trained or unexplored,turbing previous trainings, are involved, given some specified sets of input and/or

output. We also need some mechanism to decide which
1 INTRODUCTION hidden units are to be allocated for current training.

In the next section, we present a connectionist archi-
The connectionist approach to the study of artificial tecture which provides a general purpose network con-
intell:gcnce has been flourishing in the past few years. figuration and systematically integrates different net-
Among many attractive features of the connection- work modules. Simulation performance of the model
ist networks, most impressive arc their adaptabilit in terms of knowledge composition and hidden unit
to environmental information and noise, and their ca- recruiting will be discussed in section 3. Lastly we
pability as universal approximator to arbitrary map- will summarize vur research findings and possibilities
pings [4]. Most of the research works, however, have of luture research.
focused on tackling a specific problem domain with
specially designed network architecture, without ad-
dressing the problem of knowledge composition, i.e., 2 CompoNet: A COMPOSITIONAL
systematic integration of network modules [2]. Net- CONNECTIONIST
work composition not only facilitates the incorpora- ARCHITECTURE
tion of training efforts, but is also crucial to the role of
connectionist networks in modeling symbolic reason- CompoNet is a network architecture that facilitates
ing systems [6,7,9]. Without compositional capability, connectionist knowledge composition. The main idea
networks are severely limited in their power of rep- behind CompoNet is to control modular activations
resentation, and cannot be used as basic components with multiplicative gating on each node, and to recruit
of a knowledge base. Also, the lack of a general pur- necessary hidden units by adjusting the weights of the
pose network configuration makes it very difficult for links connected to the gates.
connectionist networks to interface with other tools of
computation such as databases, production systems,
or even some special purpose connectionist proces- 2.1 ARCHITECTURE
ing module. Lastly, a common network configuration The basic architecture is depicted in figure 1. The net-
could also promote the realization of parallel connec- work consists of a set of visible nodes as we]l as a set oftionist hardware. okcnit fasto iil oe swl sasto

hidden nodes. There are complete bi-directional con-
A general purpose connectiunist architecture that fa- nectiuns among ,:,iblc nodes, where reciprocal links

188



A Compositional Connectionist Architecture 189

activation is only visible to others when the pi-unit is
on.

Correspondingly, each connection in figure 1 actually
Visible Nodes Hidden Nodes consists of a sigma-link connecting sigma-units, and

a pi-link connecting pi-units. A weight is associated
with each link. In addition, each sigma link also carries
a bias. Biases are typically associated with nodes in
most connectionist networks. In CompoNet, however,
it is necessary to keep the biases on the links since
a visible node may participate in different mappings
at different time, and thus requires different biases.
Weights associated with pi-links are restricted to be
non-negative, and they are initialized to zero. Weights
and biases on the sigma-links are initialized to random
values.

Also associated with each hidden node is a "used"
flag ,kch indicates that the hidden node has been re-

Figure 1. Basic Architecture - CompoNet consists of cruited already. Similarly a "trained" flag is attached
a set of visible nodes and a set of hidden nodes to each connection to signify that the connection has

been used in training. Their usage will be discussed
later.

can have arbitrary weights. There are no intercon-
nections among hidden nodes. Between hidden nodes 2.2 ACTIVATION AND TRAINING
and visible nodes are complete bipartite connections.
These links are uni-directional although the exact di- When a subset of visible nodes are clamped as input,
rections are not determined until their associated hid- the activation values of their sigma-units are set ac-
den nodes are recruited in training, cording to the input pattern, and their pi-units are

turned on, that is, set to the value of 1. The val-
ues of both units ar,. forwarded to other nodes they

gadng are connected to, through both pi-links and sigma-
links. A pi-unit will be turned on if the sum of its
weighted inputs exceeds a fixed threshold. Its asso-

na Pi ciated sigma-unit then becomes active and forwards
its value to other nodes. The route of forward propa-
gation is determined by previous trainings since only
trained pi-links have large enough weights to carry the
information further. Such forward activations are con-
tinued only for a fixed small number of steps each time
aset of input nodes are clamped. Thus the input nodes
can only propagate information through trained con-

gating nections to other nodes reachable in a finite number offorward steps.

During training, another subset of visible nodes are
designated as target outputs. As in standard back-
propagation learning [5], an output node computes

Figure 2: Sigma-unit And Pi-unit, - two components and propagates error back to all nodes connected to

of a node it through sigma-links. Error propagation continues
through active hidden nodes, but stops at any visible
nodes or inactive hidden nodes. Only weights asso-

As shown ;n figure 2, each node is actually composed of iated with sigma-links between active nodes are ad-

two units, a regular sigma-unit, and a pi-unit used to custed An in active node a hec

gate the output of the sigma unit. Both units take the justed. An inactive node has zero activation hence

sum of weighted incoming signals as their net input, change of weights on links t oal rris node can-

The sigma-unit has continuous activation from -I to ,o reduce the global error mesure.

using a standard logistic squashing function, whereas Wcights associated %ith the direct pi-links from input
the pi-unit is a threshold unit with binary activations nudes to target output niude- arc increabed quickly till
of either 0 or 1. The pi-unit does multiplicative gating the output pi-units arc turned on. Thus after training
on its associated sigma-unitsuch that the sigma-unit's these output nodes ill becomtc active wlhenevcer the-
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input nodes are c'.mped. Weights of pi-links inol ing be further recruited even if the current configuration is
hidden nodes are adjusted in the recruiting process. not adequate for the t:aining set. A positively biased

factor is added to the "improvement" measure to alle-

2.3 RECRUITING viate this problem. As a hidden unit accumulates its
potential improvement across training patterns, nega-

Since all pi-links initially have zero weights, no hid- tive improvements are down weighted by a multiplier
den nodes are used at the initial training stage. If between 1 and 0. The multiplier can be adjusted ac-
the direct connections between input and output nodes cording to some semi linear function of the elapsed
become insufficient for the current mapping, new hid- time (number of iterations) from last recruiting. Such
den nodes need to be recruited. This is done through mechanism ensures that hidden nodes will be recruited
adjusting weights of the pi-links connected to inac- when needed. It also helps back-propagation breaking
tive hidden units. Each inactive hidden node con- out of local minimum since the recruiting is biased to-
nected from the clamped input has a potential acti- ward patterns of higher error.
vation value since untrained sigma-links carry random A hidden node can only be recruited once. The afore-
weights. This activation, however, is not visible to mentioned "recruited" flag is used for this purpose.
other nodes since it is blocked by the inactive pi-unit. This does not mean, however, that a hidden unit can
Hidden units can also collect error information from only be involved in one particular mapping. When
target nodes. Based on this information, a hidden a new mapping is being trained, a previously trained
unit can compute the amount of improvement it could hidden node may be activated by some subset of the
have contributed to the global error, if its pi-unit were current input nodes, and hence participate in current
turned on. Such measure of improvement is then used .
to adjust in proportion the weights of the hidden unit's learning.

incoming pi-links from the input nodes. Consequently,
weights on pi-links connected to the most "useful" hid- 2.4 MINIMAL DISTURBANCE AND
den unit will grow fastest, and thereby activate that TRAINING REINFORCEMENT
hidden unit first. The sigma-unit of a recruited hid-
den node is used in back-propagation, changing the The model presented here supports modularization
landscape of the weight space as well as the network's through the use of pi-links. Given some specified in-
current position in that space. As a result, the "use- put, only a subset of nodes in the network become
fulness" of different inactive hidden nodes also -hanges active and participate in the current use or train-
and a previously growing pi-link weight may now move ing. Weights of sigma-links to or from inactive nodes
toward the opposite direction. ire never changed. CompoNet also facilitates knowl-

To compute the potential "improvement" it can make -e composition. Later training employs previouslN
to a particular target node, a hidden node needhs to rned knowledge since back-propagation from the
know its own activation, the weight on the connection target nodes involves not only the clamped input set,
to the target node, as %%ell as the current net input of but also all vis:ble and hidden nodes activated directy
the target node. Alternatively, the coraipAtation can or indirectly by any subset of the input nodes. Cau-
be done at a target node and then propa.,ated back to tion must be taken, however, tv ensure that prei iously
the hidden unit. In either case, the computation re- trained relations will onl% be minimall. disturbed b,
quired for the recruiting algorithm is more costly than later trainings. Two issues are of particular concern.
that for the standard back-propagation. Nevertheless, Firstly, we need to ensure that the activation of an
it is in the same order of computation complexity since established node cannot be altered unexpectedly due
both are bounded by the number of weights in the sys- to the activation of some prev iously inactiv e nudes. A
tem. The same is true with parallel hardware pro-ided simple example is shown is figure 3. Hidden unit II is
that there is one processor for each connection. With first recruited for the mapping from A to C. Later we
one .rocessor per node, however, the recruiting algo- need to train a relation from A and B to D, in which
rithm :s more expensive than back-propagation since case both C and 11 %ill be activated and can be used
an inact.ve hidden unit cannot simply sum up infor- in the next training. llo r, since B is no, visible,
mation back-propagated from target nodes. C and If can take input from it and therefore mary nothave the right activation values.
Growing the pi-links as described above does not as-

sure some :nactive hidden nodes can always be al- To manage such problems, a 'trained" flag is used on
located. When the network has successfully learned the links. The flag on a link from any active node to
most but not all of the training patterns, weights on a visible node is set if the destination nude is clamped
the pi-links decline to zero since any newly added hid- as target, the flag on a link to a hidden node is set
den node would likely have adverse effect on the ma- when the hidden node is just recruited. Active nodes
jority of the training set. While such natural decay has in the network take input only from trained" con-
the advantage of automatically reinitializing pi-links to nectiuns. Coniersely, unrecruited hidden nodes cul-
zero weights, this also means that no hidden nodes can lect input from all connections, which are necessar-
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clamping since its activation changes as learning pro-
ceeds.

2.5 MATHEMATICAL DESCRIPTION

G D The operation of CompoNet can be summarized with
the following mathematical equations.

- H 2.5.1 Forward Activation

Let

-- - - aT and af denote the activations of the sigma-unit

A~,B and pi-unit of node i,

wf and wl" denote the weights associated with the
sigma-link and the pi-link from node i to node j,

bf. denotes the bias associated with the sigma-link
Figure 3: Example of Untrained Connections from node i to node j.

In forwzxd activations,

ily "untrained". Note that activations of the pi-units I if izw > C
change according to different input patterns, whereas ai 0 otherwise
the "trained" flag becomes permanent once set. The o
former is used to control modularization; the later is where C is a constant threshold.
used to ensure minimal disturbance.

Actually, the "trained" flag is redundant since it corre- a,'= f(E u, * (b'' + wi * a)* a)
sponds to pi-links of none-zero weights. It is nonethe-
less included here for clarity. where

A second issue of concern is whether later training can
affect weights on established connections and thus dis- fo denotes a logistic squashing function,
tort previous mapping. In the above example, even u,, denotes the training flag associated with the link
though the connections from B to I and C are now between node i and node j. It is set to I if the
disabled, weight associated with the link from A to link has been trained, 0 otherwise.
11 can change since the hidden unit H is involved in
back-propagation (note that the direct link from A 2.5.2 Back Propagation Training
to C would not be affected since in CompoNet back-
propagation does not go through visible nodes). The standard back propagation algorithm is adopted

here except that only active nodes and trained links
Disturbance to the established mapping from A to C are actually involved. Back propagation goes through
is prevented through training reinforcement When active hidden nodes and stops at any visible nodes.
a free visible node (i.e., a visible node that is not
clamped as either input or target) is activated, it Let E denote the global measure of error
automatically sets its own target value for back-
propagation according to its current activation. For
example, a free visible node with an act:vation of 0.95 2 = ET
would set its own target at 1. Thus v.tile the back- jET

propagation algorithm learns the new mapping for the where
target nodes, it also maintains the right activation for
the free nodes. T denotes the set of indices of nodes currently

Training reinforcement not only ensures minimum dis- clamped as target output,
turbance, but also further strengthens relations that tj denotes the target activation of node j.
are frequently used. Unfortunately, it also restrains
our training pattern representation to a binary system, Define
or at best, a system with graded activation intervals b=
on visible nodes. With continuous representation, a
visible node will not be able to memorize its own tar- where net, denotes the current sum of weighted input
get across different training patterns without external from incoming links to node j.
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For output units customized for different purposes without changing the
= ( ) * f'(netj) algorithm. The requirement of complete bipartite con-

nections between visible nodes and hidden nodes can

be relaxed to random connections given a large set of
For active hidden units hidden nodes, since a small number of hidden nodes

j = f'(netj) • uj* * * •j k *a'* between every related pair of visible nodes would be
W.ksuffici-nt. With some slight modification to the re-

cruiting algorithm, one can also organize the hidden

Adjustment of weights nodes into multiple layers instead of the single layer
proposed here.

Awo = *7 bj * af' * af The estimate of potential improvement used in the re-
cruiting algorithm is a little more expensive than stan-

Adjustment of biases dard back-propagation. To reduce computation effort,
an inactive hidden unit can estimate the potential im-

Abe. = 71* 6j * af provement by simply taking the sum of gradients back-
propagated from the target nodes and multiply that by

2.5.3 Recruiting its own activation. The estimation will probably be ac-
curate enough for recruiting purpose provided that the

The potential acti,.atiun uf an unrecruited hidden node activation is small, which can be attained by restrain-
is calculated differently: ing the initial random weights to be within a small

interval.
pj = f + w' * af) * af) The restriction of discrete representation can be re-

i1) moved if we allow only visible nodes to be shared by

different relations, in which case training reinforce-
Its potential contribution to the improvement of global ment would not be necessary.
error is The plausibility of these variations is yet to be verified
imp, = ((tk --f(ne))2- - by further experiments. Many other parts of the archi-

mk= -f(netk)+ p-q * Wplk)) tecture and algorithm can be modified. CompoNet is
kET designed to have flexible network configuration, and to

provide easy interface to other connectionist models.Adjustment of weights associated with pi-links con-

nected from node i to an unrecruited hidden node j
is 3 SIMULATION RESULTS

Aw, = 0 * , (n) * impj A software simulator was implemented to test the per-

where formance of CompoNet. We will first present experi-
mental results in terms of modular knowledge compo-

0 is the pi-link learning rate, sition, and later discuss the specific engineering per-
formance of the recruiting algorithm. Unless speci-

(3 is the positively biased multiplier, a function of the fled otherwise, results presented were obtained with
number of training epochs since last recruitment, the same parameters. Weights were initialized ran-
n. domly according to a normal distribution with mean

zero and standard deviation two. Back-propagation
A possible choice of 0 could be learning rate was set to 0.1, with a momentum of 0.9.

I 1 if impj > 0 or n < Nmi, To avoid unnecessary recruiting, a history window of
13(n 0 if imp, < 0 and n > - global errors in the past 256 epochs was used to adjust

n) - otherwise the learning rate on the pi-links. The learning rate is
. -,v ,x ~suppressed to 0.001 if the global error is reduced by

where N',n and N.,, are sele'ted constants. 0.1% across window, and boosted back to 0.2 other-
wise. The positively biased multiplier described in the

2.6 DESIGN VARIATIONS recruiting algorithm follows a piecewise linear function
with a value of I at 500 epochs (since last recruitment)

Components of the CompoNet architecture can be var- or less, 0 at 1000 epochs or more, and 4-'O*' in50o
ied without affecting the basic idea of network mod- between. These parameters were chosen to attain more
ualarization and knowledge composition. For exam- consistent performance across different tests. They are
pie, complete asymmetric connections among ,isible ne%ertheless quite arbitrarv selections and are by no
nodes are not necessary. Actual connections can be means optimal.
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A xor B and also added one more input node for the extra bit.
A different output node was used for each of the four

-1.9 relations. Figure 5 shows the performance of a typi-
and B -4.35 cal training session. Mean squared errors were plotted

- "" jaragainst the number of training epochs. Each circle
represents the addition of a hidden unit. For compar-
ison purpose, we also plotted the performance of typ-

,2.37  ical examples of individually trained parity problems.
V6Note that the performance was not optimal in terms of

the number of hidden nodes, as 4-bit parity recruited
two hidden nodes instead of one even though it had

2.62 ,3-bit parity available as its input. The training time,
nevertheless, was greatly reduced from that of sepa-
rate trainings. Tesauro and Janessens in [81 suggested
that the required training time for neural networks to
learn parity functions with back propagation increases

A B in second order polynomial with the number of input
patterns. Although only very limited statistics were

Figure 4. AND and XOR - An example of knowledge collected, our results suggested that with incremental
composition learning, the increase of training time remained linear

with respect to the number of input patterns. In fact,
the linear order increase was not necessarily incurred

A fixed configuration of sixteen visible nodes were used by incremental learning, but probably bounded by the
with the same number of hidden nodes available. For speed adjustment of the recruiting algorithm used to
illustration purpose, simple boolean logics were used prevent unnecessary recruits.
in the simulations. CompoNet, however, is not de- Training reinforcement, i.e., the use of internally set
signed to model these functions only, nor is it our in- target values, worked well in all experiments. No pre-
tention to propose a proper connectionist representa- viously trained relations were ever disturbed by later
tion of boolean logic. trainings.

Another advantage of sharing previous knowledge is
3.1 MODULAR KNOWLEDGE the easy generalization of some unknown new rela-

COMPOSITION tions. Generalization in connectionist mapping refers

to the capability of the algorithm to learn a particular
Previously trained knowledge can be used in later relation without seeing the entire set of training pat-
training. Such knowledge sharing can happen through terns. The back-propagation learning algorithm can
the use of previously trained visible nodes, as well as often generalize by effective use of the available hidden
established hidden nodes. In our first example, we units. In addition, CompoNet is capable of a different
trained an AND relation from two input visible nodes type of generalization based on existing knowledge. To
to another visible node designated as output. This was see this, we first train a relation like 4-bit parity onto
accomplished in 28 epochs. We then added an XOR the network. Later a subset of the same training pat-
relation from the same input nodes to a different out- terns are presented to the same input nodes, but to a
put node. XOR. typically can be trained in about 1000 different output node. Since the first output node al-
epochs with one hidden unit recruited. In this case it ready carried the proper output information, a strong
used the output of AND and learned the relation in an- connection from the first output node to the second
other 256 epochs. Figure 4 depicts the trained network can be quickly established and no further tlaining is
from this example. Biases are written in the circles, needed. The new relation simply assumes the old one
Repeated trials of this experiment showed consistent even though the new training set may actually be a
performance, although the training time for the second subset of patterns for some other relations. Thus the
XOR relation varied from 43 to 470 epochs. system is biased toward existing knowledge, and al-

Parity problems were used in another experiment of in- ways finds the easiest way to accumplish the new task.
cremental learning. Training parity functions of four Interestingly, such tendency to attain quick solution
or more bits induced much difficulty on CompoNet can sometimes have negative impact on the speed of
due to the configuration of hidden nodes. This issue learning. In one experiment we first trained a NOT-
will be discussed further in this paper. In this exper- XOR. relation and later added an OR relation from
iment we first trained a 3-bit parity relation on the the same input nodes to a different output node. The
network, and later added in sequence 4-bit parity, 5- OR relation can normally be trained easily in less than
bit parity and 6-bit parity. Each training shared the 30 epochs. With NOT-XOR pre-trained, however, it
set of input nodes used in the preceding training set,
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not (A xor B)

A or B

3.42 29
-3.58

-2.93
3.81 -3.86

-2.91

-0.55 -0.17

A B

Figure 6: NOT-XOR and OR - An example of slow learning

sometimes takes many more epochs. The final network the exact time of recruiting cannot be tuned niechani-
configuration of one such example is shown in figure cally to correspond exactly with the detection of local
6. In the first training session, the hidden node re- minimum. Nevertheless, we expected that recruiting
cruited for NOT-XOR developed into a NAND. In the would consistently aid back-propagation to converge
second session, the OR node first developed into an in reasonable time without allocating excessive num-
XOR and it took another 182 epochs before the right ber of hidden units.
mapping was learned. The direct connections from the
input nodes to the OR node were hardly used. This is To our surprise, the algorithm failed on one of the first
mainly because after the output node had learned to problems tested. As we ran the 4-bit pariy problem
behave like XOR, it became more effective to use the on the network, the system quickly learned fifteen out
hidden NAND to fix the incorrect output. The correc- t t senra te sate one or tho
tion process was slowed down considerably because the recruits, but generated opposite output value for the
output node had values closer to the extremes of the one pa.ern left. The network then stayed in the same
logistic function hence had near zero derivatives with state wil' no further progress despite increase of hid-respect to the weights. The result of this experiment den units. To see whether this problem was causedvaries considerably depending on the meaning of the by the particular recruiting algorithm, we disabled re-

previously trained hidden node, as well as the initial cruiting and added hidden units manually one at a
random weights. There were also many cases in which time, but still failed to escape from the local mini-
the previously trained hidden node helped to speed up mum even after adding over twenty nodes. Such prob-
convergence. lems occurred consistently over many trials. Figure 7

shows the netwo-;" -.t an initial stage of one such ex-
ample. Further s.udy of the weights suggested that

3.2 PERFORMANCE OF RECRUITING unless links connected to a recruited hidden node had
The recruiting algorithm was devised only for the pur- very special ihitial weights, gradient descent could only
pcse of hidden node allocation in a larger network. push the network state further into the local minimum.
It is nonetheless interesting to study the engineering For comparison purposes, we deleted tl,, direct con-
performance of such algorithm when it is used for in- nections from ,nput to output and ran the experiment
dividual problems. In particular, we are interested in again. With this layered configuration, the system was
the effect of recruiting on the size of network and on able to learn 4-bit parity in less than 2000 epochs w.-:o
the speed of learning, either four or five recruited hidden nodes.

One major objective of research using network grow- The problem was eventually solved by setting the tar-
ing techniques is to attain minimum network size for a gets at ±0.8 instead of ±1. In this setting the activa-
given problem [1]. The most obvious situation under tions are pushed away from the extremes and thus the
which a new hidden node is needed seems to be when chance of fruitless training is greatly reduced. Parity
the network has settled into a local minimum. The re- problems of four or more bits remained difficult, but
cruiting algorithm in CompoNet relies on the growing could usually be trained within reasonable time. The
of weights on pi-links. Even though the learning rate is number of hidden nodes, however, often far exceeds the
adjusted according to progress of the training process,
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Figure 7: 4-bit Parity In A Local Minimum

minimum requirement. Typically, 4-bit parity could out direct input to output connections was the only
be trained in less than 5000 epochs, with 2 to 6 hidden problem for which recruiting consistently performed
nodes, 6-bit parity took from 4843 to 7371 epochs with better than fixed allocation. This is again due to the
7 to 10 hidden nodes, 5-bit parity often was trapped in special weight space landscape of the particular prob-
a local minimum for many epochs and took from 2045 lem. On most other problems, back-propagation with
to 19142 epochs with 4 to 11 hidden nodes. With fixed allocation can usually converge to the right solu-
direct connections between input and output, N-bit tion more rapidly, although sometimes the algorithm
parity can be realized with LNI2J threshold hidden does get trapped in some local minimum. The local
nodes. minimum problem can typically be unravelled by mul-

tiple trials or small variations on the number of hiddenInterestingly, the minimum solution to the parity prob- nodes. For example, with two fixed hidden nodes, 4-
lems with direct I/O connections is also conceptually bit parity consistently converged into local minima,
more complicated than the same problem without I/O whereas with four fixed hidden nodes, it could typi-
connections, even though the former requires fewer cally reach the solution in about 200 epochs.
hidden units.

Experiments with parity problems suggested that re- The recruiting algorithm, however, does not have to be
cruitingbased upon detection of local minimum. In some x-yn periments we used a fixed fast learning rate for weights
allocation method used along with back-propagation associated with the pi-links, and obtained .'ery good
learning could not always help to determine near op- results, including the only cases where we attained

timal architecture. The landscape of the weight space minimum configuration for 4-bit parity. The exact

varies with particular problems as well as network

configurations, and adding hidden nodes does not al- timing of recruiting played a significant role in the

ways help to escape from local minima. hIowever, learning process, and early recruiting often prevented

parity problems are known to be particularly difficult approaching !ocal mininia. The disadvantage of this
approach is that it often recruited unnecessarily a fewfor back-propagation networks [5] and recruiting do-3 etaiice ods h oa ube fhde oe

seemto evie god achiectue fr mst poblms. extra hidd en node-_ The total number of hidden nodsseem to devise good architecture for most problems. allocated, however, was typicplly still well within the

In terms of the speed of learning, i.e., the number order of the number of input nodes. It is not clear
of iterations/epochs needed to reach a solution, back- whether few extra hidden nodes can hac negatiic iir.
propagation with some scheme of dynamic node allo- pact on the generalization capabiltL of the network,
cation compares unfavorably to that with a fixed archi- or, in a larger framework like CinrpuNet, whether such
tecture. Any recruiting algorithm based on the detec- hidden nodes will be leb useful in tcrmb uf knvwledgi-
tion of local minima requires a lag time after each hid- sharing.
den node is allocated, such that the network can settle A related question is whether recruiting can negatively
given the new configuration. This necessarily makes affect generalization. As hidden nodes are recruited
the algorithm more expensive computationally by an one by one, the learning algorithm is forced to at-
order of the number of hidden units. Simulation re- tain best result given the current network configura-
suits confirmed such disadvantage as 4-bit parity with- tion. Thus the learning process must follow some se-
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quence of partitionings instead of traversing the inuli- well fLr the purpose of hidden unit allocation. The
dimensional weight space from the beginning. This siyiifican,., of dynamic allocation with respect to the
might hinder optimal partitioning, since an early move ability of leafning is worth further in' estigation.
cannot be easily altered later with a local minimizationalgorithm such as gradient descent. A serial version of the CompoNet model is currently

under development. We would like to integrate both

Another interesting observation on back-prc.pagation Nzrsins into one system which has the capacity to
with recruiting is that the algorithm seems tc be less model both dynamic and static relatiunb. We wvould
sensitive to its learning rate. With fixed architecture, also like to explore the design of a connectionist rea-
the back-propagation learning rate needs to be well soning system based on CompoNet.
adjusted according to the size of the network as well as
the number of training patterns. A large learning rate
can impede close approximation to gradient descent References
across different patterns and often leads to oscillation. 1 T. Ash. Dynamic node creation in backpropaga-
With recruiting it appears that at the same learning tion networks. Technical Report ICS 8901, Insti-
rate the amplitude of oscillation is greatly reduced. tute ofCognitive Science, UCSD, 1989.
This is probably because the major part of the network

has already settled into a relatively stable state, thus [2) J. A. Fodor and Z. W. Pylyshyn. Connectionism
raudom oscillations caused by changes of weights on and cognitive architecture: A critical analysis. In
the new links across training patterns have less effect S Pinker and J. Mehler, editors, Connections and
on the global error. Further study is needed to verify Symbo!s. The MIT Press, Cambridge, MA, 1988.
such conjecture. [3] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits

and the polynomial-time hierarchy. Proceeding,

4 SUMMARY 22nd IEEE Symposium on Foundations of Com-
puter Science, pages 260-270, 1981.

We presented CompoNet, a connectionist architecture [41 K. Ilornik, M. Stichcombe, and H. White. Multi-
which facilitates modular knowledge composition. The layer feedforward networks are Lni,,ersal approxi-
network uses multiplicative links to control modular mators. Neural Netw ork., 2(5).359 366, 1989.
activations, as well as to dynamically recruit hidden [5] D. E. Rumelhart, J. L. McCielland, and the PDP
units. Multiple asymmetric relations between differ- Research Group. Parallel Distributed Processing,
ent sets of units can be loaded onto the same network volume 1. The MIT Press, 1986.
at different time. Relations added later to the network
can take advantage of established mappings and hid- [6] L. Shastri and V. Ajjanagadde. A connectionist
den unit representations, without disturbing previous system for rule based reasoning with multi-place
trainings, predicates and variables. Technical Report MS-

CIS-8905, Department of Computer Science, Uni-
While the standard back-propagation learning algo- versity of Pennsylvania, 1989.
rithm is used in the model, both the modular acti- [7] P. Smolensky. Proper treatment of connectionism.
vation and the recruiting mechanism are much cus- Behaioral and Brain Sciences, 11(1), 1988.
tomized to achieve best performance and to ensure ro-
bustness. Such customizations have made the model [8] G. Tesauro and B. Janssens. Scaling relationships
conceptually not as simple as we had hoped for. The in back-propagaticn learning. Complex Systems,
algorithm, however, is local and well within the same 2:39-44, 1988.
order of comlputation as typical feedforward back- (9] D. S. Touretzky, D. IV. Wheeler, and G. E. Elv-
prop:gation netwerks. The design avoids the use of gren. Rules and maps II. Recent progress in
externa; knowledge of .'ihe; the network structure or connectionist symbol processing. Technical Re-
the training environment. Although the initial system port CS-90-112, Computer Science Department,
sc: up in carefully tuned and tez. ed, no further tuning Carnegie-Mellon University, 1990.
on narame ers such as learning rate is needed for the
network to deAl with different problems. Such consis-
tency is particular important for ompoNet since its
pir,.ose .s to ir.lle multiple relations and te integrate
them systWmatcaily.

Simulation performance of the CompoNet architec-
ture satisfactorily supported its capability of knowl-
edge composition and sharing. Previously trained rela-
tions were o_-iisistently preserved without disturbance.
The model also facilitated generalization through ex-
isting knowle6ge. 1.h,1 iecr,:itinr algorithm functioned
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Abstract of children acquiring the English past tense,
as well as children's performance on exper-

The traditional account of the acquisition imental studies with nonsense verbs. Incre-

of English verb morphology supposes that mental learning procedures are discussed in

a dual mechanism architecture underlies the light of theories of cognitive development. it

transition from early rote learning processes is concluded that a connectionist approach

(in which past tense forms of verbs are cor- offers a viable alternative account of the ac-

rectly produced) to the systematic treatment quisition of English verb morphology, given

of verbs (in which irregular verbs are prone the current state of empirical evidence relat-

to error). A connectionist account supposes ing to processes of acquisition in young chil-

that this transition can occur in a single dren.

mechanism (in the form of a neural network)
driven by gradual quantitative changes in the
size of the training set to which the network 1 INTRODUCTION
is exposed. In this paper, a series of simu-
lations is reported in which a multi-layered Several accounts of the development of English inflec-

perceptron learns to map verb stems to pact tional morphology are couched in terms of a three-

tense forms analogous to the mappings found phase U-shaped pattern of acquisition. These accounts
in the English past tense system. By ex- derive primarily from analyses of naturalistic produc-

panding the training set in a gradual, incre- tion data which indicate that early in development,
mental fashion and evaluating network per- children produce the correct forms of English past

formance on both trained and novel verbs at tense or plural irregular forms, such as went or sheep.

successive points in learning, we demonstrate Later, these forms are incorrectly inflected and errors

that the network undergoes reorganizations occur, e.g. goed or sheeps. Finally, the tendency to
that result in a shift from a mode of rote make such errors decreases, as some forms are identi-

learning to a systematic treatment of verbs, fled as exceptions to the predominant pattern in the

Furthermore, we show that this reorganiza- inflectional system.
tional transition is contingent upon a critical The production of these overgeneralization errors has
mass in the training set and is sensitive to been interpreted to indicate that learning a language
the phonological sub-regularities characteriz- primarily involves the acquisition of rutc systems, i.e.,
ing the irregular verbs. The optimal levels explicitly representable gene'alizations about linguis-
of performance achieved in this series of sim- tic regularities which allow the productive generation
ulations compared to previous work derives of forms that are not (or have not yet been) encoun-
from the incremental training procedures ex- tered in the input. The three stages in U-shaped devel-
ploited in the current simulations. The pat- opment have each been interpreted as manifesting the
tern of errors observed are compared to those application of different mechanisms or strategies for

A substantial proportion of this work was carried out forming past tense or plural forms, each representing

while the first author was a visitor at the Center for Re- differen, modes or periods within the course of rule

search in Language, University of California, San Diego acquisition. During the first stage, a rote learning

supported by a grant from the MacArthur Foundation. We mechanism stores all forms, both regular and irregu
would like to thank the PDPNLP discussion group for corn- lar, as independent items in a mental lexicon. During
ments on this work, and especially Jeff Elman for making this period, both irregular and regular forms are cor
computing and office facilities available. rectly produced. Hlowcver, systtmatic patterns which
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might characterize the input are not generalized to in interaction with the character (e.g., transparency
novel forms encountered by the child. The second of form-function mappings) of the inflectional system
stage of acquisition reflects the child's identification of the language to be acquired (e.g., Slobin [1985]).
of patterns of regularity, represented in such terms Hence, while details about the timing and nature of Lhe
as "add /-ed/" to form the past tense of a verb or transition are still under debate, rule-based accounts
"add f-s/" to form the plural of a noun. Overly gen- generally assume that U-shape profiles of development
eral application of such rules results in the production are best explained via dual mechanism architectires,
of incorrect forms like goed and sheeps, as well as the in which one mechanism is responsible for rote learning
tendency to regularize nonsense forms such as nibbed. processes, and hence ultimately for the representation
Finally, after prolonged exposure to their native Ian- of the exceptions to the regular paradigm. A second
guage, children pass into a third stage which inolves mechanism is responsible for extracting the rule (or
discovering the exceptions to the rules, isolating these rules) which characterize the regular paradigm, and
forms as independent entries in a mental lexicon. This for constructing the underlying system guiding pro-
final phase thus supposes the existence of two distinct ductive application and rule-governed language usage.
mechanisms underlying children's ultimate knowledge In an attempt to evaluate this account, we have argued
of the English inflectional morphological system. One elsewhere (Plunkett & Mar.te iman [In press]) that it
mechanism controls the default application of a gen- iswhertantt si arhbet n pro a t itera rue, espnsbleforthegenraiviy o th reu- is important to distinguish between macro and microera rule, responsible for the generativity of the regu- patterns of the onset of errors when characterizing chil-
lar paradigm in a given inflectional system. The sec- ptens ofiton of errorsh carten g chil-
ond mechanism identifies exceptions and prompts the dren's acquisition of the English past tense. Macro U-
child to consult a separate knowledge store in the pro- shaped development refers to a rapid and sudden tran-
duction and comprehension of irregular forms. This sition into the second phase of system building, result-second mechanism is typically assumed to be closely ing in indiscriminate application of the "add /-ed/"
related to, if not identical with, the mechanism un- rule to whole classes or categories of verbs. In contrast,derlying the rote learning which characterizes the first a micro U-shaped developmental pattern is character-stage of acquisition, ized by selective suffixation of English irregular verbs,and results in a period of development in which some
In general, then, traditional accounts can be seen to at- irregular .erbs are treated as though they belong to
tribute the onset of the production of erroneous forms the regular paradigm while others are still produced
to the transition from a stage in which production is correctly. The basis for selec';:e application of the
determined primarily by rote-governed processes to a suffix may be defined with respect to certain represen-
stage of rule construction and refinement, i.e., system tational characteristics of the verb stem (phonological,
building. The triggering of this transition in the child semantic or otherwise), or may result from the oper-
is not well understood (that is, what are the necessary ation of a probabilistic device which determines the
and/or sufficient circumstances under which the tran- likelihood that the suffix will be applied to an irregu-
sition occurs?), although a requisite amount of linguis- lar verb.
tic experience is typically assumed (Karmiloff-Smith In reviewing sources of evidence regading the patterns
[1986]). With respect to the English past tense, the of reeing erro ince lnkett&
transition into system buiding is at least partially de- of overgeneraization errors in children, Plunkett &
pendent on sufficient exposure to suffixed past tense Marchman [in press] conclude that a macro character-
forms in order for the systematicities which define thr ization of past tense acquisition is inaccurate. For ex-
regular rule to be extracted. Maturational factors ample, there appears to be little evidence that children
which control the emergence of an inflectional system overgeneralize the f-ed suffix indiscriminately, i.e., to
building device might also determine a U-shaped pro- tll irregular verbs in their current vocabularies. Nor is
file of development (e.g., Bever [1982]). However, mat- there evidence to suggest the existence of a single well-
urational factors must be interpreted, at least to some deied stage of development in which erroneous be-
degree, in interaction with input factors in order to ac- havior is observed (see also Derwing & Baker [1986]).
count for observed time lags in the onset of productive Rather, children are likely to overgeneralize the suffix

behavior in different linguistic domains, e.g., the rel- to only some irregular verbs (typically a small num-atively early acquisition of the Em ber) while, at the same time, they correctly produceantetycly er te acquisitio eEnglish plural system the past tense forms of other irregular verbs. Further-
and the typically late acquisition of the past tense sys-
tem (Brown [J973]; de Villiers & de V iliers [1985])i. more, errors rmay occur across a protracted period with

Other explanations of the time lag between the acqui- some irregulac verbs recovering from erroneous treat-sition of these two major inflectional systems in En- ment only to be -vergeneralized again at a later pointglish incorporate children's developing conceptual un- in development. In general, then, the evidence sug-

derstanding of time and number (e.g., Carey [1982]), gests that the transition from the first to the second
"_ _phases is best characterized as a micro phenomenon,

'Unless we assume that different devices for controlling in which the onset of cvergencralization errors is both
the aLqLisition of the English past tense and plural systems selective and gradual. An understanding of U-shaped
emerge a. different points in development, past tense acquisiti:n thus requires an account of.
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1. The mechanisms that trigger the transition from However, it is surprising that irregularization errors
rote learning to system building, tend to persist across development (Bybee & Slobin

2. The basis for the selective overgeneralization er- [1982]; Kuczaj [1977]), even past the point in lexical
rors produced by children (featural or probabilis- acquisition when the number of regular verbs greatly
tic). outnumbers irregular verbs. Thus, the tendency to ir-

regularize may be just as robust as the tendency to
3. The mechanism(s) by which overgeneralizations regularize, even though suffixed forms may be more

are eventually eliminated and appropriate perfor- prevalent in children's productions when evaluated in
mance on both regular and irregular verbs is ulti- terms of the number of regular verbs that are correctly
mately achieved. inflected or the number of irregular verbs that are reg-

ularized. Note also that irregu!arization processes do
Two other factors further complicate an adequate ac- not reflect the indiscriminate application of rule. Not
count of children's acquisition of the English past all verbs that end in a dental are subject to a "no
tense. First, children's overgeneralizations do not al- change" irregularization nor are all verbs that possess
ways appear to result from the overapplication of an particular vowel/consonant sequences subject to vowel
"add /-ed/" rule. For example, children produce stem suppletion. Both processes of regularization and ir-
and past tense forms like eat --+ ated, sit -- sit or regularization generate micro, as opposed to macro,
pick -+ pack (Marchman [1988]). In many respects, profiles of U-shaped development. While these facts
these irregularizations can be seen to be analogues to do not contradict the dual mechanism hypothesis, the
the mappings between stem and past tense of English timing and nature of the interaction between the two
irregular verbs (Bybee [1988]; MacWhinney [1987]). mechanisms requires further explication in order to ac-
Second, as Pinker & Prince [1988] have noted, the set count for these patterns of errors and recovery.
of irregular verbs in English (approximately 150 alto-
gether) is not an unstructured list. Rather, it consists Recently, Rumelhart & McCleiland [19861 have ar-
of a number of subregularities between the phonologi- gued that a single mechanism system in the form of
cal form of the irregular stem and the type of transfor- an artificial neural network is capable of extracting a
mation which relates the stem to its past tense form. range of regularities that chaeacterizv the Eiglish past
For example, all English irregular verbs ivhich hase tense system and producing patterns of regularization
identical stem and past tense forms possess a stcm and irregularization analogous to the errors observed
final dental consonant (e.g., hit -- hit). Similarly, in children. Furthermore, this work has been inter-
verbs which undergo vowel suppletion tend to group preted as the first in a series of challenges to the widely
into clusters of stem final vowel-consonant sequences, accepted view that linguistic behavior should be un-
which form "family re.mblance7 patterns (e.g., sleep derstood in terms of explicitly representable rules and
-+ slept, weep -- wept, keep -- kept)- principles, and a separate store of exceptions to those

rules. As a result, Rumelhart & McClelland [1986] has
The documented patterns of subregularity among En- been subject to thorough analysis and criticism aimed
glish irregular verbs can be seen to predict the fre- both at the details of their model and at the applicabil-
quency of both overregularizations and irregulariza- ity of artificial neural networks for models of language
tions in children (Bybee & Slobin [1982]) and adults acquisition and processing. For our purposes, the cru-
(Bybee & Moder [1983]). For example, Bybee & Slobin cial feature of Rumelhart & Mclelland's [1986] work
[1982] note that at certain periods in development, is the claim that a single mechanism is responsible for
children tend to resist regulariration of verb stems that U-shaped acquisition and the representation of both
already possess a dental final consonant, i.e., use the the regularities and irregularities underlying the En-
identical form in the past tense. Similarly, Derwing & glish past tense system. Here, the transition from rote
Baker [1986], Marchman [1984] and Marchman [1988] learning to system building does not rely on a dual
note that vowel change errors on regular verbs often mechanism architecture to capture the distinction be-
reflect the patterns of vowel suppletion which char- tween regular and exceptional patterns. Rather, the
acterize the various clusters of irregular verbs. These model exploits tne capacity of connectionist networks
findings suggest that children abstract and utilize more to simultaneously:
than one category cf systematicity from among the
corpus of verb stemifpast tense pairs to which they are 1. Memorize individual patterns and their transfor-
exposed. Given that children's early vocabularies con- mations when the number of pattern types is suf-
tain a relatively large proportion of irregular verbs, it ficiently small.
is not surprising that they may be misled into postu-
lating alternative hypotheses of past tense formation 2. Generali:e on the basis of regularities obser% .d in
based on the subregularities observed among the irreg- the input when the number of patterns is suffi-
ula verbs. A range of hypotheses for past tense for- ciently large.
mation may guide children's productions, and hence
result in productive output which cnbists of both reg- Rumelhart & McCleiland [1986] initially trained their
ularization and irregularization errors. network on a subset of the vocabulary to which it
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would eventually be exposed. During the first 10 are observed. In all cases, the patterns of errors ob-
epochs of training only 10 verbs (3 of which w.re ir- served were attributed to the competition between the
regular) were presented to the network. Given the different types of mappings used in the simulations
learning and representational characteristics of their (arbitrary, suflixation, identity, vowel change), which
network architecture (a single-layered perceptron), the are typical of the relationship between verb stem/pat
model succeeded in learning the 10 verbs by "rote", tense pairs in English. This work also showed that the
Le., without discovering any regularities among the capacity of these types of networks to learn inflectional
individual verbs in the training set which were then verb morphology is highly sensitive to input parame-
generalized to new verbs or which interfered with the ters such as the type and token frequency of stems in
successful mapping of other verbs in the training set. the input set. For example, arbitrary mappings (go
After 10 epochs of training, Rumelhart & McClelland went ) tend to be mastered when they are few in num-
[1986] increased the size of the training set by 410 ber (low type frequency) and when each unique stem
verbs. Most of new verbs were regulars. This sud- is repeated frequently (high token frequency). Inter-
den expansion in vocabulary size caused the learning estingly, the frequency parameters that support real-
algorithm (a probabilistic version of the Perceptron istic verb learning in artificial neural networks tend to
Convergence Procedure (Rosenblatt [1962])) to extract converge on frequency typologies *.sociated with nat-
the "add /-ed/" regularity and to reorganize the map- ural languages. Plunkett & Mar .. ,man [In press] also
ping characteristics to reflect the dominant suffixation showed that the types of errors observed in artificial
process. As a result, many irregular verbs disp, layed neural networks are constrained by the phonological
a sudden decrement in performance. Continued train- characteristics of the distinct verb mapping classes.
ing on the input set allowed the network to gradu- Thus, some regular verbs which end in a dental are
ally recover from the erroneous mappings. Analyses identity mapped, while, at the same time, regulaz
of the network's performance reveals that much of the verbs with stem final vowel-consonant pairs that are
success in modeling the classical U-shaped profile of characteristic of the vowel change class are subject to
development derives from the exploitation of the tran- irregularization.
sition from item memorization to generalization that In summary, Plunkett & Marchman [In press] observe
is inherent in these networks when the number and an umma r s neir simatins obestructure of mapping patterns is manipulated. a range of errors in their simulations which can be

documented in the child language literature and which
Pinker & Prince [1988] have pointed out that the dis- comprise the selective patterns of micro U-shaped de-
continuities introduced into the training regime by velopment observed in children acquiring the English
Rumelhart & McClelland [1986] do not reflect plau- past tense. These results are achieved, not by in-
sible discontinuities in the input to children learning troducing discontinuities into the training set, but by
the past tense. First, they argue, there is scant evi- manipulating type and token frequency parameters in
dence for such an abrupt increase in the total number ways which reflect the characteristics of verbs in En-
of verbs to which children are exposed. Second, the glish. The errors characteristic of micro U-shaped de-
evidence from children's productions (Brown [1973]) velopment are thus shown to be a natural outcome
suggests that the actual relative proportions of regular of learning in a network required to map competing
and irregular verbs are less skewed than those repre- classes of verbs which vary in systematic, but not ab-
sented in the Rumelhart & McClelland [1986] train- solute ways with respect to mapping type, type and
ing set. For example, Pinker & Prince [1988] suggest token frequency, and phonological predictability.
that during early phases of acquisition, regular and In attempting to demonstrate the ability of artificial
irregular verbs are approximately evenly represented neural networks to solve the mapping of competing
in children's production vocabularies. In general, cur- verb classes in the absence of discontinuous input,
rent consensus has targeted the implausibility of the Plunkett & Marchman [In press] deliberately held vo-
discontinuities in the original simulations, and hence cabulary size constant throughout training, i.e., at 500
the theoretical significance of the U-shaped learning vers A ohthe tpeuand ten reqn ara5-
demonstrated by the Runr.lhart & McClellaad [1986] verbs. Although the type and token frequency param-
model hma been undermined. eters used in these simulations were characteristic of

English, it is unlikely that children attempt to learn

He-vever, Plunkett & Miirchman [In press] and Plun- an entire lexicon all of a piece at any point in learn-
kc- t & Marcbman [1989] ha ; demonstrated that sev- ing. Naturalistic production and comprehension men-
e: I characteristics of micro U-shaped development sures suggest that verb acquisition in children is an
c- i emerge in an artificial rcural r.etwork which maps incremental (albeit non-linear) learning process. Be-

rb stems to past tease forms in the ab3ence of any cause the size of the vocabulary used by Plunkett
..scontinuities in the training regime. Using a con- & Marchman [In press] precluded the network from
tant voc3 lary size and structure throughout learn- achieving complete mastery of the vocabulary early in

ing, sew-al series of simulations w,.e used to illus- training, the marked transition from an initial over-
trate tie ,nditions under which decrements in per- all high performance to a performance decrement that
forman, -and subsequent recv,ery on individual verbs was achieved in the origitial Rumelhart & McClelland

1 ! ! '"
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[1986] model was not observed in these simulations. htpe to demonstrate that artificial neural netwurks of
Indeed, oiie of the primary goals of the Plunkett & fer an alternati'.e explanatur) frame% ork w ithin which
Marchman [In press] work was to demonstrate that an to understand the niechanisms underlying children's
abrupt transition from conditions of rote learning to acquisition cf inflectional 6erb morphology.
conditions of system building is not necessary for the
emergence of systematic regularization and irregular-
ization errors and the subsequent recovery from those 2 METHOD
errors. Thus, it is important to distinguish these find-
ings from the observation that children pass from a 2.1 OVERVIEW
period in which the past tense of all verbs are pro-
duced correctly, to a period in which regularization All simulations involve training a multi-layered per-
and irregularization errors are observed. ceptron to map phonologically represented verb stems

to their corresponding past tense forms. After initial
As noted above, the determinants of the transition training on a subset of 20 verb stems, the -rocabu-
from rote learning to system building in children are lary is gradually expanded until it reaches a size of
not well understood. The traditional view supposes 500 verbs. Vocabulary expansion is performed follow-
that a dual-mechanism system is required to support ing two t pes of training schedules, criterial expansion
the transition. An alternative, suggested by the work and incremental expansion. Several conditions of in-
of Rumelhart & McCleiland 11986], is that the transi- cremental learning are tested (see below). Learning in
tion is affected by quantitative and structural changes all simulations is evaluated at regular intervals during
in the vocabulary of verbs that a single mechanism is training in the following ways. First, the network's
required to learn. A sufficient evaluation of the single performance on verb stens in the current training set
mechanism approach is hindered by the unrealistically is evaluated in terms of the percentage of forms out-
abrupt vocabulary discontinuity that was introduced put correctly. For those forms that are produced in-
into Rumelhart and McClelland's training set. While correctly, errors are coded and categorized. Second,
they clearly demonstrate that a single mechanism can at every evaluation point in training, the network is
perform both rote learning and generalization, as well tested on a set of novel verbs. In these cases, the map-
as make a transition between the two, further evalu- ping perforr.ed by the network on each novel stem is
ation of learning in a single mechanism architecture categorized in relation to the mapping characteristics
under realistic learning conditions has so far been ob- of the training set.
scured. For example, how many verbs does the net-
work need to experience before it attempts to extract A variety of control simulations have also been con-
regularities from the input and organize this knowl- ducted to evaluate the role of various input and learn-
edge base in a more systematic fashion? Is this event ing parameters on observed performance and learning
sudden or gradual? To what extent does the system- effects. The details of these controls will be reported in
atization of the current vocabulary impact on perfor- the results section where appropriate. Each set of sin-
mance with verbs not yet acquired by the network? ulations that is reported here uses identicai vocabular-
Are there characteristic patterns of errors associated ies and identical initial starting weights. However, the
with the transition from rote learning to system build- results of all sets of simulations have been replicated
ing? Does an early rote state of the knowledge base af- using different vocabularies and starting conditions.
fect later patterns of acquisition? flow do the develop-
mental profiles observed in a network making the tran- 2.2 VOCABULARY
sition from rote learning to system building correspond
to profiles of development in children acquiring the En- A vocabulary f 500 verb sterns is cunstructed from
glish past tense? How does such a single mechanism a dictionary of approximately 1000 stems. Each
approach compare with the traditional dual mecha- verb in the dictionary, consists of a Consonant- Vowel-
nism architecture in accounting for the data? Consonant (CVC) string, a CCV string or a VCC

of this paper, we explore the perfor- string. Each string is phonologically well-formed, even
In the remainderfcis n er, we equre to ern though it may not correspond to an actual English
mance of an artificial neural network required to learn word. Each vowel and consonant is represented by a
mappings analogous to the English past tense when set of phonological contrasts, such as voiced/unvoiced,vocabulary size is expanded gradually, in an incremen- front/center/back2 . Table 1 summarizes the phono-

tal fashion, across the course of learning. Our goal in logical represent'tions for all consonants and vowels

this work is to determine the conditions under which used in the simulations. Verb stems are assigned to

an artificial neural network makes a transition from a use in foulases. e rb stms ares gnd to

stage of rote learning to a period of system building ferent type of transformation analogous to classes of

and to evaluate the characteristics of its performance _ ty ra mi n g o se

in this period of transition and beyond. By comparing 2See Plunkett & Marchman [In press] for a more thor-
the characteristics of performance in the network with ough discussion of the phonological representation used
data from English children acquiring the past tense, we here.
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Table 1: Phonological representation 1. If the stem ends in a dental (/t/ or /d/), then

Table 1P nothe suffix is /-id/, e.g., 'pat - pat-id'.
PHONOLOGICAL FEATURE UN ITS 2. If the stem ends in a voiced consonant orCON/VOW VOICING MANNER PLACE

#1 _ _ #3_ #4 *__5 #6 vowel, then the suffix is voiced /d/, e.g., 'dam
- dam-d'.

/b/ 0 1 1 1 1 1

/P/ 0 0 1 1 1 1 3. If the stem ending is unvoiced, then the suffix
id/ 0 1 1 1 1 0 is unvoiced /t/, e.g., 'pak - pat-i'.

0t/ 0 0 1 1 10
//0 1 1 1 0 0/k/0 0 1 1 0 o The suffixes on the regular past tense forms are rep-

/ o 1 1 0 1 1 resented non-phonologically as three distinct patterns
It, 0 0 1 0 1 1fm/ 0 1 0 0 1 1 across two output units, i.e., 0 1, 1 0, and 1 1. A
/n/ 0 1 0 0 1 0 fourth pattern (0 0) corresponds to the absence of al/ 0 1 0 0 0 0 suffix, as is the case for stems in the irregular classes
161 0 0 1 0 1 0
/a/ 0 1 1 0 1 0 (i.e., arbitrary, identity and vowel change).

0 1 1 0 0 1
1s/ 0 o 1 0 0 Stems are assigned randomly from the dictionary to

0, o 0 o 1 1 i each of the four classes, with the constraint that stems
1/0 1 0 1 1 0

/r/ 0 1 0 1 possess the appropriate characteristics of a given class.
/0 1 0 1 0 0 The resulting 500 verb vocabulary contains 2 stems in

/h/ o 0 10 1 -0 0 the arbitrary class, 458 stems in the regular class, 20
/I/ (e-t) I I I I I I stems in the identity class and 20 stems in the vowel1/ (bit) 1 1 0 0 1 1 change class. Each of the four vowel-consonant clusters
/o/ (boat) I 1 o 1 defining the voweln classelass contains 5 members.
/o/ (but) 1 0 1 d ecor
/u/ (bot) I I 1 o I Stem assignment to the arbitrary and regular classes

I/U (book) I 1 0 0 0 1 are not contingent upon any particular criteria, and
/e/ (bait) 1 1 1 1 0 these classes may contain stems which have phonolog-

/ai/ (bite) 1 1 1 0 0 0 ical characteristics of identity mapping or vowel change
/w/ (bat) I 1 0 1 0 0 stems. The number of stem assigned to each verb
a(cow) 0

/0/ o) I I 1 o 0 0 class, i.e., the vocabula.ry configuration, is based onresults from Plunkett & AMarchman [1989] in which a
wide range of verb frequencies were evaluated for their
learning consequences, in light of their similarity topast tense formation in English. The four classes of supposed vocabulary configurations of English. The

transformation are3 : current choice parallels a configuration which demon-

strated a high level of learning in the earlier work.Arbitrary mappings: There is no apparent rela-
tionship between the stem and its past tens form, Appropriate past tense forms arc constructed for each
e.g., 'go -- went'. vocabulary item in each of the four classes. In the case

of stems in the arbitrary class, a past tense form is
Identity Mapping: Past tense forms are identical to chosen that does not share any consonants or vowels

their corresponding verb stems. Such mappings with the stem, nor corresponds to the stem or past
are contingent upon the verb stem ending in adentl cnsonnt ~e.//ord/, ~g. 'Az -- hal tense form of any other verb in the training set.
dental consonant i.e- /t/ or /d/, e.g., 'hit - hit'.

Vowel Change: Certain vowels can be changed un- 2.3 TRAINING SCHEDULE
der the condition that they precede particular
consonants. The following four vowel-consonant After 500 verbs have been assigned to the four class
cluster changes are permitted: types, a subset of 20 verbs is randomly selected from
1. /iz/ -- /ez/ ,i: -- ,the vocabulary for use in the initial phase of train-
2. /it/ -- /,Et/ 'kit -ket' ing. The initial training set is comprised of 2 arbi-
3. /ais/ - /es/ 'lais - les' trary stems, 10 regular stems, 4 identity stems and 4
4. /ail/ - /01/ 'rail - rOl' vowel change stems. The token frequencies (i.e. the

frequency with which any given stem is likely to be
Regular mappings: A suffix is appended to the icrb repeated during a single training epch) for this ini-

stem. The form of the suffix depends upon the tial phase of learning arc 15 for the arbitrarv stems.
final vowel/consonant in the stem: while regular, identity and vowel change stems have atoken frequency of .9. The relatively high token fre-

'A more fine-grained classification of the past tense of

English is provided by Bybee & Slobin [1982', Pinker & "Pilot simulations Indicated that the network would fai
Prince (1988]. However, the current four way distinction to learn all of the regular mt'ms if a token frequency of Ic55
serves to capture many of the phenomena of interest, than 3 was used.
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quency of the arbitrary stems is based on results from Table 2: Vocabulary Structure by Verb Class
Plunkett & Marchman [1989] in which arbitrary map-
pings are only acquired under similar token frequency TOTAL AP.BS R2os I Cs Vos TOK

conditions. 20 2 10 4 4 5"
80 2 61 8 9 3

The network is trained on this small vocabulary until 100 2 77 10 11 1
all verb stems are mapped to their appropriate past 140 2 112 11 15 1
tense forms. The vocabulary is then gradually ex- 200 2 163 15 20 1
panded in size. Two general types of expansion sched- 260 2 221 17 20 1
ules have been tested. On the first schedule, criterial 269 2 227 20 20 1
ezpansion, the vocabulary is expanded one verb stem 380 2 338 20 20 1
at a time and trained until the new verb is success- 500 2 458 20 20 1

fully mapped by the network. At this point, a new aArbitrary verbs have a token frequency
verb is introduced, training continues until that verb of 15.
is mapped correctly, another verb is added and trained
until it is mapped correctly, and so on. On the sec-
ond training schedule, epoch expansion, a new verb
is introduced to the vocabulary and trained for a set network's performance on the novel verbs is evaluated
number of epochs. Another verb is then introduced at regular intervals during training.
into the training set irrespective of the level of perfor-
mance on the mapping of the previously introduced new 2.5 NETWORK CONFIGURATION
verb. This process is repeated until the vocabulary has
reached 500 verbs. In the current set of simulations, All the simulations are run using the RLEARN simula-
incremental schedules of 1, 2, 5, 10 and 25 epochs per tor te foratsare in using a
new verb have been evaluated. In all epoch expansion tor (Center for Research in Language, UCSD) using a
simulations, training is reduced to 1 epoch per verb af- back propagation learning algorithm. Back propaga-
ter 80 new verbs have been introduced (i.e., the total tion invc bves the adjustment of weighted connectionsvocabulary has reached 100 verbs), and unit biases when a discrepancy is detected between

the actual output of the network and the desired out-
The order in which new verbs enter the vocabulary put specified in a teacher signal. In multi-layered per-
is determined by a weighted random selection process ceptrons (containing hidden units), error is assigned to
which is based on an 80% likelihood that the new verb non-output units in proportion to the weighted sum of
is taken from the regular class and a 10% likelihood the errors computed on the output layer.
that the verb is taken from the identity or vowel change
classes. Each new verb entered into the training set af- All networks contain 18 input units, 30 hidden units
ter the initial set of 20 are assigned a token frequency and 20 output units. All layers in the network are
of 3, until the vocabulary size reaches a total of 100 fully connected in a strictly feed-forward fashion. Pre-
verbs. Thereafter, verbs that are introduced (piedom- vious work (Plunkett & Marchman [In press]) demon-

inantly regulars) are trained using a token frequency strates that a multi-layered perceptron is required to

of 1. This frequency profile is chosen to accommodate sc1ve mapping problems of the type encountered here.

the data set to the observation that children are more There is no generally acknowledged criterion for se-

likely to hear, and thus have a greater opportunity to lecting appropriate numbers of hidden units for an ar-

learn, verbs with a high token frequency. A summary bitrary problem. The modeler must, therefore, exper-

of the changing structure of the vocabulary is provided iment with network capacities in order to find a con-

in Table 2. figuration suited to the problem. The final choice of
30 hidden units reflects a compromise between the at-
tempt to achieve an optimal level of performance and

2.4 NOVEL VERBS the aim to maximize the generalization properties of

A further 100 stems were selected from the dictionary the network. Minimizing the number of hidden units

for testing the generalization properties of the network. in a network encourages the system to search for reg-

Of the 100 novel verb stems, 10 end in a dental final ularities in the input stimuli.

consonant (/t/ or /d/), 10 stems possess the charac- Training in the simulations follows a pattern update
teristics of each of the 4 clusters defining the vowel schedule, i.e., a pattern is presented to the net, a sig-
change class (40 verbs), and 50 stems are legal stems nal propagates through the net, the error is calculated,
but possess none of the previously mentioned charac- and the weights are adjusted. Pattern update is pre-
teristics. These sub-classes of novel stems permit eval- ferred to batch update (in which error signals are aver-
uations of the manner in which the network has tuned aged over a range of input patterns before the weights
its response characteristics to stems which are candi- are adjusted) for this problem since children are un-
date (though not definitive) members of the various likely to monitor an average error on their output, but
implicit stem classes making up the training set. The are more likely to monitor the error associated with
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individual pattern tokens. Learning rate and momen- tense mappings reflects the propensity of networks of
tum are held constant throughout the simulation at this type to be caugh, in "local minima". In order
values of 0.1 and 0.0, respectively. (As with the choice for networks to avoid entrenchment in specific areas
of network configuration, learning rate and momen- of weight space, training must ensure that a variety
turn parameters are typically determined through ex- of weight changes occur. If the network is repeat-
perimentation rather than principled criteria). Verb edly trained on a limited and fixed number of patterns,
stems are presented randomly to the network within where a series of similar weight changes occur, further
each epoch of training, training may fail to promote necessary reorganizations

or may even enhance the network's entrenchment in a
2.6 OUTPUT ANALYSIS particular region in weight space. This training sched-

ule was therefore abandoned as a method of vocabu-
On each presentation of an input pattern, any error lary expansion that is appropriate to the current task.
on the output units is recorded and the weights ad- The following sections report on results from simula-
justed accordingly. The weight matrix for the network tions in which verbs are added to the vocabulary irre-
is saved at regular intervals; first, when the net has spective of the level of performance of the network on
just mastered the initial 20 verbs and then each time the previously added verb.
a new verb is introduced but before any training on
the new verb has occurred. These weight matrices
provide snapshots to evaluate the accuracy of the net- 3.2 EPOCH EXPANSION
work in producing the correct past tense form for each
unique stem at different points in the network's devel- 3.2.1 Overall Performance
opment. The output of the network is evaluated in Figure 1 summarizes the hit rates (%) on stems in the
terms of the "closest fit" (in Euclidean space) to the regular and irregular classes (arbitrary, identity and
set of phonemes that map the output space, defined vowel change combined) as a function of vocabulary
by the teacher signal to the network (see Table 1). For size in simulations which use the following expansions
each class of stems, error analyses provide an overall schedules: (a) 1 verb per epoch, (b) 1 verb every 5
hit rate (i.e. % correct) and error types are classi- epochs, and (c) 1 verb every 25 epochs' .

fied by verb class to determine the proportion of stems
that are incorrectly mapped as identity stems, vowel First, note that a high level of performance is achieved
change stems, blends, etc. Similarly, ncvel verb stems on both regular and irregular verbs by the end of train-
are tested on the saved weight matrices. The different ing (i.e., a total vocabulary size of 500 verbs) in all
categories of novel verbs are analyzed separately to expansion schedules. This consistently high level of
determine their output teadencies, i.e. whether they performance contrasts with that reported in earlier
are regularized, irregularized or handled in some other work (Plunkett & Marchman [In press]) in which per-
fashion by the net. formance on similar vocabulary configurations did not

exceed 80% for the regular and vowel change classes.
It is noteworthy that final level of performance appears

3 RESULTS to vary depending on the particular expansion sched-
ule condition used. In particular, level of mastery on

3.1 CRITERIAT TRAINING the set of regular verbs decreases as a function of the
epoch increment, i.e., overall performance on regulars

Under the criterial expansion condition, vocabulary tends to diminish slightly as the network is trained
size is increased one verb at a time and training is more on each new verb before yet another new verb is
continued on each new verb (as well as the initial set) introduced. For example, overall performance on the
until that new verb is successfully mapped by the net- regular verbs in the 1 epoch condition reached 99%,
work. Typically, training on the initial set of 20 verbs whereas, only 95% of the regular stems were correctly
requires 15 to 40 epochs to reach criterion, depending mapped in the 25 epoch increment condition.
on the initial configuration of random weights. Per-
formance on subsequent training is also sensitive to Interestingly, the relationship between expansion
the initial set of random weights. Several initial con- schedule and final level of performance on regular
figurations were tested. However, in none of the cri- stems contrasts to the pattern of learning observed
torial learning simulations was it possible to continue early in training. When vocabulary size is increased at
vocabulary expansion beyond approximately 27 verb a rapid rate (e.g., 1 epoch increment), performance on
stems, Training continued for a considerable number regulars does not improve as quickly and greater decre-
of epochs (up to 1000) or until it was clear that the ments are observed, compared to the other expansion
error gradient had reached asymptote at a non-zero schedules. Thus, while exposure to a constant vocab-
level. ulary for a substantive period (i.e., 25 epochs) results

The inability of networks in the criterial expansion sSimilar patterns of results are found for the 2 epoch
condition to learn a large number of verb stem/past and 10 epoch expansion schedules.
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Figure 1: Hit Rates for Regular and Irregular Verbs

in a more even level of performance across training, following the initial period of training. This is the
this appears to be at the expense of overall mastery point in training when vocabulary expansion is first
of the set of regular mappings. It is possible that this initiated, and hence, the network is now faced with
pattern of results derives from the general inability of the task of learning a continually increasing vocabu-
these networks to master a large number of mappings lary. Note, however, that comparisons across the ex-
when training follows a criterion learning schedule (see pansion conditions illustrated in Figure 1 reveal that
section 3.1 above). When the training set is fixed for a expansion schedule influences the degree to which per-
number of training epochs, the network may have dif- formance deteriorates during this period. In particu-
ficulty recovering from erroneous configurations of the lar, the higher the rate of expansion, the greater the
weight matrix. Thus, the criterion learning condition observed decrement in performance. Thus, the 1 epoch
may be seen as corresponding to an indefinitely long expansion schedule results in a deterioration to 68%
expansion schedule. for regular verbs. In contrast, performance on the reg-

ular verbs in the 25 epoch expansion schedule onlyi In orderto rule out the effect of initial set size on fi deteriorates to 88%. The level of deterioration in per-
nal level of performance, a control simulation was per-: formance on the 2 epoch and 10 epoch conditions (not
formed in which the network was trained on an initial shown in Figure 1) round out this pattern of results
vocabulary of 1 verb (compared to 20), and the vocab- at 77% and 84%, respectively. Given the dynamics of
ulary was expanded incrementally every two epochs to learning in these networks, this result is not surpris-
a total of 500 stems. The results from this control sim-
ulation revealed a similar level of performance on the ing. When the rate of expansion is decreased and the
reular rvebs, ahivigr 100 o performance ol veb network is trained for a greater number of epochs onregular verbs, achieving 100% performance for all verb each new pattern, the opportunity to accommodate

classes. While more complete analyses are required, th ch new patterni commod
these results suggest that the size of the initial subset te weight matrix to the new pattern is correspond-

ingly increased. A high rate of verb introduction al-
of the vocabulary per se (e.g., 20 verbs) is not a neces- lows only a minimal amount of training on each new
sary determinant of the high level of performance on verb and hence, performance on the overall set of verbs
the regular verbs observed in these simulations. is decred.

Second, Figure 1 also reveals that, in all conditions, M
performance on both regular and irregular verbs suf- erprsing, her, is that recovey from thi

fersa mrke deremnt n th peiodimmdiaely period of initial decrement is first manifest when vo-fers a marked decrement in the period immediately cabulary size reaches around 50 verbs irrespective of
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the expansion schedule condit:on6 . The fact that re- have a low token frequency. Second, as discussed in
covery occurs at approximately the same level of vo- more detail in the following section, the generalization
cabulary size regardless of the depth of the perfor- properties of the network during this stage of training
mance decrement, and hence, training schedule, sug- are such that at least 30% of novel verbs are treated as
gests that absolute vocabulary size, i.e., critical mass, regulars, regardless of whether they possess phonolog-
may be an important factor in determining the net- ical properties characteristic of verbs in the irregular
work's recovery from erroneous performance. classes.

The simulations described in Figure 1 deliberately con- Note, however, that performance decrements on the
found the size of the training set with the number of irregular verbs are not identical in duration and mag-
learning trials that each verb stem/past tense pair re- nitude across the expansion schedules. For example,
ceives. In order to investigate a "critical mass" inter- in the 1 epoch increment schedule, the deterioration in
pretation of these results, we conducted a series of con- performance is not as great nor as persistent compared
trol simulations in which expansion of the vocabulary to that observed in the 25 epoch increment condition
is halted at various points. Training is then continued Further discussion of this finding and a detailed break-
with a constant vocabulary size in order to observe down of the type of errors observed during this period
whether performance recovers in the manner observed of training is provided in section 3.2.2 (Error Analy-
in the test simulations. Using a 2 epoch expansion sis).
schedule, performance was evaluated in networks withfinal vocabulary sizes of 30, 40, 50, 60, 70 and 80 As mentioned above, the ability of these networks to
verbs.i Fraall vocabulary sizes30,4,50t , r enu 8 map certain classes of verbs (especially arbitrary andverbs. For all vocabulary sizes, the network eventu- vowel change verbs) is greatly facilitated by high lev-ally recovers from its initial erroneous performance to els of token frequency relative to the dominant map-
achieve 100% correct performance on all verb classes. ping type (Pluett rela to resm It isIndeed, similar patterns of trajectories of recovery were ping type (Plunkett & Marchman [in press]). It is
observed for networks learning vocabularies of te e possible, however, that the overall improved learningoses. Thu, nwconclude that the size of th theraining under the incremental expansion conditions obviatessizes. Thus, we conluen e the sie of the ng the need to construct training vocabularies in light ofset does not appear to influence the ability of the net- toefrqncdieecsarssvbclss.T r-
work to recover from erroneous performance on verbs token frequency differences across verb classes. There-
in the training set, i.e., on trained verbs. However, the fore, a series of control simulations were conducted
results from these control simulations will illustrate an in whicy ( e., 1 to ed wine samewtg-
important contrast between trained vs. novel verbs. As ken frequency (i.e., 1 token) and trained following apeetdbelow, the final size of the training set de- 2 epoch incremental expansion schedule. Briefly, the
presented belatin s ie of the netor-, results indicate that incremental learning does not re-
termines the generalization properties of the network, sl na mrvdlvlofpromneo h ri
and hence can be seen to contribute to an explanation suit in an improved level of performance on the arbi-of the network's treatment of verbs introduced later in trary and vowel change verbs (measured by hit rate).
training. Thus, the effects of token frequency outlined in earlierwork appear to be robust across the range of training
Finally, Figure 1 reveals that for all training sched- schedules tested here. These results, therefore, fur-
ules, irregular verbs undergo a substantial decrement ther justify the attempt to carefully configure training
in performance during the middle period of training, vocabularies in light of the general token frequency
i.e., when vocabulary size reaches approximately 100 characteristics of English.
verbs. During this period in training, the number of
irregular verbs increases from 23 to 37 (including an 3.2.2 Error Analysis
extra 5 IDS and 9 Vcs). Two factors contribute to this
decrement in performance. First, recall that all verl- Ad incorrectly generated mappings are analyzed in
introduced after the 100 vocabulary mark are intro- terms of the proportion of errors by verb class. We
duced with a token frequency of 1. We have shown in refer to these errors as general learning errors in subse-
previous work (Plunkett & Marchman (In press]) that quent discussion. (Patterns of micro U-shaped learn-
irregular mappings (in particular, arbitrary and vowel ing, i.e., errors on verbs which are successfully mas-
change verbs) are difficult for the network to master in tered followed by erroneous mapping and subsequent
the context of other types of mappings if those stems recovery are presented below.) Table 3 summarizes

the categories and timing of errors, as well as the hit
alt should be stressed that decrements in performance rate (%) for each verb class7 for the 5 epoch expansion

plotted in Figure 1 do not necessarily indicate the U- condition. Successive rows in the table represent ex-
shaped "un-learning" of individual verbs. New verbs condin. Sucessives ineale rep r ox
are continually introduced into the training set and may panding vocabulary levels (and increasing number of
contribute to the overall decrement in performance even epochs). Error coding categories are:
though old verbs continue to be mapped appropriately (c.f.,
the criterial expansion schedule above). Analyses of the 7An analysis of the arbitrary class is not presented here
patterns of U-shaped learning in these simulations are dis- since they perform at optimal level throughout the expan-
cussed in section 3.2.2. sion schedules.
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patterns of errors. For example, regular stems are typ-
Table 3: Errors by Class ically identity mapped, given an inappropriate suffix,

REG.AnS I T IDL C ANGE or blended. While identity mapping and inappropri-VCEOHLISUP ID BLD HIT-SFV ITSFI BLD VC

20 40100 0 0 0 100 00 0100 0 0 00 ate suffix errors occur throughout the training period,
30 90 90 0 0 0 100 0 0 71 0 0 0 0 blends are more likely to occur later in training. Fol-
40 140 80 20 0 0 100 0 0 100 00 00
50 190 85 20 20 20 100 0 10oo 0 0 0 0 lowing the phonological systematicities in the vocab-
60 20 95 50 50 0 100 0 0 100 0 0 0 0
70 290094 0 33 0 100 00 100 0 0 0 0 ulary, regular stems which are idniymapped are
80 340 98 0 100 0 100 0 0 100 0 0 0 0 likely to end in a dental final consonant. However,

903097 0 100 0 100 0 02100 0 0 0 0
100440 97 0 50 0 100 0 0 100 0 0 0 0 in some cases, non-dental final regular stems are also
110 490 94 20 20 0 90 100 0 100 0 0 0 0 identity mapped. Identity stems are typically suffixed
120 540 94 40 20 0 100 0 0 100 00 00
130590 97 33 68 0 100 0 0 85 0 so so 0 or undergo a vowel change. Interestingly, all identity
140 640 93 57 28 0 100 0 0 80 0 66 33 0 stems which undergo an erroneous vowel change pos-
150 690 95 40 20 0 100 0 0 81 033 0 33
160 740 93 37 37 0 91 0 100 88 0 50 0 0 se s the requisite vowel/consonant stem final combina-
170 790 94 28 42 0 84 0 50 86 so 0 0 50 tion. It is also noteworthy that identity stems never
180 840 95 14 57 0 92 1C0 078 0 25 25 50
190 890 92 9 54 0 92 100 0 78 0 25 25 s0 undergo blending. Finally, vowel change stems display
200940 921 5 53 0 93 100 01951 00100 0ofgnrly.osi1n
210 990 94 10 60 0 93 100 0 95 0 0 100 0 the greatest range of error types, generally consisting
220 1040 95 0 66 11 93 100 0 100 0 0 0 0 of identity mapping, inappropriate vowel changes, and
230 1090 95 11 55 0 100 0 3 100 00 00
240 1140 96 0 71 14 100 0 0 100 0 0 0 0 blending. Regularizations are generally rare on vowel
250 1190 96 0 62 12 100 0 0 100 0 0 0 0 change stems.
260 1240 96 12 62 12 100 0 0 100 0 0 0 0
270 1290 97 0 83 0 95 100 0 100 00 00
280 1340 96 0 62 12 100 0 0 100 00 00 The previous analysis summarized the proportion of
290 1390 98 25 75 0 100 0 0 100 0 0 0 0 all errors generated by the network for each class, ir-
300 1440 98 25 75 0 100 0 0 100 00 00
310 1490 98 20 60 0100 0 0100 00 0 0 respective of whether the network had mastered any
320 1540 97 14 42 28 100 0 0 100 0 0 0 0 of those forms at an earlier point in training. In or-
330 1590 98 20 60 0 100 0 0 100 0 0 0 0
340 1640 98 25 50 0 100 0 0 100 0 0 0 0 der to investigate reorganizational processes in these
3501 690 98 25 75 0 100 0 0 100 0 0 00
360 1740 98 40 60 0 100 0 0 100 0 0 0 0 networks, Table 4 presents the proportion of sters in
370 1790 98 40 40 0 100 0 0 100 0 0 0 0 each verb class that undergo U-shaped development in
380 1840 97 28 57 14 100 0 0100 00 00
390 1890 98 16 66 16 100 0 0 100 0 0 0 0 each of the five epoch increment conditions. Here, a
4001940 98 147 14 100 0 011001 00 00 stem is defined as undergoing U-shaped development
410 1990 98 16 66 16 100 0 0 100 0 - - u
420 2040 98 16 66 16 100 0 0 100 0 0 0 0 if it is correctly produced by the network, then at some
430 20909 820 40 20 100 0 0 100 00 00 subsquent in training, is incorrectly
440 2140 97 12 50 25 100 0 0 100 0 0 00 point it mapped
450 2190 98 28 28 42 100 0 0 100 0 0 0 o and finally, again correctly mapped by the network.
4602240 98 16 33 49 100 0 0 100 0 0 0 0
4702290 98 16 33 49 100 0 0 100 00 00
480 2340 98 16 33 49 100 0 0 100 0 0 0 0490 2390 97 2233 33 100 0 0100 00 0500 2340 97 20 30 300 0 0 0 Table 4: Proportion (%) of U-Shaped Verbs by VerbClass

EPOCH EXPANSION
GLS 1[ 2 510 25

SUF: The stem is regularized. For regular stems this A SS 1 20 0.0 0.0

indicates that an inappropriate suffix is affixed. REG 20.7 18.3 17.7 12.7 14.0
ID: The stem and past tense have the same form. ID 35.0 25.0 25.0 20.0 20.0

VC 35.0 40.030.030.030.0
VC: The stem undergoes a vowel change. For vowel

change stems this indicates that an inappropriate
vowel change occurs. These data suggest the following generalizations:

BLD: The stem is blended i.e., it undergoes both First, the proportion of each class of stems which is
vowel suppletion and suffixation. correctly output and then subsequently erroneously

produced is greater for the irregular than regular verbs.
These categories account for the overwhelming major- Second, as the rate of vocabulary expansion increases,
ity of errors observed. Residual errors are mostly in- the proportion of U-shaped stems tends to increase for
correct mapping of consonants. Scores indicate per- both regular and irregular verbs.
centage of total errors in a given class. The exact
pattern and timing of errors differs across expansion Analyses of error types for the U-shaped errors on reg-
training schedules. However, only those findings appli- ular stems reveal patterns that are consistent with the
cable to all expansion conditions, represented by the general learning error analysis presented in Table 3.
epoch 5 condition, are presented. That is, when a regular verb is U-shaped, it is most

likely to be identity mapped, blended and inappropri-
First, note that the overall level of errors is low and ately suffixed. Interestingly, comparisons across train-
circumscribed to a limited range of error types. Sec- ing condition suggest that as expansion rate is slowea
ond, different verb classes are susceptible to different (i.e., 10 and 25 epoch increments), the tendency for
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blending increases and the tendency for inappropriate 3.2.3 Novel Verbs
suffixation decreases. For irregular verbs, U-shaped
errors are most likely to result from suffixation, blend- The preceding analyses concentrate on the network's
ing, or incorrect vowel changes. These patterns appear ability to produce the appropriate past tense forms
to be consistent across training condition. However, of stems that were members of the training set, i.e.,
the small absolute number of U-shaped irregular stems trained verbs. The following analyses investigate net-
precludes the identification of stable trends. work performance when it is required to produce the

past tense forms of stems that it has never seen. Fig-
U-shaped errors were also analyzed in terms of the ure 2 outlines responses to novel stems in the 5 epoch
point during training in which they occurred, i.e., at expansion condition. As with the error analyses pre-
what point in training after the verb was correctly sented above, the findings discussed are applicable to
mapped did the first incorrect output occur. In gen- all epoch expansion conditions. Figure 2(a) plots the
eral, this analysis reveals that the onset of U-shaped tendency of the network to treat novel stems that end
errors tends to be distributed relatively evenly across in a dental (Dental-Final) as if they were regular, iden-
the entire training cycle. However, the data also sug- tity mapping, or vowel change forms. Figure 2(b) plots
gest that there is an interaction between the propor- performance on novel stems which possess stem final
tion of verbs undergoing U-shapes during any given vowel-consonant clusters characteristic of vowel change
period of training and the training condition. In par- verbs (Vowel Changes). Lastly, Figure 2(c) plots net-
ticular, the data suggest that increasing the rate of work performance on novel stems which do not possess
vocabulary expansion tends to increase the tendency any particular phonological sub-regularities (Indeter-
to make an U-shape error early in training. Table 5 minates). These data are relevant to understanding
summarizes this finding, presenting the proportion of the network's sensitivity to the predictable phonologi-
U-shape onsets observed in four training periods, for cal characteristics of a stem (or lack thereof) when gen-
each of the five epoch expansion schedules. erating past tense forms, as well as changes in the ten-

dency of the network to generalize regularities across
learning.

These figures reveal that the network is indeed sen-
Table 5. Proportion (%) of U-Shape Onsets on Regular sitive to the phonological properties of stems when
and Irregular Verbs by Training Period generating the past tense forms of novel verbs. First,

AN note that dental final verb stems are more likely to

R OD11 2 5 10 125 be identity mapped (28%)8 than verb stems which do

20-140 136.7 19.6 17.2 19.1 5.4 not end in a dental (7%). Similarly, novel stems that
141-260 32.1 40.2 38.7 42.6 51.4 possess particular Vowel/Consonant stem final clus-
261-380 15.6 20.6 21.5 19.1 24.3 ters are more likely to undergo vowel suppletion (37%)
381-500 11.9 16.5 21.5 20.6 21.6 than those which do not possess those sub-regularities

(11%). In addition, the network appears to be sensi-
tive to a lack of phonological properties in its tendency
to regularize novel stems, although this pattern is less
absolute. For example, there is a striking tendency

An error type by training period analysis on these on- for indeterminate novel stems to undergo regulariza-

sets indicates a relatively even distribution of types tion (71%); however, a substantial proportion of the

of U-shapes across the training period for the regular dental and vowel/consonant novel stems are also regu-

verbs. That is, blends and identity mapping U-shapes larized (18% and 26% respectively), especially towards
were equally likely to occur early and late in the train- the end of training. Note that very few indeterminate
ing period. However, there is a tendency for inappro- stems undergo identity mapping (3%) or vowel supple-

priate suffix U-shapes to occur early in training. tion (0.4%).

In contrast to the regular verbs, the great majority of Focusing on changes in the tendency to regularize in-

the U-shapes on irregular verbs (52 of 58 or 89.7%) determinate novel stems across learning, we observe

occur during the first half of training. The occurrence that the regularization properties of the network alter

of irregular U-shapes is split fairly evenly across this dramatically between early and late training. Early in

period in the five training conditions, alL tough there training, i.e., immediately after the network has mas-
is some evidence to suggest that U-shapes are more tered the initial vocabulary of 20 verbs, indeterminate
likely to occur during the later phases of learning as novel stems are treated in an unsystematic fashion.
likel Network output is unclassifiable in terms of the map-
the rate of epoch expansion is decreased (i.e., in thle pn aeoisue nTbe3.Hwvr svc
10 and 25 epoch increment condition). Thus, the pat- ping categories used in Table 39. however, as vocab-
tern of U-shaped errors on stems in the regular and 8The percentages quoted here are means for the whole
irregular classes is quite similar across epoch expan- training period.
sion conditions. 9 During this early period of training, only one of the
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Figure 2: Performance on Novel Stems

ulary size expands (and training continues), the ten- nal vocabulary size, rather than amount of training
dency for the network to add a suffix to indeterminate (number of epochs), is a better predictor of final level
novel stems increases quickly and substantially. Inter- of generalization. That is, the ability of the network
estingly, this rapid increase occurs at about the same to generalize the suffix to novel stems continues at a
point in training (50 verbs) at which performance on low rate when the final vocabulary size is small. How-
trained verb stems begins to show recovery from the ever, the relationship between changes in final vocabu-
initial performance decrement (cf., Figure l(b) with lary size and final level of generalization is non-linear.
Figure 2(c)). Furthermore, while a major proportion In particular, a substantial increase in generalization
of indeterminate stems are regularized by the network tendencies is observed when final vocabulary size is
by the 140 vocabulary mark (76%)1° , the tendency of increa.ed beyond 30 verbs.
the network to regularize novel stems continues to in-
crease, albeit at a less marked rate, as vocabulary size
(and training) also increases. 4 DISCUSSION

The sudden onset of the systematic treatment of novel In comparison to previous neural network models of
stems indicates that abrupt reorganization processes the acquisition of the English past tense, the simu-
are occurring in the weight matrix of the network. aisitoothe E h a tee, th simu-
However, it is unclear whether these changes are the lations reported here achieve a high level of perfor-

result of prolonged training or the result of the net- mance within a reasonable period of training. For ex-

work's exposure to an increasing number of different ample, using similar network architectures and token
stems. In section 3.2.1, we report the sudden recov- frequency manipulations on an identical vocabulary

Sfrom error on trained verbs. Figure 3 plots the configuration, Plunkett & Marchman [In press] reportery only , v' ot'80% mastery on verbs in the regular
performance of the network in mapping indeterminate and .. chnge classes. The current set of simula-
novel verbs stems to regular past tense forms as a func- tions result in overall learning levels of 98% and 100%

tion of training (by epoch) on a series of vocabulary on these verb classes, respectively, averaged across the
sizes 11 . These generalization curves indicate that fi- fi ; epoch increment conditions.

novel indeterminate stems is treated in a &ootematic fash- The improved performance in the current simulations
ion. It is regularized. The tendency to treat Dental- can be attributed directly to the use of an incremental
Final novels and Vowel/Consonant novels systematically epoch expansion learning schedule, rather than train-
is greater, including 3 regularizations, 3 identity mappings ing the network on the entire set of 500 verbs from the
and 11 vowel changes. initial point in training. On problems that are radi-

1"Note that this point in training corresponds to a period cally different from the mapping of verb stems to their
in which performance on trained irregular verbs is low (see t tese frm the rarcher s t o Theig
Figure 1). past tense forms, other researchers (Cottrell & Tsung

"lBullets (e) indicate the point on the generalization [1989]; Elman [1989]) have also noted improved over-
curve, where vocabulary expansion is halted for each con- all learning in networks that are trained on subsets
trol simulation. The open circle (o) indicates where vocL'b-
ulary expansion starts for each control simulation. Voc;.b- ulary sizes are indicated in Figure 3.
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of the data prior to expanding to the full set. How- 60
ever, the facilitatory effect of an expansion trainingi 80 Verbs
procedure is not well-understood. Given the statisti- 50
cal nature of these systems, it is likely that limiting - 70 Verbs
the size and/or sampling of a problem domain reduces % 40
the probability that the network will extract spurious 60 Verbs
correlations in the data set. Provided that initial data .; 50 Verbs
sets are sufficiently representative of the overall prob- 40 Verbs
lem space, training on limited data sets increases net.
work efficiency in uncovering the principal componezi" , ,
of variation that define the problem domain. Onc,
these principal components are encoded in the weight
matrix of the network, training on an expanded sam- 30 Verbs
pie serves to reinforce the initial organization of the n __1_

weight matrix and reduces the identification of spu- 0 100 200 300 400 500
rious correlations. In addition, the network is better
equipped to extract lower order components of varia- Epoch
tion. In the current context, lower order correlations
might correspond to the phonological sub-regularities Figure 3 Generalization on Indeterjnate stems by
that characterize the irregular classes. Vocabulary Size

Several prominent theories of cognitive development
have explored the relationship between the current
knowledge state of the child and the nature of the of the overall problem domain), but it is instead at-
problem domain to which the child is exposed with tempting to adjust the weight matrix to the mapping
respect to determining the child's success or failure. characteristics ofasingle pattern. Eventually, the net-
For example, Piaget [1953] introduces the notion of work gradually entrenches itself in an increasingly iso-
moderate novelty to summarize the finding that chil- lated partitioning of the weight space, such that it is
dren display the most advancement in those conditions impossible for the gradient ,iesrnt learning algorithm
where new problems only exert moderate demand on to accommodate to the mapping demands of the new
their current kiowledge state. Incorporating slightly verb stem, The network is trapped in a local mini-
different components, Vygotsky [1962] utilizes the no- mum, and even indefinite training on the single new
tion of zone of proximal development for similar pur- verb has little or no effect on performance.
poses. In these simulations, the interacti - between Many theories of cognitive development emphasize
the current knowledge state of the network, as encoded the importance of continuous variation of environ-
in the wight matrix, and the nature and size of the mental stimulation for cognitive advancement (though
problem space to which the network is exposed can be also acknowledging the role of maturational fac-
seen to account for many of the observed behaviors. tors and internal reorganization processes (Karmiloff-
Networks, like children, appear to benefit from a mod- Smith [1986])). It is unlikely that children attempt
erate novelty effect, such that if the initial knowledge to learn verb morphology, or other types of tasks for
state of the network is undifferentiated with respect to that matter, by limiting the domain of exemplars to
the problem at hand (e.g., a random weight configura- just one greater than what has already been mastered.
tion), overall performance is enhanced if the learning Most current account of lexical acquisition assume that
set is initially restricted and then gradually expanded. children learn many items in parallel, and partial mas-

tery of a lexical items or inflectional systems may best

However, recall that these networks have considerable characterize much of development. The gradual but
difficulty mastering the past tense mapping problem if continuous expansion of the problem space that was

the conditions for expansion involve learning each verb illustrated in these connectionist simulations can be
to criterion before any additional verbs are added to seen to parallel those aspects of learning in children
the vocabulary. Indeed, the upper limit on the number which ensure that they do not become entrenched in

of verbs that the network was able to master was sev- the irrelevant details of a particular problem and are
forced to satisfy a multiplicity of constraints charac-eral orders of magnitude smaller in the criterial expan- terizing the problem domain.

sion condition (i.e., 25-30 stems) than in the epoch ex-
pansion conditions (i.e., 500 stems). Criterial learning One major goal of this work was to determine the na-
results in weight changes which are derived from only ture of the mechanisms that trigger the transition from
one training pattern (i.e., the new verb), given that the rote learning to system building in children acquiring
error signal resulting from old verbs has already been the English past tense. Two sets of results from the
minimized. In effect, the network is no longer attempt- simulations presented here indicate that artificial neu-
ing to solve a global mapping problem (i.e., at the level ral networks can also be observed to pass from a period
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of rote learning to a period of system building early in ical characteristics (.see Figure 2). Thus, correct per-
learning. A third set of results illustrates that, in these furinance on the initial 20 verbs duve nit transfer to
networks, this transibion is triggered by quantitative novel verbs, aad the corresponding successful output
factors relaLing to the number of verbs which share on verbs in the training set again cannot be attributed
specific mapping properties and characteristic phono- to the generalization of mapping characteristics. As
logical features. vocabulary size is expanded (and training continues),

the tendency to treat novel verbs in a s3 stematic fash-
First, after the initial set of 20 verbs are learned to cri- ion increases rapidly. For ex ample, there is a clear

terion, the network does not generalize the regularities tendency to regularize those novel stems which do no"

in that set to new stems. In the period immediately possess p o regulariiescharacterstic of
follwin intia tranin, bth egulr ad ireglar possess phonological subregularities characteristic of

following initial training, both regular and irregular the irregular classes (i.e., the indeterminates). In ad-
verbs are prone to incorrect mapping (see Figure 1). diti.,nn, novel dental or vowel change stems are now
In addition, the errors produced by the network dur- likely to be mapped in accordance with their phono-
ing this per;od are not systematic, i.e., they do not logical shape, or they are regularized.
appear to reflect the mapping characteristics of the
initial learning set (see error tabulations in Table 3). Crucially, the onset of the systematic treatment of
Interestingly, however, the initial 20 verbs are likely to novel verbs stems coincides with the turnaround in the
continue to be mapped correctly by the network, even performance on trained verbs. Thus, the network is
in the presence of the other erroneous mappings12 .  consistent in its treatment of trained and novel stems.
This pattern of results indicates that the network has At this point in training, the network appears to have
failed to extract any pattern of regularities from the modified its representation of the verb mapping prob-
initial set and treats each stem/past tense pair as an lem from one in which individual stem/past tense form
independent mapping problem, i.e., the network has mappingb are encoded independently to one in which
memorzed the initial set of 20 stem/past tense pairs. classes of mappings can be .ifferentiated into cate-
Overall performance on new verbs (particularly on reg- gories. As a result, the process of regularization can
ular verbs) continues to deteriorate as new verbs are be seen to act like a "default" transformation, in that
added to the training set (see Figure 1). it is likely to be applied to the majority of novel stems,

especially when a stem lacks a characteristic phonolog-The deterioration in performance on newly introduced ical shape. The various processes of irregularization,
verbs is reversed when the vocabulary reaches a spe- in contrast, are applied to a smaller subset of novel
cific size (around 50 verbs). At this point in train- stems and are contingent on the presence of phonolog-
ing, performance on new verbs improve-- rapidly. In ical sub-regularities.
addition, errors are now observed on st .ral irregu-
lar verbs that were members of the in>.ial training A third set of simulations demonstrates that the quan-
set. The timing of this turnaround in performance ap- tity of stems in the training set which undergo system-
pears to be stable across all epoch expansion schedules atic mapping strves to trigger the transition from the
tested here, and the same patterns of learning have period of rote learning to the period of syste.n building
been replicated in networks learning a different ran- in these networks. The control simulations illustrated
dom selection of the total vocabulary. These findings in Figure 3 suggest that size of training set is the b,-
suggest that the network has reorganized its represen- predictor of the regularization of indeterminate no
tation o; .he mapping problem, to the extent that the verb stems. In particular, the size of the training ,et
network i..w treats new verbs entering the vocabulary must be increased beyond 30 verbs before substantial
in a syst..uatic fashion. The fact that the timing of the regularization tendencies are observed. This finding
turnaroun.', is remarkably consistent across the tiain- clearly does warrant the conclusion that an absolute
ing conditions tested here suggests that the trigger for critical mass of verbs can be defined as a prerequisite
the transition from rote learning to system building in for generalization. However, the non-linear relation-
these networks is associated with the quantity of verbs ship between the tendency to generalize the regular
in the training set which undergo systematic mapping mappings and size of training set suggests that re-
processes. peated training on a small set of mappings will not

in itself lead to generalization. The network must beSecondly, the performance of these simulations on exposed to a sufficient range (types) of mappings. Yet,

novel verbs also confir:ns the interpretation that the a dequ a sie rang s es o bedeined ie-
network can be seen to pass from a stage of rote learn- adequate sizes of training sets cannot be defined inde-

ing o sste buidin. I theperod olloingthe pendently from the specific network architecture em-
ing to system building. In the period following the ployed and the overall set of mapping characteristics
initial training on the 20 verbs, responses to novel thtientwrmutla.

stems is unsystematic, irrespective of their phonolog- that the network must learn.

In general, these results support the view that a sin-
'21t will be recalled (see footnote 4) that regular verbs gle mechamsm learning system can offer an alterna-

in the initial training set are only correctly mapped if they tive account of the transition from rote learning pro-
have a high token frequency another symptom of rote cesses to system building in children's acquisition of
learning in these networks.
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English verb morphology. In contrast to the tradi- work (Plunkett & March.nan [In press]). In particular,
tional view which posits an interaction between two patterns of multi-laterl interference are observed be-
qualitatively distinct mechanisms supporting different tweern the mapping classes resulting in both regulariza-
modes of representation (i.e., rote and rule), a connec- tions and irregularizations. Furthermore, corroborat-
tionist account posits a single mechanism driven by ing earlier findings, different verb classes are suscepti-
a general learning algorithm which is capable of both ble to different types of errors. When errors are made,
memorization and generalization processes. The net- regular verbs are most likely to be identity mapped;
work's transition 'rom rote-like to rule like processes identity verbs are most likely to be suffixed. Vowel
are not triggered by the interaction of qualitatively change verbs are subject to the widest range of errors.
distinct mechanisms, but instead by quantitative in- The patterns of timing of errors are also similar to that
crements in the size of a structured training set. reported in earlier work, e.g., blending errors tend to

be a characteristic of late training. However, because
The behavior of these networks can be seen to mimic of the high level of performance in these simulations,
several aspects of the type and timing of children's errors on irregular verbs in the second half of training
pattern of morphological acquisition. However, it is as are virtually absent. Instead, errors on irregular verbs
yet impossible to determine the degree to which chil- tend to be clustered around the beginning and middle
dren's transition from rote learning to system building periods of training. Errors on regular verb stems are
is driven by similar quantitative changes in the size observed throughout training.
of the learning set. There is abundant evidence that
many children pass first through a prolonged period We have argued elsewhere (Plunkett & Marchman [In
of development in which they only produce a limited press]) that the timi,.g and pattern of errors produced
number of verbs and ti-"ir correspond'ng appropriate in these networks resemble those produced by young
past tense forms. This period is then superceded by children acquiring English verb morphology. Children
one in which verb vocabulary expands at a. fairly rapid (and adults) produce incorrect past tense forms over a
pace, and errors are likely to occur on irregular (and wide span of development and the types of errors pro-
sometimes regular) past tense forms. However, suffi- duced suggest a sensitivity to the phonological prop-
cient longitudinal evidence is not yet available to de- erties of the irregular classes. Such sensitivities can
termine whether vocabulary size operates in a critical sometimes interfere with the appropriate production
mass fashion for children. Furthermore, it is difficult to of regular past tense forms, just as the pattern of suf-
anticipate the contributions of comprehension or other fixation interferes with the appropriate production of
linguistic processing factors in determining the nature irregular forms. These multi-lateral patterns of inter-
and timing of this transition in children. ference are an inherent property of an interconnected

However, it is interesting to note that similar relation- connectionist system attempting to map several com-

ships between set size and the onset of reorganizational peting classes of verb types.

processes have been hypothesized with respect to the In our analyses of the errors produced by these
"vocabulay (or naming) spurt" that is observed in networks, we distinguish errors produced across the
young children during the second half of their sec- course of learning from errors that resulted from an
ond year Several researchers (Bates, Bretherton & apparent unlearning of stem/past tense mappings (i.e.,
Snyder [1988]; Nelson [1973]; Plunkett [1990]) have those stems that have been produced correctly at some
noted that there is a shift in the rate of vocabulary point earlier in training). Much of the empirical foun-
acquisition after the point in learning when overall dation for the traditional view of acquisition has been
vocabulary reaches around 50 words. Although the concerned with the latter type of error, perhaps be-
interpretation of this finding is controversial, many re- cause the phenomena of U-shaped regressions in per-
searchers (e.g., Barrett [1982], Bowerman [1982]) ar- formance is more theoretically striking than the hy-
gue that such a transition is associated with a reor- pothesized processes which guide the gradual linear
ganizaiion in the structure of children's vocabularies, acquisition of a verb. Clearly, however, the results
Prior to this point, word meanings tend to be encoded from these simulations predict that children's erro-
independently as separate and distinct lexical items, neous output results from both types of errors. In
whereas, the vocabulary spurt signals that children's these networks, general learning errors typically oc-
lexicons are now organized into coherent semantic sys- cur early in training, whereas the occurrence of U-
tems This interpretation is consistent with the view shaped errors i3 distributed fairly evenly throughout
that the transition from rote learning to system build- the training period. Interestingly, as with children,
ing can derive from processes inherent in a single mech- the proportion of irregular verbs that are U-shaped is
anism connectionist-like system, driven by quantita- greater than the proportion of regular verbs that are
tive changes in the size of the learning set. A similar U-shaped. However, irregular mappings are all mas-
view has been espoused by Karmiloff-Smith [1986]. tered by the 300 vocabulary size mark. Unfortunately,

empirical data comparing U-shaped errors to patterns
Thle categories of general learning errors reported for of general learning errors are not available for children.
these simulations resemble those reported in earlier
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Lastly, we tested several types of learning schedules, shown that novel stems which end in a dental tend
focusing primarily on the rate at which vocabulary size to be identity mapped and novel stems with spe-
is expanded across training. The findings suggest that cific vowel/consonant clubters %ill sunetirie undergv
high expansion rates (i.e., 1 epoch increment) are likely vowel suppletion.
to result in: In these simulations, analyses of network performance

1. Greater decrements in performance on both reg- on trained verbs is analogous to naturalistic observa-
ular and irregular verbs early in training. tions of children's performance on real English words.

Correspondingly, network performance on novel verbs
2. A higher final level of performance on regular is best viewed to correspond to the experimental

verbs. elicited production studies with nonsense verbs. In-
3. A shorter and less marked performance decrement terestingly, the overall pattern of results suggest. a

on irregular verbs in the middle portions of the considerable correspondence between children and net-
training period. works across these two types of measures. For exam-

4. A greater proportion of stems undergoing U- pie, the pattern of errors observed across learning for
shaped learning, though these are more likely to verbs in the training set are multi-lateral i.e., irregular
be restricted to early periods in training, verbs are regularized and regular verbs are irregular-

ized. in contrast, responses to novel verbs are over-
At this point, these results can only offer speculative whelningly more likely to involve regularization. For
predictions for the study of language acquisition. How- those novel stems that phonologically resemble irrcg-
ever, we suggest that the rate of vocabulary expansion ular verbs, the tendency to regularize is still promi-
that we have modeled in these networks might prove nent but identity mappings and vowel suppletions do
to be analogous to the rate with which young chil- occur. Thus, evaluations of network performance on
dren attempt to assimilate new verbs into their vo- novel verbs (in comparison to patterns of errors across
cabularies. It is possible, for example, that children learning) suggests that the network, like the child, is
who vary in their rate of vocabulary acquisition (e.g., best characterized as a rule-governed system. We sug-
"late talkers" vs. "early talkers" (Bates & Thai [In gest that evaluations of acquisition using experimental
press])) may also vary in the type and timing of over- studies using nonsense verbs, while clearly illustrating
generalization errors. In particular, the results from the generalization abilities of young children, may have
these series of simulations predict that early language succeeded in biasing our view of the nature of the phe-
learners would be more likly to produce errors earlier nomenon to be explained. While we accept that exper-
than later in acquisition, and U-shaped errors would imental findings contribLte important insights into th,.
be less likely to occur later in development. Late lan- developmental process, .hey do not obviate the need
guage learners, in contrast, would be likely to achieve a for detailed naturalisti. studies of children's acquisi-
slightly lower level of final performance and produce a tion of verb morpholo y. Indeed, it is precisely such
greater proportion of errors on verbs that do not match data that are needed t - evaluate the predictions of the
the dominant pattern, i.e., the irregular verbs. These present model in a stringent fashion.
predictions are clearly only speculations which must
await empirical findings. Nevertheless, the simulation
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Abstract the projection operation, this has special significance for
phonology. It is also possible to apply clustering to the

M3 P is a computational model of phonology output of a projection.
based on parallel mapping matrices. Rules
govern the mappings between successive levels M3P is labeled a connecdonist model because its prim-

of representation of an utterance, from morph- itive operations are constrained to be efficiently imple-

phonemic, to phonemic, to phonetic. The map- mentable by feed-forward circuits constructed from simple,

ping matrix architecture performs several types neuron-like elements. This constraint strongly influences
the phonological theory. The long term goal of our work is

of sequence manipulation. M3 p shows that hu- to devise an architecture that is no only a computauion-lly

man phonological processing can take place in plausible model of human phonological behavior, but also

a highly constrained architecture, using purely a source of novel predictions and insights into its nature.

feed-forward circuitry and tight limits on depth

of derivations.

2 Sequence Manipulation Via a Change

1 Introduction Buffer

A connectionist architecture that uses a mapping scheme A phoneme sequence may be viewed as a string of seg-
can perform arbitrary combinations of insertions, deletions, ments, each of which is a vector of binary features. Con-
and mutations on input sequences in parallel. These opera- sider the word "cats," whose underlying phonemic form" is
tions are useful for describing the effects of human phono- /kmt z. The phoneme/Afis described by the feature vector
logical processes, which derive surface phonetic forms from [-syllabic, +consonantal, -sonoraIt, +anterior, -coronal,
underlying phonemic ones. Processing time can be made +continuant,+strident,+voice). In thesurface form, [k, tsj,
independent of the length of the sequence and the num- the final segment has been changed to have the feature
ber of operations requested. The mapping matrix is a key [-voice], giving [s). Two other types of changes that may
component of M3 p, the "Many Maps Model of Phonol- occur when deri% ing surface from underl)ing forms are n-

ogy" currently under development by Deirdre Wheeler and sertion and deletion of segments.
myself (Touretzlcy & WVheeler, 1990a, 1990b; WVhexcer & M3  se
Touretzky, in press). M3p uses a "change buffer" to explicitly represent the

changes a sequence is to unde-o. An input sequence plus
In addition to performing sequence manipulation, the map- change buffer ar input to a parallel mapping matrix, which
ping matrix can also compute efficient projections of se- then derives the output sequence by applying the requested
quences, e.g., extracting all the vowels in Pr utterance. changes. The details of the map are discussed in the next
Projections are useful for implementing processes such as section. Figure 1 shows examples of a mutation, an inser-
umlaut and vowel harmony which operate on a series of tion, and a deletion via this mechanism. Although in cach
vowels, ignoring intervening consonants.' case only a single change is shown in the change buffer,

any number of insertions. deletions. and mutations can beAnother component of the M3 p architecture rcognizes proceed simultaneously:

clusters of adjacent segmLnts that meet some feature spec-

fication; t cluster may then be operated on as a unit. Like "'lihc tradition in linguistics is that each rnorpher-n¢ be repre-

'In auosegmentalphonologyterms, such processes arc said to sentcd bky a ingle undcl.png form. For reasons having to do with
look only at selected "tiers," with vowels and consonants occupy - the o era; sanplicity of he analyss. the undertyingreprcscr.tat:on
ing separate tiers. of the r ' + plural morphcrm is assumned to be Iii.
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Figure 1. Examples of (a) a mutation in the derivation of "cats"; (b) an insertion in the derivation of "buses", (c) a deletion
in the derivation of "iced tea".
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Rules in-M3P are implemented by binary threshold units undergo a change, because it is not present in the input
that look-at some region of the input buffer and, if they buffer. However, it is possible for an input segment to un-
fire, writesome pattern into the change buffer. Rule units dergo multiple changes. For example, a vowel could be
are replicated at each input buffer position s, .it they may simultaneously undergo rounding and nasalization by inde-
apply to the entire utterance in parallel. pendent rules; the changes would combine in the mutation

slot of the change buffer.
The change buffer approach is fundamentally d&Aerent from slothe chaneur.
other connectionist models that manipulate phoneme se- Another architectural limitation is the number of insertions
quences. For example, the Rumelhart and McClelland that may take place between adjacent input segments. The
(1986) verb learning model employed a single layer of train- change buffer currently has room for only one insertion
able weights to directly map words, represented as sets of between each pair of adjacent inputs. This limit could be
Wickelfeatures, from input to output form. MacWhinney's raised at the cost of extra hardware. For example, we could
model of Hungarian verb inflection (personal communica- choose to provide two insertion slots between every pair of
tion) uses a syllabically-structured sequence representation input segments, and align the inputs with every third column
and a layer of hidden units, but it too maps inputs directly to of the mapping matrix. However, human languages appear
outputs. -Both these models can learn much more complex to require only a single insertion. 3  Permitting multiple
transformations than can be expressed in M3p's change insertionswouldraiseanotherissue: suppose two rules both
buffer formalism. This fact is crucial to the Rumelhart try to insert a segment A or B between the adjacent inputs
and McClelland model, since it combines morphological xy. Some sort of arbitration mechanism would be needed to
knowledge with phonological processing in order to derive prevent the rules from writing into the same insertion slot.
exceptional past tense forms such as "go"t'went" using the And if they each write into a different slot, should the result
same mechanism as for regular forms like "kiss"f'kissed". be xABy or xBAy? Resolving such problems would require
But the direct mapping approach has several disadvantages, additional circuitry and complicate both the model and the
as noted by Pinker and Prince (1988); one is that it is un- phonological theory.
derconstrained. Once segments have been loaded into the mapping ma-

trix, the next step is to read off the output string. There
are several ways this might be done, with differing

3 Operation of The Mapping Matrix cost/performance characteristics. In the simplest approach,
which uses 0(n2) units each with 0(n) connections, every

The mapping matrix is designed to produce an apptopriately active square in the matrix inhibits all the squares to its left
changed string, right justified in the output buffer, cc,,tain- in the same row, and all the squares below it in the same
ingneitherinternalgaps nor collisi,-z. Withoutthis devke, column. After the matrix settles, there will be at most one
gaps in the string could arise due to deletions requested by square active in any row or column, as shown in Figure 3.
the change buffer, and collisions could occur as a result of One can then read out the string by or'ing together all the
insertions. Figures 2 and 3 show how the matrix handles the squares in each row.
derivation of the word "parses" (underlyingly /pars + Z/),
in some New England dialects. Three process apply in this The problem with this simple approach is that the settling
example: frontingof the/a/vowel before/r/, r-deletion, and time of the mitr ii linear in the length 0V the str-ng. Con-Sider the I/ colunm; let zi refer to the cell in row i cf thatinsertion of an /I/ as part of the regular process of English colmn th rowing t te to t ae lnot , atplural formation, producing the surface form [peslz]. column, with row I bein g at the top. ',al t ,o. zi aiud z2

are active, so z2 inhibits all the squla(rs to its 10h. irneiudiig
Each square of the mapping matrix is a register thatcan hold 12. But zi inhibits z2, so when z2 turns off, I, . n,,. :
one segment (phoneme.) The first step in the operation of on again, which causes 13 to turn off, and o or. I ,pr- I
the matrix is to copy each segment of the input buffer down most squares stabilize first; the leftmost ones m-. fli4 ,,,
to all the squares in its column, as shown in Figure 2. If an and off several times before settling into their fl,;a states.
inputsegment is to undergo a mutation then it is the mutated The matrix can be made to settle in constant time by using
segment that is copied down to the matrix. For example, sh mr e mae torcuitry in thistscheme by uol-
the change buffer indicates that the /a/ is to undergo the slightly more complex circuitry. In this scheme, each col-
change [-back]; it therefore shows up as /e/ in the matrix, umn counts the number of active squares to its right in the
If an input segment is to be deleted, the deletion bit being topmost row. If a square is in row i and there are exactly
turned on in the change buffer disables all the squares in that i - 1 active squares to the right of its column, then that
column of the matrix. Hence the Ir does not appear at all square will remain active; otherwise it will shut itself off.
in the matrix; the disabled squares are marked with a gray After a single update cycle, all squares will reach their final
line. Finally, if an insertion is indicated in the change buffer, state.
the inserted segment is copied down to all the squares in its Let u,, be the unit governing the mapping matrix square in
column. Input segments are assigned to every other column
of the mapping matrix in order to leave room for possible 3This claim is somewhatcontroversial. Counterexamples have
insertions, been proposed, but in some cases the data is unclear, and in oth-

ers the insertion may be a morphological process rather than a
Note that a to-be-inserted segment cannot simultaneously phonological one.
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row i, column j. This unit will have excitatory connections The rule applies to the vowel /i/ because the vowel to its
of weight 1 from the rightmostj - 1 squares in the topmost right, /u/, is round. Therefore the rule should write [+round)
row of the matrix; its threshold will be i - 0.5. It will into the mutation slot of the /i/ in the change buffer. The
also have an inhibitory connection from unit u,,t ,. Note problem is how to find this slot. The /i/ is the third segment
that this circuit is strictly feed-forward. After two update in the vowel projection buffer, but it is the seventh segment
cycles (one for units to become activated, and one for them in the input buffer. By back-projecting its changes through
to be inactivated by the inhibitory connections from units the map, the rule can deposit them in the appropriate change
representing higher counts), all the uij will have reached buffer slot. The back projection is shown as a dotted line in
their final states. At this point the u,j can be used to gate the figure; the change buffer itself is omitted to save space.
the corresponding squares of the mapping matrix. The extra
cost of this scheme for constant-time mapping is just 0(n)
units per column to keep the counts. Thus, the architecture 5 Clustering
as a whole still requires just 0(n2) units, each with 0(n)
connections. Phonological phenomena commonly involve iterative pro-

Further savings are possible if we assume a bound on the cessing. Consider voicing assimilation in Russian, where

change in length of the string. Let Ins, and Del, be the the voicing quality of the rightmost member of a consonant

total number of insertions and deletions, respectively, that cluster spreads to the entire cluster. One way to describe this

apply to-columns i through n. Suppose that for every i, process is to have a rule that proceeds right-to-left through
Ins, - DelL <k for some constant k. This is a reasonable an utterance, voicing (or devoicing) consonants if their right

assumption for human languages. In this case, the upper neighbor is a consonant and is voiced (or voiceless, respec-

triangular matrix can be replaced by a band of width 2k + 1, tively):
which requires only O(kn) units. Figure 4 shows the shape
of the band for the case k = 1. mcensk bY / 'if Mcensk'

I voicing assimilation
mcensg bi

4 Projections I voicing assimilation
mcenzg bY

The projection of a sequence with respect to some predi- I voicing assimilation (null effect)

cate is the subsequence consisting of only those segments mcenzg b' ]
that satisfy it. The most common example of projection
in phonology is the vowel projection. Some phonolog-ical rules operate on sequences of vowels, ignoring any- More modem theories, such as autosegmental phonol-
intervening consonants. If rules are implemented by single ogy (Goldsmith, 1990) treat iteration as a spreading phe-

nomenon; the rule applies only once, but that application
binary-threshold units as in M3P, those rules that are re- may spread the feature [+voice] to any number of adja-
quired to skip over variable numbers of consonants cannot 3
look directly at the input buffer; they must look at its vowel cent segments. Iterative processes in M p are modeled
projection. using special grouping circuitry for recognizing clusters of

segments that should be treated as a whole. The voicing
The mapping matrix, withouta change buffer, can be used to assimilation rule would be represented this way:
take projections, as shown in Figure 5. Columns that do not
contain segments of the appropriate type (e.g., vowels) are Cluster type: (-syllabic]
shut off; the remaining segments are then collected together Direction: right-to-left
to form a contiguous sequence in the output buffer. Trigger: [+consonant, -sonorant, avoice]

In order for rules to operate on the segments of a projection, Element: [+consonant]
they need to be able to back-project to the original string. Change: [avoice]
For example, imagine a rule that rounds a vowel if the
following vowel is round.4 The rule would have to look The trigger of a cluster is a consonant; the elements are
at the vowel projection in order to determine adjacency of the preceding consonants. The result of the rule is that the
vowels separated by an arbitrary number of consonants. As elements of the cluster all become voiced. Figure 6 shows
shown in Figure 5, the vowel projection of the input string how the Trigger and Element bits are set for the utterance
/karestifu/ is /aeiu/. /mcensk bW. When a cluster rule writes its changes into

4S _ the change buffer, the change is recorded only for those
Such "umlaut" rules exist in many of the world's languages, segments whose Element bit is set.

but not English. In Icelandic, for example, a pair of umlaut pro-
cesses convert underlying /fatnab + urn/ "suit of lothes" (dative Another process commonly described using iterative rule
plural) to surface [f6tnueum]. See (Anderson, 1974) for one anal- application is vowel harmony, whereby properties of a trig-
ysis For clarity of exposition, in this paper I use an artificial ger vowel such as height or roundness spread to one or more
example rather than the actual Icelandic rule. succeeding vowels, ignoring any intervening consonants.
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Figure 6: Parallel implementation of voicing assimilation via clustering.

Vowel harmony is implemented in M3P by applying clus- 7 Discussion
tering to the vowel projection. See (Touretzky & Wheeler
1990a) for an example. This work was inspired by Goldsmith's and Lakoff's ear-

lier proposals for three-level mapping architectures where
rules could apply in parallel. The crucial feature distin-
guishing their work from ours is the reliance on intra-level
well-formedness constraints in addition to inter-level rules.
In their models, constraints can interact with rules and with

6 M3P: The Big Picture each other in complicated ways. Their models therefore
require some form of parallel relaxation process, perhaps
even simulated annealing search5 Neither has been imple-
mented to date, due to the complexity of the computation
involved.

The M3P model is organized as a collection of maps. Based W wale tu

on proposals by Goldsmith (1990) and Lakoff (1989), the We were able to implement M3p using simple, feed-
model utilizes three levels of representation, called M (mor- forward circuitry because our model permits only inter-
phophonemic), P (phonemic), and F (phonetic). M is the level rules. But denying ourselves the luxury of a powerful
input level and holds the underlying form of an utterance; P and essentially unconstrained relaxation process forced us
is an intermediate level; and F is the output level, contain- to drastically rethink the model's structure. Specialized
ing the surface form. The model supports just two levels clustering and syllabification primitives were introduced in
of derivation: M-P and P-F, as shown in Figure 7. The compensation.
clustering and projection circuitry is omitted from this dia- M3p Is thus a highly constrained architecture. It cannot, to
gram. Cluster rules write their requested changes into the use a now famous example, reverse all the segments of an
appropriate change buffer in parallel with ordinary rules. utterance (Pinker & Prince 1988), or perform many other

Another portion of the M3p niodel, also not shown in the elaborate sequence manipulations which are not found in
diagram, deals with syllabification. M-level strings that do human languages. It also permits only limited depth deriva-

not meet a language's syllabic constraints trigger insertions tions. This constraint gives rise to some interesting predic-
and deletions (via the M-P mapping matrix) so that the P- tions. For example, if vowel harmony is treated as a P-F
level string is always organized into well-formed syllables process because vowels inserted by the M-P syllabification
(Touretzky & Wheeler, 1990b). Several types of phonolog- mechanism can undergo harmony, then since there are no
ical processes are sensitive to syllabic structure, the most further derivational levels after P-F, the model predicts that
notable being stress assignment. Syllabic information is (across all human languages) vowel harmony will not feed
available to rules through a set of onset, nucleus, and coda
bits set at M-level by the syllabifier, and transmitted to sGoldsmith in fact makes explicit reference to Smolensky's
P-level via the M-P map. Harmony Theory (Smolensky, 1986).
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Figure 7: Overview of the M3p model.
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1983) and the modules communicate only at their input
and output stages. Therefore, representational issues are

Abstract of prime importance in this paper. The interface between
two modules, in particular its encoding capacities, plays a

A neural network architecture in which names crucial role in propagating the informational flow through
and concepts are learned in separate modules is the system. The topic of concept learning will provide a
presented. The categorizing module extracts nice medium to illustrate how such codes self-organize to
concepts and provides a complete conceptual allow specific information to flow, and thereby constrain
interpretation of exemplars to which the naming what is learnable by other modules.
module associates category names. The output 1.1 CHILDREN'S REPRESENTATION AND
of the categorizing module--the conceptual map-- NAMING OF CATEGORIES
plays an important role in encoding and
transmitting important information to the Recent work on the acquisition of meaning by young
naming module. This paper investigates how the children has concentrated on the early constraints children
development of a conceptual representation honor when they are exposed to new words (Au &
constrains specifically the acquisition of a simple Glusman, 1990; Markman, 1990). In principle, when a
lexicon. The model's behavior is compared to child faces a new word, the meaning that he or she could
lexical development in children. assign to this label is underconstrained. For example, if

1 INTRODUCTION the child hears "iguana" when confronted with a particular
species of lizard, he or she could consider that the label

The lexical categories of young children are often broader refers to the iguana's color, or its shape, or one of itsthantose lialt s oflark young childre Care o t bar parts, or its weight and so on. One way in which
than those of adults (Clark, 1973, 1983; Chapman et al., children could initially constrain word meaning is by
1986). Consequently, when asked to poh for example at assuming that new labels always refer to a whole object
dogs, children may group together all the pets that have rather than to its parts or any of its properties. This
four legs such as dogs, cats, iguanas and so forth, initial constraint on the meaning of words is referred to as
Eventually, after gradually reorganzing and restructuring the Whole Object Constraint (Markman, 1990). The
their early conceptual knowledge, the children's use and Mutual Exclusivity Constraint is another important
comprehension of category terms narrow down to match initial assumption (Markman, 1990). It states that
adults concepts. What are the mechanisms, children constrain word meaning by assuming that words
representations and constraints underlying these refer to mutually exclusive sets of objects. Put
misnamings of categories known in psychology as differently, children would assume at first that each object

has only one label. These initial constijints provide a
I will present in this paper a possible answer to this broad framework to understand a phenomenon such as the

question using a modular model in which the acquisition overextension of category terms. The current research
of category labels is constrained by the development of will present a possible account of the processes and
conceptual knowledge. Two functionally independent representations underlying Mutual Exclusivity.
operations, categorizing and naming are implemented by Early constraints on word meaning depend ultimately on a
two structurally different modules. In modular systems, specific theory of concept organization. The organization
knowledge is "informationally encapsulated" (Fodor, of young children's conceptual knowledge seems

228
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compatible with the Prototype Theory of concepts
(Knapp & Anderson, 1984; Posner & Keele, 1968; 1970;
Smith & Medin, 1981). According to Prototype Theory,
a category is represented by its central tendency, an e C Lexicon
abstraction called the prototype. In this account of Categores-4,Concepts 1 eptoe Lexicon
category representation, concept learning is
straightforward. As children see more and more
exemplars from a particular category, e.g. dog, they Unif.rgizngsup p ArvisesdcdtiISelf-Organz'gMP A.-. -S1mv

-eventually pick out a set of statistically relevant features Atal
that compose the prototype, e.g. has-four-legs, barks, etc. b.
while leaving out of the representation features particular
to some exemplars, e.g. has-pointed-ears, brown, has-a-
curly-tail, and so forth. Categorization is also very Figure 1: Abstract Representation of the Implementation
simple, it proceeds by comparing an instance of a of Categorizing and Naming.
category to each known concept--i.e., each prototype. In
Prototype Theory, the output of categorization is graded Figure 1 presents the architecture. Part (a) of Figure 1
and complete. Before categorization, there is no way to represents the module that performs the unsupervised
know what stored prototype the exemplar has to be learning task, an operation I call categorizing. This
compared to. In order to have a complete and graded module is implemented with a learning scheme that is
conceptual intrpQretation, it is necessary that the output derived from self-organizing maps (Kohonen, 1982, 1984;
of categorization indicates how typical the exemplar is Ritter and Kohonen, 1989; Schyns, 1990a; von der
with respect to each known category. Gradedness and Marlsburg, 1973). Part (b) ot Figure 1 includes the
completeness of conceptual judgments will be two naming module. A simple pattern associator and an error-
representational constraints imposed on my model of correction learning rule realize lexical tagging. Note on
concept learning. Figure 1 the conceptual map that constitutes the medium

of communication between the categorizing and the
1.2 MOTIVATIONS FOR A MODULAR naming modules.
ARCHITECTURE

1.3 DESCRIPTION OF THE
Traditionally, models of concept learning have assumed CATEGORIZING MODULE
an omniscient teacher that provides the category names to
associate with exemplars (Amari, 1977; Gluck & Bower, The categorizing module is implemented with an
1988; Knapp & Anderson, 1984). However, recent architecture derived from the work of Kohonen (1982,
studies have shown that concepts can be acquired without 1984). Structurally, this architecture is characterized by
the help of category terms (Chapman et al., 1986, Quinn an n-dimensional input vector x fully connected to a two
& Eimas, 1986). Indeed, an argument can be made that dimensional map of output units. Therefore, each output
adults do not have a one-to-one relationship between unit oi is fully connect-. to the input vector i with a n-
lexical and conceptual knowledge either (Murphy, in- dimensional weight vector wo. The architecture is linked
press). Just think, for example, of the different styles of to a discriminant function and a learning rule. Fcrmally,
chair we are able to discriminate without always knowing it segregates the input space into distinct subspaceb and
different names for them. The independence between encodes them on the map with regions of correlated levels
words and representations points out the important label- of activation.
concept independence constraint that should be imbedded
in a model of concept learning. the acquisition and the The discriminant function described in (1) computes the
development of conceptual representations must be activation of each unit on the map by taking the inner
independent from their lexical tagging. product of the input vector x and each weight vector wi.

A Winner-Take-All scheme selects the output unit ov
Label-concept independence stresses the idea that learning with the highest level of activation.
to apply a category term to a set of referents can have an
unsupervised and a supervised learning component. Thus, o = maxj (w T

.

learning to represent categories could be described, to a
certain extent, as an unsupervised learning task The learning rule presented in (2)-(3) assumes
(Grossberg, 1976; Rumelhart & Zipser, 1985). Since no that eath output unit on the two dimensional map is
system can guess the correct category name to associate connected to its neighbors with local excitatory
to an exemplar, lexical tagging is definitely an instance of connections Ic (ol, oj). The fixed strength of each
supervised learning, connection is a Gaussian function of the distance between

a particular output unit and its neighbors.
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Awi = x [(1 - Iow I ). Ic (Oi, ow)] The f component of (3) is decomposed into two parts: the
conceptual interpretation V" and the category name f",

for i in Nw (2) i.e. f = P I f" (where I stands for the operation of
concatenation). The modification of the weight matrix

Awj = 0 for i not in Nw (3) will be proportional to the error vector e and the learning
parameter ox (see (4) and (5)). When the error vector is

The learning rule adds a fra.tion (the portion of Equation null, i.e. when perfect learning will be achieved, AW
2 between the brackets) of the input sample to the 0.
weights of the output units locally connected to the
winner ow. Therefore, with learning, the weights of the Once the system has learned its lexicon of category terms,
output units in Nw rotate in weight space in direction of a mechanism has to be provided to label the conceptual
the input sample in input space, and the region defined by interpretation produced by an exemplar. In other words,
Nw has its output units correlated in their activation how is it possible to retrieve f" given f'? Since the
values. If we generalize this scheme to input samples of conceptual map provides a complete and graded conceptualdifferent sorts, we get different regions on the map that judgment, retrieving the category name can be thought ofas a disambiguation process. The interesting dynamic
respond selectively to each kind of sample. properties of the Brain State in a Box model (Anderson et

The neighborhood size and the gain parameter have to al., 1977) will achieve the disambiguation task.
decrease with time for the network to converge on a Formally, the dynamics of the system are described by:
correct solution (Kohonen, 1984). In my version of the X ( + 1 lim( a x (t
learning rule, these two conditions occur as by-products
of (2). As learning goes on, when the activation of an
output unit tends to saturate, the modification of its + I3 W x (t))
weight vector tends to 0 because the gain parameter, ( 1 - where lim( xi) = I if xi > 1,
low I ), goes to 0. T'lis property implements the
decreasing of a gain parameter. The connections linking
the output units to the winning unit become less efficient -1 if Xj <-1,
because of this reduction in gain. Since they already had
a low value due to the Gaussian distribution, with Xi otherwise,
learning, the neighborhood size will implicitly shrink.
Moreover, these two parameters need never be reset. Due and the equation to measure energy is
to (2), the system has an automatic learning mechanism
whose onset is triggered by novel categories of objects: E( x ) = - 1/2 T W . x (7)
an atypical exemplar will produce a low activation state
on the map, and learning will reoccur automatically. BSB is a dynamical system that evolve. to stable states,

or attractors by implementing a gradient descent
1.4 DESCRIPTION OF THE NAMING algorithm (Anderson, Siverstein, Ritz & Jones, 1977;
MODULE Golden, 1986; Kavamoto & Anderson, 1985). W

represents the cross-connections between the elements of
The naming module is implemented with a simple the different f' stored in the associative memory. To
autoassociator using an error-correction learning rule retrieve a particular category name at test phase, the
(Widrow & Hoff, 1960). The idea behind error-correction conceptual interpretation f' is the initial state of tile
is to minimize, i.e. to correct, the error between a teacher dynamic search, so at t = 0, x(t) = f' I 0. Since the
output and the actual nutput by modifying a connection information about the name f" is stored in the cross-
matrix. In this model, the teacher vector t will be connection matrix, the search straLegy repeatedly passes
composed of two parts: first the output of ';ie this vector through W t( reconstruct the missing
categorizing module, the complete conceptual information. On '.s way to an attractor, x(t) will be
interpretation of an exemplar, and secc;nd, the category similar to i = P I f", and the category name will be
name to associate with the exemplar. Formally, learning revealed. Note that the retrieval scheme implemented here
to assoiate category names to conceptual interpretations is synchronous and deterministic. Equation (7) is the
can be described as follows Liapunov energy function described by llrpfield (1982); it

provides a measure of distance from the attractor. The
f = W • f (3) number of iterations required by BSB to fill f" will be

used as an analogy to reaction time in psychological
e = t - f (4) experiments.

AW = ae. fT (5)
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2. EXPERIMENT 2.1 PARAMETERS OF THE EXPERIMENT

In this experiment, I will demonstrate how the system The self-organizing architecture presented earlier was
described above overextends and narrows down category characterized by the following parameters. The input
terms. The architecture will be initially loaded with three vector of dimensionality 100 was fully connected to a two
concepts in the categorizing module mapped in a one-to- dimensional map of 10 x 10 output units. Each output
one relationship to three labels in the naming module. unit had local connections with each of its neighbors up
For the sake of presentation, the categories of objects to a Euclidian distance of 2.83. This distance determines
have been called dog, cat and bird, although they really are a square of plus or minus two units away from each unit
abstract drawings. The way in which this initial on the map. The value assigned to each local connection
knowledge is learned is described in Schyns (1990b). strength was a Gaussian function (with sigma = 1.5) of
Therefore, I will only sketch the major properties of the the distance between a particular output and each of its
two modules and concentrate in the present research on locally connected neighbors.
the problem of learning new categories with prior
conceptual knowledge. The behavior of the categorizing 2.1.1 Stimuli of the Categorizing Module.
module agrees with Prototype Theory on most of its
major points. Prototype Theory proposes that concepts The categories were composed of distortions around
are stored as prototypes; the self-organizing map encodes prototypes (Knapp & Anderson, 1984; McClelland &
prototypes in its weight vectors. In Prototype Theory, a Rumelhart, 1985; Posner & Keele, 1968). Each
concept is compared to each known prototype. Here the prototype was a vector of dimensionality 100 composed
output of the categorizing module, the conceptual map, of values equal to I (white) or -1 (black). For a
represents a complete conceptual interpretation of the methodological reason that % ill become apparent later,
input sample, where zones of activation reflect the the prototypes are represented as simple drawings on a 10
typicality between the exemplar and a particular x 10 array, as shown in Figure 2. These drawings are
prototype. Thus, the categorizing module accounts for supposed to capture an abstract visual representation of
the type of concept learning that doesn't need a teacher to the prototypes of the three categories.
inform about category membership. The conceptual code
built on the conceptual map, the complete and graded
conceptual interpretation of exemplars, constrains
specifically what is learned in the naming module. A
category name is learnable if the conceptual map
distinctively encodes this category. Therefore, lexical
tagging is dependent on the development of conceptual
knowledge. As the prototypes of the categories give rise
to unambiguous conceptual interpretations on the map,
their category name is retrieved faster than those of
exemplars. To be more specific, the state vector Dog. Cat.
consisting of the unlabelled conceptual interpretation of a
prototype (f'p I 0) starts closer to an attactor in state
space than the unlabelled conceptual interpretation of the
exemplar (f'e I 0). Thus, the performance of the naming
module is modulated by the nature and the quality of the
information that flow between the modules (Schyns,1990b).

The next experiment is composed of three phases. In the
first phase, the system loaded with the three concepts and
the three labels will be briefly exposed to examples from Bird. Wolf.
a new category, wolf. This category will be quite similar
to the dog category. During the second phase, the
unsupervised module of the network will have extensive Figure 2: Prototypes of the Categories Dog, Cat, Bird
experience with exemplars from the three known and Wolf.
categories, plus wolf. When a reorganization of
conceptual knowledge occurs, the system in the third The inter-prototype vector cosines were 0.52 for dog and
phase will correctly associate the new category term cat, 0.16 for dog and bird and 0.12 for cat and bird These
"wolf." At each phase of the experiment, I will stress the values reflect the intuition that the first two categories
constraints on word learning imposed by the internal were fairly similar, and both were somewhat different
conceptual codes on the naming module. from the last category (see Figure 2). The new prototype,
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wolf, was more similar to the prototype dog than to any means no or little activation (0.0-0.2) and white means
other prototype. The inter-prototype vector cosines were high activation (0.9-1.0). The coordinate system
0.5 for wolf and dog, 0.14 for wolf and cat and 0.02 for represents the effective location of each output unit on the
wolf and bird. To create an exemplar, a prototype was conceptual map. The lower right region of the map
chosen and a noise vector was added to it. The features responds preferentially to instances of dog and although it
composing the noise vector were constrained to lie around is not shown on the figure, the upper right region
the contour of the prototype drawings of Figure 2. In responds preferentially to instances of cat and the middle
addition, each unit with a white, "on," value was turned left to instances of bird (see Schyns, 1990b). Since the
on with a probability of 0.75 to prevent the category to prototype of wolf is more sim.lar to the prototype of dog
be defined by singly necessary and jointly sufficient than to any other, a wolf is interpreted as an instance of
features. Given these characteristics, the vector cosine dog at the beginning of relearning (see Figure 3, the right
between an exemplar and its prototype varied between column, a). If BSB attempts to name this conceptual
0.72 and 0.92. interpretation, "dog" comes out of the naming module, as

expected. This result illustrates the constraints concepts
2.1.2 Stimuli of the naming module can impose on the interpretation of the outside world.

Since the new category has not yet been represented in the
The f input vectors had dimensionality 132. f', the 10 x system's conceptual knowledge, all of its exemplars are
10 conceptual interpretation, was stored in the first 100 regarded as instances of the closest concept that can
units and f" in the last 32 units. In order to keep the interpret the new category. As the network gains more
label representation simple, "dog," "cat," "bird" and and more experience with wolf, it eventually learns how
"wolf' were coded with an ASCII binary code. Each to distinguish this category from the others. This is
character was represented by its ASCII number on eight illustrated in the right column of Figure 3, where we can
units, with I and -1 standing respectively for the binary see a new conceptual region that emerges gradually from
values I and 0. When a label had three characters, a the dog region to interpret the new category as a separate
hyphen was added to it (e.g., "cat-"). piece of knowledge.

Relearning phase

The network was initially loaded with the concepts of a
dog, cat, bird and their respective labels. The relearning . ..- ,
phase was decomposed into two steps. First, for 250
iterations of relearning, the categorizing module was
exposed to exemplars of the three "old" categories plus a
new one, wolf. At that stage, neither new nor old names
were associated with the conceptual interpretations. 2,, ,,o, 3' S ,
Second, after relearning, the four names, i.e. "dog," "ca
"bird" and "wolf" were associated to conceptual 1 b
interpretations for 300 iterations. '

Testing phase

Two tests were undertaken in two different states of
lexical development. First, before any new label was ' z S . . , ,

of the evolution of the conceptual interpretations weretaken after 10, 40 and 250 iterations of relearning. The -'

naming performances of the system were also measured -
after 250 iterations. Second, after the new symbol "wolf" , -. °

was learned, the capacity to name categories was tested by P
recording BSB number of iterations to fill f".

3. RESULTS AND DISCUSSION D,,, .,.

In Figure 3, the conceptual interpretation of wolf s
prototype--the right column--is compared with the
conceptual interpretation of dog's prototype--the left Figure 3. Con.cptual InterprCtationN of the Prototypes of
column--after 10, 40 and 250 iterations of relearning. Dog and Wolf after 10 (a), 40 (b) and 250 (c) Iterations of
The activation of the output units of the categorizing Relearning.
module is represented with densities of points where black
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The weights of the categorizing module play a crucial role weight portraits of Figure 3 and Figure 4, the left

in storing knowledge by extracting the structure of the columns, a). This is not accidental. The self-organizing

category. To understand how these weights evolve and learning algorithm updates the weights by first selecting a

how they subsequently determine the activation of the winner. We have seen that the region for dog is the one

conceptual map, snapshots of the weight vector afferent that responds the most to wolves in the beginning of

to each output unit were made after 10, 40 and 250 learning. lherefore, the weights that will first be updated
iterations of learning. In figure 4, each weight vector is to represent wolves will be in the dog region. With

represented as a 10 x 10 square of pixel values. The learning, the new region will migrate to a comer where

coordinates of the pictorial representation of each vector the competition for space allocation is less intense. This

are exactly its output unit coordinates. Each of the 10 x kind of migration on the map is due to a repelling effect,
10 connection strengths is coded by a level of grey where a by-product of the learning algorithm (see Schyns

black and white mean respectively maximally inhibitory (1990b) for a more detailed description).
and maximally excitatory connection. After 10 iterations, After 250 iteratons of relearning, the naming of the
the new weight vectors overlap with some of the weight conceptual interpretations resulting from the four
vectors that were dedicated to represent bird and dog. prototypes gives three labels. Then four category names
Eventually, as the weights underlying the new conceptual are provided for 300 more iterations. Importantly, once
region incrementally pick out the relevant features that all labels are learned, a one-to-one relationship between
characterize the new category, its prototype is represented
distinctively. The prototype of wolf is represented in the con and labe is aheved. The 1. reactontme
weight vectors of the lower left corner of Figure 4, part for each prototype is shown in Table 1. The left part of

Table 1 shows the reaction times before the name "wolf'
(c). is learned, and the right part shows the BSB reaction

times once the four category names are learned.
% Table 1: BSB Reaction Times for the

a. Retrieval of Names in the two Conditions of the
Experiment.

PROT. NAME RT NAME RT

- dog "dog" 14 "dog" 20
cat "cat" I1 "cat"1 12
bird "bird" 8 "bird" 10
wolf "dog' 27 "wolf" 24

b. Much like children's overextension errors and their
eventual corrections, in this model, when the new
category wolf is learned, conceptual interpretations of its
exemplars are labelled as "dog." At this stage, the lexical
item "dog" is overloaded. Its set of referents is
overgeneralized since it includes not only the dogs, but
also the wolves. However, the conceptual map interprets
wolves distinctively from dogs. Therefore, a new label

UU'-r-I' can be associated to something specific, the set of
C. conceptual interpretations for wolves. When this new

category term is learned, the initially overextended
category name "dog" narrows down to the correct set of
referents while "wolf" refers to the the remaining referents
as shown on the right part of Table 1.

By explicitly grounding the acquisition of a simple
* --.. . lexicon on the development of conceptual knowledge, the

modular architecture of the current research proposes a
specific implementation of Chapman et al. (1986) and

Figure 4. Weight Portraits after 10 (a), 40 (b) and 250 (c) Quinn and Eimas (1586fs proposal that a new categur,
Iterations of Relearning. term could follow, rather than precede, the acquisition of a

new concept in a kind of bottom-up category learning.
It should be noted that the new conceptual region is close We saw in this experiment how itcms of a lcxw.on .uuld
to the region that responds preferentially to dog (the lower label .oni.cptual intcrpricauunb through a d, mnbiguatbun
right region of both the conceptual interpretations and the procc.s. When lex,.ial items .ouldn*t be mapped to
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concepts with a one-to-one relationship, 4.atcgor terms the .urrcnt cxpcrimeni, thie,.ode has .onstrained learning
were overextended to denote different sets of referents. By in the naming module and provided the repre-sentational
making the adequate learning and correct usage of a new foundation of a possible account of Mutual Exclusivit)
category term ultimately contingent upon the
development of a distinct concept, I provided a possible As explained carlier, Mutual Exclusivity is a constraint
implementation of the mechanism by which the early on word meaning obsened in young children. Of .oursc,
lexical categories of children narrow down Lo the adult Mutual Exclusivit) needs to be overcome in order to
ones. These mechanisms also honor Mutual Ex,.lubiity. learn, for example, hierarch'es of names. Since children

eventually outgrow the Mutual Exclusivity Constraint,
In general, Mutual Exclusivity states that children start complete models of human category naming should
off with the assumption that each object in the world is demonstrate this important development-
referred to by only one label (Markman, 1990). While
different names might be applied to the same object in This model of .on.ept learning is essentially bottom-up.
different phases (e.g. an overextended label such as -dog" The encoding of a new category on the conceptual map is
preceding an appropriate label such as " olr"), only one determined by the atypical character of its instances. To
name is applied at an) one phase. The architecture instantiate top-down category learning, a new category
presented here naturally honors Mutual Exclusivit) term would constrain the state of actiation of the map.
through the bias of contrasted conceptual interpretations. This ,.ould be easily achieved by Jamping a new ,ategor)
Category terms are mutually exclusive if the) are mapped term on the fr component of f. After a few iterations, a
onto mutually exclusive sets of objects. Thus, non state of activation fr would appear on the map. Then, it
overlapping internal -ode- providc the representational suffi.es to selec.t the %inner output unit and update its
basis for the mutual exclusivity of category terms. %-eight vector, as well as those of its neighbors with
However, Mutual Exclusi, ity is really honored if the one- equation (2). By so doing, a new class of conceptual
to-one association of internal codes to ,ategor) names I, interpretation would emerge as a result of top-down
an internal .onstraint of the naming module. By internal, constraints. The) arc top-down in the sen that it is the
I mean a constraint that ensues solely from the d)namic new category name that forces the en.oding of a new
of the module, as opposed to an external constraint such category, not an atypical instance as is the case in
as a teacher that provides one name per category. If bottom-up learning. It should be noted that this
Mutual Exclusiv it) were violated, i.e. if one code were implementation of top-down concept learning could
ac-cidentall) associatcd with two differen ;abels, the preserve the property that similar categories are encoded in
naming module wouldn't work correctly. Technically, the nearby regions. However, to achieve this result, a
autoassociator would most likely learn a categor) name reorganization of the ,,ding system would be necssary,.
that results from the linear ombinatiun of the two labels This reorganization Aould result from repeated exposures
associated with the same conceptual interpretation (see to exemplars from the different categories. Future
Knapp & Anderson, 1984, for the formal development of research will address this topic.
this argument). Moreover, even if this problem was
solved with a more powerful learning scheme, another Acknowledgments
problem would still occur if Mutual Exclusivity were
violated as explained above. SinLce BSB is deterministi, This work has been supported in part by grant Mu 41704
it could not retrieve one word sometmes and the scq.ond from the National Institute if Mental Health. The author
word other times given the same .on-ceptual interpretation would like to thank Jim Anderson, Greg Murphy and
as initial state. Thus, Mutual Exclasivity is a Dave Touretzky for helpful comments on the manuscript.
fundamental internal ,.onstraint on the proper working of The computer simulations were run on the Stecllar
the naming module presented here. GS 1000 minisupercomputer of the Department of

Cognitive and Linguistic Sciences, Brown University.
4. CONCLUSIONS AND FUTURE
WORK References

The account of concept learning presented here is realized Amari, S. I. (1977). Neural theory, of association and
by a two-stage process in which onceptual maps play the concept formation. Biologizal C)berneti.s, 26, 175- 185.
role of an "informational relay." This relay could encode
graded category membership and thereby reflect the status Anderson. 3. A.. Silverstein. 1. W., Ritz, S. A.. &
of an exemplar with respect to conceptual knowledge. I Jones, R_ S. (1977). Distinctive features, categorical
have shown elsewhere that this encoding property would perception, and probability learning: Some applications
be preserved if the knowledge were hierarchically of a neural model. Psychological Review. 84,413451.
organized, i.e. the conceptual map reflected the inclusion Au, T_ K.. Glusman. M. (1990). The principle of
relationships between concepts (Schyns, 1990b). This mutual exclusivity in word learning: To honor or not to
code is rich enough to be handled by a minimal naming honor? Child Development 11.393416.
device such as the pattern associator presented here. In



A Modular Neural Network Model of the Acquisition of Category Names in Children 235

Chapman, K. L., Leonard, L. B., & Mervis, C. B. Murphy, G. L. (in-press). Meanings and Concepts. To
(1986). The effect of feedback on young children's appear in: The Psychology of Word Meaning, P.
inappropriate word usage. Journal of Child Language, Schwanenflugel (Ed.). Hilldsale, NJ: Lawrence Erlbaurn..
13, 101-117.

Posner, M. I., & Keele, S. W. (1968). On the genesis
Clark, E. V. (1973). What's in a word? On the child's of abstract ideas. Journal of Experimental Psychology,
acquisition of semantics in his first language. In T.E. 77, 353-363.
Moore (Ed.), Cognitive development and the acquisition
of language. New York: Academic Press. Posner, M. I., & Keele, S. W. (1970). Retention of

abstract ideas. Journal of Experimental Psychology, 83,
Clark, E. V. (1983). Meaning and concepts. In J. H. 304-308.
Flavell & E. M. Markman (Eds.), Manual of Child
Psychology: Cognitive development (Vol 3, pp. 787- Quinn, P. C., & Eimas, P. D. (1986). On
840). New York: Wiley. categorization in early infancy. Merrill-Palmer Quarterly,

32, 4, 331-363.
Fodor, J. A. (1983). The modularity of mind. Mit
Press, Cambridge: MA. Ritter, H., & Kohonen, T. (1989). Self-organizing

semantic maps. Biological Cybernetics, 62, 4, 241-255.
Golden, R. M. (1986). The "brain-state-in-a-box" neural
model is a gradient descent algorithm. Journal of Rumelhart, D. E. & Zipser D. (1985). Feature discovery
Mathematical Psychology, 30, 73-80. by competitive learning. Cognitive Science, 9, 75-112.

Grossberg, S. (1976). Adaptative pattern classification Schyns, P. G. (1990a). Expertise acquisition through
and universal recoding. I. Parallel development and coding the refinement of a conceptual representation in a self-
of neural feature detectors. Biological Cybernetics, 23, organizing architecture. Proceedings of the International
121-134. Joint Conference on Neural Network, Washington DC, 1,

236-240.
Hopfield, J. J. (1982). Neural i., orks and physical
systems with emergent collective computational Schyns, P. G. (1990b). A modular neural network of
capabilities. Proceedings of the National Academy of concept acquisition. Manuscript submitted for
Sciences, 79, 2554-2558. publication.

Kawamoto, A. H., & Anderson, J. A. (1985). A neural Smith, E. E., & Medin, D. L. (1981). Categories and
network model of multistable perception. Acta concepts. Cambridge, MA: Harvard University Press.
Psychologica, 59, 35-65. Von der Marlsburg, C. (1973). Self-organization of
Knapp, A. G., & Anderson, J. A., (1984). Theory of orientation sensitive cells in the striate cortex.
categorization based on e:stributed memory storage. Kybernetik, 15, 85-100.
Journal of Experimental Psychology: Learning, Memory
and Cognition, 1, 616-637. Widrow, B., & Hoff, M. (1960). Adaptative switching

circuits. IRE WESON Convention Record, NY: IRE,
Kohonen, T. (1982). Self-organized formation of 96-104.
topologically correct feature maps. Biological
Cybernetics, 43, 59-69.

Kohonen, T. (1984). Self-organization and associative
memory. Berlin: Springer-Verlag.

Markman, E. M. (1990). The Whole Object,
Taxonomic and Mutual Exclusivity Assumptions as
initial constraints on word meanings. To appear in J. P.
Byrnes and S. A. Gelman (Eds.), Perspectives on
Language and Cognition: Interrelations in Development.
Cambridge: Cambridge University Press.

McClelland, J. L., & Rumelhart, D. E. (1985).
Distributed memory and the representation of general and
specific information. Journal of Experimental
Psychology: General, 114, 159-188.



A Computational Model of Attenti¢ aal Requirements
in Sequence Learning

Peggy J. Jennings and Steven W. Keele
Department of Psychology

University of Oregon
Eugene, OR 97403

pegj@oregon.uoregon.edu

provides insight into the attentional requirements of
Abstract sequence learning as investigated by Cohen, Ivry, and

Keele (1990; see also Keele, Cohen, & Ivry, 1990). The
This paper presents a computational first section describes the central phenomena explored by
model of attentional requirements in Cohen, et al. The second section describes aspects of
sequence learning. Cohen, et al. pro- Jordan's model and how it relates to the empirically
posed two fundamental operations in discovered phenomena.
sequence learning. An associative
mechanism mediates learning of pat- 1 BEHAVIORAL
terns with unique associations (1-5-4- CHARACTERISTICS OF
2-3). These associations do not require SEQUENCE LEARNING
attention to be learned. Such an asso- Cohen, et al. adopted a paradigm established by Nissen
ciative mechanism is poorly suited for and Bullemer (1987) to investigate the learning of
learning sequences with repeated ele- sa l rereentations. Sucesive preetain of a
ments and ambiguous associations (3- sequential representations. Successive presentations of a
1-2-1-3-2). These sequences must be visual stimulus appeared at one of 3, 4, or 5 locations
parsed and organized in a hierarchical on a screen. Subjects responded to each stimulus by
manner. This hierarchical organization pressing a key corresponding to the stimulus location.
requires attention. The simulations Reaction times were recorded. Unknown to the subjects,
reported in this paper were run on an a large proportion of the successive signals appeared in a

associative model of sequence learning particular repeating sequence of locations. One type of
developed by Jordan (1986). The sim- sequence, called Unique, involves a sequence of 5 uniqueulations modeled closely the keypress- signal positions, an example of which is 1-5-4-2-3. Theing task used by Cohen, Ivry and numbers refer to signal positions. After the lastKeele (1990). The simulations reIr position in a cycle, the sequence repeated with nocate th990.The ia lafings and- detectable break. Sequences were presented to subjects ingest that imposing hierarchical organ 8 blocks of 20 cycles through the sequence. A second
zation on sequences with ambiguous type of sequence, called Ambiguous, involves only 3associations significantly improves the signal positions. Each position is repeated within the
model's ability to learn those se- sequence, but each occurrence is followed by a different
quences. Implications for the analysis successor. An example of an Ambiguous sequence is 1-
of fundamental computations underly- 3-2-3-1-2.
ing a system of skilled movement are Cohen, et al. found that, with practice, subjects learn
discussed. both of these types of sequences in the absence of a

distraction task. Sequence acquisition was demonstrated
This paper examines whether a connectionist model of by steady improvemcnt in reaction time over 8 blocks of
sequence learning developed by Jordan (15,36, 1990) training, with a significant increase in reaction time on
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blocks of trials presented after training in which the organization seems to require attention. Why the Hybrid
signals occurred at random rather than in the structured sequences are learned more like Unique than Ambiguous
sequence. When a secondary task was performed sequences is unclear.
simultaneously, diverting attention from the primary
reaction time task, Unique sequences were learned but 2 A COMPUTATIONAL MODEL OF
Ambiguous ones were not. That is, performance to SEQUENCE LEARNING
signals occurring in the structured Ambiguous sequence
never became faster than performance to randomly Th o
occurring signals. Something about learning the (1) how the structure of a sequence interacts with

Ambiguous sequence appears to requre attenton. component operations of a sequence learning system; and

Cohen, et al. also observed that if an Ambiguous (2) how parsing and hierarchic representation may be
sequence is altered by replacing one of the repeated implemented in a neural network. These goals were

events with an event that occurs only once in the cycle, approached using Jordan's (1986, 1990) recurrent
such as 1-4-2-3-1-2 (the underline shows the unique network model. His model, as we implemented it, is

event), subjects learn this sequence at a rate similar to illustrated in Figure 1. An input layer has units of two
that for the Unique sequences. These sequences are called types: plan units and context units. These input units
Hybrid because they involve a mixture of repeated and are connected to a layer of hidden units, and those hidden
unique events, units feed into output units that we call prediction units.

Activation of these latter units represents a prediction, or
Cohen, et al. offered the following explanation of the priming, of the upcoming event. The prediction units
effects of sequence structure on learning. The Unique can be viewed variously as representing a prediction of
sequences can be acquired by forming associations the upcoming stimulus or, because the stimulus de-
between adjacent events. Such learning appears to termines which response to make, the upcoming
require little or no attention to the relationships among response. Stimulus information constitutes the target
items. Associational learning is not well suited for output that is used to calculate error in the prediction
learning Ambiguous sequences, however, because on units and forms the basis for learning using
different occasions a particular event is ambiguously backpropagation. Changes in connection weights are
followed by a different event. Ambiguous sequences made over the course of learning based on the amount of
can, however, be learned by a mechanism that divides the prediction error on each trial.
sequence into parts. This process of hierarchic

TARGET OUTPUT Q Q 0 0

PREDICTION
UNITS

HIDDEN
UNITS

INPUT
UNITS

PLAN CONTEXT

Figure 1: Jordan (1986) Recurrent Network Model. (Not all connections are shown.)

During training, information about the target response one and only one context unit. Each context unit also
feeds back to the context units with a fixed connection feeds a proportion of its previous activation back on
weight of 1. Output representation is local rather than itself. The recurrent connections produce context unit
distributed, and each target output unit is connected to activations that retain a histor) of recent events. In an
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Ambiguous sequence such as 1-3-2-3-1-2, the context remains no better than performance to randomly pre-
following stimulus 3 is somewhat different each time sented stimuli.
the 3 occurs because in each case it is preceded by
different events. The influence of those events, while 2.1.1 Training Set
diminishing over successive stimuli, is partially retained Input to the model was composed of 2 elements. (1) a
by their representation in the context units. plan value; and (2) a representation of recent target
Sequence learning is achieved as follows: at the keypress history. Plan values remained constant
beginning of a sequence a pattern of activation appears throughout the training session for each sequence.
on the plan units. In the general case, this pattern Target keypress values were represented by a vector of
persists in unmodified form throughout the training binary values across 5 units. For example, an output
session. At the beginning of a block of training, the pattern of 00100 represents a press of the middle key.
context units are all set to zero. The combination of Context values represented the sum of the desired output
plan and initial context values feed through the hidden at time t and a proportion of the context value at time t-
layer to produce a prediction. A "stimulus", or target 1. Training sets consisted of 20 cycles through a
response, provides target output information. Prediction sequence, consistent with a single block of training in
error is calculated, and weight changes occur via the empirical task. Each input pattern is associated with
backpropagation. The "stimulus" information also feeds a desired output value corresponding to a keypress. At
back to the context units, and the context units rever- the beginning of a block of training, context units were
berate a portion of their previous values. On subsequent set to zero. Performance measures consisted of (1) total
iterations, the updated context values in combination sum of squares of prediction erru, summed oxer
with the plan values constitute the input patterns individual tnals and recorded after tach block of training;
associated with consecutive target responses. and (2) number of blocks required to learn the sequence
In these simulations, the model was trained on two to specified accuracy criterion (less than 0.04 sum of
distinct types of sequence organization. One condition squares prediction error over 20 cycles). The model was
involved presenting 20 cycles through each sequence trained on three exemplars of each sequence type:
type with no higher-level organization. In another Unique (1-5-2-4-3; 1-4-5-3-2; 1-3.4-2-5), Ambiguous (1-
condition, the input patterns were parsed into distinct 2-3-1-3-2; 1-2-3-2-1-3; 1-3-2-3-1-2), and a Hybrid of

unique and ambiguous associations (1-2-3-1-3-4; 1-2-3-subparts. Two implementations of parsing were
examined. One implementation involved resetting the 2-4-3; 1-4-2-3-1-2). Six separate training sessions per
context units to zero at the beginning of each cycle sequence type were run; two sessions per sequence.
through the sequence. This implements a form of Mean values from sequence type groups were analyzed.
parsing whereby the boundaries of a sequence are marked. 2.1.2 Results of Simulation 1
The second implementation of parsing involved
assigning different plan values to each subpart of a An analysis of variance of number of blocks required to
sequence. When a subsequence is finished and a new one learn the sequence to criterion showed a significant effect
is to start, the activation pattern on the plan units of sequence type (F(2,15) = 19.742, p <= 0.001).
changes accordingly. In each implementation, parsing is Multiple comparisons (Tuke), p < .05) reveal that the
made explicit in the input patterns, model requires fewer blocks of training to learn the
The intent of these simulations is to determine how Unique sequences (mean blocks = 62.2) and the Hybrid
parsing influences the learning of the three sequence sequences (mean blocks = 68.0) than to learn the
types: Unique, Hybrid, and Ambiguous. Parsing, in Ambiguous sequences (mean blocks = 106.0). The
this conception, corresponds in the empirical case to an Unique and Hybrid conditions are not significantly
attention-dependent organizational process that mediates different.
learning of Ambiguous sequences. Figure 2 displays the rate of change in prediction error

over the first 10 blocks of training. While learning the
2.1 SIMULATION 1: ASSOCIATIVE Unique sequences, the reduction in prediction error is

PROCESSES IN SEQUENCE rapid and steadily decreasing with training, approaching
LEARNING zero. While learning the Amibiguous sequences,

The goal of Simulation 1 was to replicate the behavioral however, prediction error levels off at a relatively high
characteristics of sequence learning under divided value after an initial brief and rapid decline. These error
attention as reported by Cohen, Ivry, and Keele (1990). measures may be compared with improvement in
Under dual-task conditions, performance of Unique reaction time reported in the empirical case, resulting
sequences (e.g., 1-5-4-2-3) and Hybrid sequences (e.g., 1- from the subject's increasing ability to correctly an-
4-2-3-1-2) steadily improves with training, while ticipate events. In the Ambiguous condition, prediction
performance of Ambiguous sequences (e.g., 1-3-2-3-1-2) error as well as empirical reaction times remain

relatively high as anticipation of response is not much
better than chance.
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Figure 2. Prediction Error as a Function of Training, by Sequence Type.

2.1.3 Discussion 2.2 SIMULATION 2 -- HIERARCHICAL

Learning in the simulation is denoted by reductions in ORGANIZATION OF INPUT
error between prediction values and target response SEQUENCES
values while learning in humans is documented by Cohen, et al. proposed that the role of attention in
reductions in reaction time. Human reaction time is sequence learning is to mediate parsing of sequences
improved by priming or expectancy. Model error as well containing ambiguous associations. The goal of
as empirical reaction times, because block means are Simulation 2 was to examine the effects on learning of
reported, reflect accuracy of prediction oN er the course of imposing an hierarchical organization on the input se-
20 cycles through a sequence. quence. The associative learning mechanism
In this simulation, both Unique and Hybrid sequences implemented in Simulation 1 required significantly more

were learned at essentially the same rate. These results training (106 blocks) to learn the Ambiguous sequences
agree qualitatively with the results of human learning in than to learn the Unique and the Hybrid sequences (65
which learning of Unique and Hybrid sequences also blocks). Preorganizing the input patterns into parsed
occurs at similar rates when a distraction task is used. In subsequences should allow the associative mechanism to
contrast to the equivalence of Unique and Hybrid now learn the Ambiguous sequences as quickly as it
sequence learning rates, the model learns the Ambiguous learns Unique and Hybrid sequences. Because the
sequences more slowly. This result is qualitatively associative mechanism is already efficient at learning
similar to the empirical result in which a distraction task Unique and Hybrid sequences, performance on them
prevents learning of the Ambiguous sequences. It must should remain virtually unchanged by delineating
be noted, however, that Ambiguous sequence learning boundaries in the sequence patterns.
does occur in the simulation. For the Unique and Hybrid 2.2.1 Training Set
sequences, the model required over 50 blocks to learn the
S quences, while human subjects show learning ,ithin 8 The training sets in Simulation 2 were similar to those
blocks of training. It is not clear how the time frames used in Simulation 1 except that, in Simulation 2,
between the model and the human are related, but gi, en parsing u as imposed on the input patterns. Parsing was
that the model required 106 blocks to learn the achieved in two alternative ways. In one condition
Ambiguous sequence, it is possible that humans may (Simulation 2.1), context unit activation %,was set to 0 at
also show evidence of learning the Ambiguous sequences the beginning keypress of each cycle of the sequence
with more extensive practice. within a block of 20 cycles. Unique, Hybrid, and

Ambiguous sequences were parsed in this way and
presented to the model. In this condition, the internal
structure of the sequence is left intact, but the beginning
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of each cycle is delineated by a change in context. Here GROUP A: Unparsed (Unique, H)brid), Parsed (Unique,
parsing is achieved by making explicit changes in Hybrid, Ambiguous)
activation values of the context units, while leaving plan
unit values constant. In another condition (Simulation GROUP B: Unparsed (Ambiguous)
2.2), which affected only the Ambiguous sequences,
parsing was achieved by modifying the value of the plan 2.2.3 Results of Simulation 2.2
units at the beginning of each subsequence within the in the second parsing condition, involving alternating
Ambiguous sequence. For example, the sequence 3-1-2- subplans in Ambiguous sequences, the parsed sequences
1-3-2 had a plan value of 110 for the 3-1-2 subsequence, werelan in 5.bos. Anqnas, o arianceo
and 111 for the 1-3-2 subsequence. During training, were learned in 553 blocks. An analysis of variance of

therefore, the subplan values alternated as the sequence blocks to learn the Ambiguous sequences under three

progressed. In this condition, the Ambiguous sequence types of organization (unparsed, parsed (zero context),

is represented as two alternating subsequences. Here and parsed (alternating subplans)) reveals a significant

parsing is achieved by making explicit changes to the effect for organization (F(2,15)=24.958, p<0.000). Post

plan units, while leaving the context unit values hoc comparisons show that the parsed sequences are

dependent on model function, learned at the same rate, while the unparsed sequences
require significantly more exposure to the sequence to

2.2.2 Results of Simulation 2.1 learn it. In this case, the particular implementations of
parsing are not significantly different. Figure 3 sum-

In the first parsing condition, resetting coiitext values to marizes the results of Simulation 2, displaying the rate
zero, the Ambiguous sequences were learned as quickly of improvement in model prediction as a function of
as were the Unique and Hybrid sequences (mean blocks training for parsed and unparsed Ambiguous sequences.
50.8, 60.7 and 57.0, respectively). The three sequence The learning rate for both implementations of parsing is
types are not significantly different (F(2,15) = 1.483, p< similar to that required to learn the parsed Unique and
0.26). Hybrid sequences, while the learning rate for the

An analysis of variance of the number of blocks of jnparsed Ambiguous sequence remains at a relatively

training required to learn the sequences in both high level of prediction error.
Simulation 1 (unparsed) and Simulation 2.1 (parsed, zero
context) revealed significant effects of sequence type 2.2.3 Discussion
(Unique, Hybrid, or Ambiguous) (F(2,30) = 7.991, p < Each particular method of implementing parsing had the
0.002), sequence organization (unparsed vs. parsed) same effect on sequence learning. When parsed in either
(F(1,30) = 33.659, p < 0.000), and a significant in- of these two ways, Ambiguous sequences are learned by
teraction of sequence type and organization (F(2,30) = an associative mechanism at a rate similar to that
18.088, p< 0.000). Unique and Hybrid sequences are required to learn Unique and Hybrid sequences. These
learned more quickly than Ambiguous sequences (mean results agree with the empirical results in which removal
blocks = 61.4, 62.5, and 78.4, respectively). Parsed of distraction (presumably allowing an attention-
sequences of all three types are learned more quickly than dependent parsing process to function) enables, or at
unparsed sequences (mean blocks = 56.2 and 78.7, least greatly enhances, learning of the Ambiguous
respectively). The main effects of sequence type and sequences.
organization, as well as the interaction, are strictly the
result of improvement in learning rate for the 3 GENERAL DISCUSSION
Ambiguous sequences in the parsed condition over the
rate in the unparsed condition. Learning rates for Unique The two forms of parsing used in the simulation

and Hybrid sequences are unimproved by parsing. correspond to two different mechanisms, both of which
could be involved in human sequence learning. One

Results from post hoc comparisons (Tukey, p < .05) of form of parsing involves resetiing context units to zero
learning rates for the three sequence types in the parsed at the beginning of each cycle of the sequence while
and unparsed conditions support the hypothesis that leaving plan values intact. This form of parsing may

unparsed Unique and Hybrid sequences as well as parsed be seen as mimicking a working memory function. The
Unique, Hybrid, and Ambiguous sequences are all learned sequence is represented by actiation across the plan

at the same rate (mean blocks = 59.74). Only unparsed units, but learning is facilitated by identifying the
Ambiguous sequences are significantly more slowly boundaries of the sequence. When a cycle of the se-
learned (mean blocks = 106.00). The groupings are as quence ends, plan values denote that the same sequence
follows: will follow, but the change in context valtes provides

information about where the sequence begins and ends as
well as indirect information about the length of the
sequence.
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Figure 3. The Effect of Sequence Organization on Learning Ambiguous Sequences

The second form of parsing was one in which plan memory components depending on the structure of the
values were altered to represent sequence subparts, while sequence. Unique sequences may require only a strict
leaving the context ulits to function uninterrupted. This associative mechanism. Hybrid sequences may require
notion of parsing is somewhat closer to traditional association and synthesis as well as working memory
notions of hierarchic representation in which a node capacity. Ambiguous sequences may need the full
stands as a symbol for a more complex and lower order system of association, synthesis, working memory, and
sequence of events. It may be seen as bmulating the symbolic representation. These simulations have shown
function of higher level object recognition processes. that learning of ambiguous associations are facilitated by
The alternating subplans represent the final products of a higher level processes of organization. Facilitation of
mechanism which has identified the subparts of a se- learning may occur at the level of working memory by
quence whole. providing cues to pattern boundaries. Facilitation may
The components of the Jordan model provide further also occur as the result of an attention-dependent process
insights into the various computations involved in which parses input sequences into subparts in alearning complex motor sequences. The foundation for hierarchical representation. These effects of differentthis learning system is the associative mechanism parsing implementations provide insight into the reasonrepresented in the model by connections strengths that Hybnd sequences are learned by human subjects andbetween input patterns and response predictions. A by the simulation at a rate similar to that required to
simple two-layer system is fully capable of learning the learn Unique sequences. The unique elements in the
Unique sequences in these simulations. Hidden units Hybrid sequence may serve to provide cues to boundaries
mediate higher level abstractions of input patterns. The within the sequence. These cues may function at thehidden units perform an intermediate synthesis of input level of working memory and are independent offeatures. Context units function in a way that is attention. This would allow Hybrid sequences to be
analogous to visuospatial working memory. And learned during distractton, as the empirical data show.
finally, plan units reflect the contributions of The Ambiguous sequences contain no clues to pattern
representational or symbolic processes. boundaries, so they must be analyzed into subparts to be

learned. This hierarchical organization process requires
The model used here to simulate sequence learning attention. The empirical data show that human subjects
represents the major components of a sequence learning are able to learn the Ambiguous sequences %hen
system. Some of these component processes are attention is not distracted to another task, but do not
dependent on attention, w hile others are not. It appears show evidence of learning the Ambiguous 3equence
that various types of motor sequences require differing under dual-task conditions. Future simulations %%ill
levels of interaction with these representation and imnolve examining further the nature of these interac-
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tions between sequence structure, attention, and the fun-
damental operations that underly sequence learning.
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Abstract In this paper we report the results of a simulation
experiment in which we trained neural networks to

A network architecture of the forard t~ pc recall sequences of items. Our purpose was to explore
but with additional 'memory' units that store if a particular nctwvork architecture could function as
the hidden units activation at time I and re- a memory store for generating free recall of sequences
input this activation to the hidden units at of items. l'urthermore, we wanted to determine if the
time 2, is used to train a network to free recall performances of our networks exhibited the
recall sequences of items. The network's two features of human free recall that we have
performance exhibits some features that are mentioned, that is, decreasing probability of recall
also observed in humans, such as decreasing with increasing sequence length and an U-shaped
recall with increasing sequence length and recall curve (for related works see: Schneider and
better recall of the first and the last items l)etweilcr, 1987; Schreter and Pfeifer, 1989;
compared with middle items. An analysis of Schweickert, Gucntert and llersberger, 1989).
the network's behavior during sequence
presentation can explain these results. 2 THE SIMULATION

I INTRODUCTION The type of network that we have used (Figure 1) is
a feed-forward network with a layer of hidden units

luman beings possess the ability to recall a set of intermediate between the layer of input units and the
items that arc presented to them in a scquentc. 1 lie la3cr of output units. However, the network has an
overall capacity of the mcmor) systems used in this additional set of units, %hich we call 'memory units
task is limited and the probability of recall decreases (.oidan. 1986, l;mnan, 1988), one for each of tile
with increasing sequence length. A second relcant hidden units. Fach memory unit receives a
feature of human performance in thi.s task is that the connction link with a fixed weight of I from its
last (recency effect) and the initial (primacv effct) corresponding hidden unit and it sends connections
items of tile sequence tend to bc recalled better than %ith learnable %eights to all hidden units. When a
the middle items. These serial position effects ha-e slimulus is applied to the input units, tie input
been observed both in a free recall condition,. in pattern is elaborated (transformed) into a pattern on
which subjects may Iccall the stimuli in an ordei the hidden units through the connection weights
they wish, and in a serial retall condition, in w hidi from the input to tile hidden units. Then, this
subjects mist pm_-scre the prezmntation order. (See internal represeolation is transformed into the output
reviews conceining f;.e and serial rmcail of scquenes pattem through the connection weights from the
and fhe recency effect in. Glanzer, 1972. Crowder. hidden to the output units. This is what normally
1976; IBaddelky and Ilitch, 1977. ShalliLe d[nd Vallal. happens in all feedforard networks. lowever. in
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networks with memory units, tile activation pattern particular task. We have used the backpropagation
on the hidden units which is the internal procedure (Rumeihart, Ilinton, and Williams, 1986)
representation of the stimulus is copied in the for training our networks. After each successive item
memory units and kept there until tile sucLcssi~c of a sequence the network is told w hich is the desired
stimulus is input to the netw ork. When the nc%% output, i.e. the set of items that hae presented up to
stimulus is applied to the input units, its internal that point. These items should appear in the
representation on the hidden units depends on both net%%ork's output at that time. The network
the stimulus itself and the internal representation of compares the desired output (the items to be recalled
the preceding stimulus whiich is stored in the memor) Lip to that point) with its actual output (the autually
units. This stored pattern acts as an additional input rcLallcd items) and uses the resulting discrepanc to
determining the internal representation of the new lhangc the conncction weights in the direction of
stimulus. As the connection weights from the input better recall. Notice that the backpropagation
to the hidden units transform the input pattern of the procdure iill change not onl) the connection
actual stimulus, in the same way the connectiun wcights from the input to the hidden units and from
weights from the memory to the hidden units the hidden to the output units, as is usual in
trasform the internal representation of the preceding fcdformard networks, but also the connection
stimulus stored in the mcmory units. Ilence, how the wcights from the memor) to the hidden units.
network reacts to the new stimulus, i.e. the output (Remember that the memory units function as an
resulting from the new, input, is a function of both additional set of input units to the hidden units.) By
the new input and the preceding context. The progrcssixcl) adjusting the connection weights the
memory process is a continuing one. Since the network learns to construct memory traces that
internal representation of the newi stimulus is also compress information about an increasing number of
copied in the memory units (replacing the actitation items (deptnding on sequence length) in such a wa)
pattern wvhich ,as the internal representation of tL that fioma these traces the actual items constituting a
first stimulus), it will influence how the network %%ill sequence can be recovered (recalled).
react to the third stimulus, and so on. In other
words, what is stored in the memory units at any The network's architecture is shown in Figure 1. The
given time is a compressed trace of all preceding network has 5 input units and 20 output units. The
stimuli and this compressed trace of the preceding number of hidden units varied in three different
stimuli influences the manner in which the network simulations from II to 15 to 19. The memory units
reacts to each new stimulus. were the same number as the hidden units.

The architecture of a network with memory units can
be used in a number of different tasks. For example, 0 U t U t
it can be used to train networks to predict the next
item in a sequence of items if the network has been-.
repeatedly exposed to sequences of a certain type
(Elman, 1988). Or, it could be used to make tie "d
reaction of a network to a given item sensitive to the
preceding context, as it seems to be necessary for
language understanding. We have used the
architecture to simulate free recall of sequences of
items. When a system is given a sequence of items as
input and it is asked to recall all the items of the iiL
sequence after the last item has been presented, the
reaction to the last item must be very context- Figure I: The Network
sensitive in the sense that the system must react to
the last item by giving all the items of the sequence Fach item of the sequence to be recalled is
that have preceded it in addition to the last item. In lrepenienlcd in input as a distributed activation
order to obtain that networks must be trained in the pallern on the set of 5 units, and is represented



Recall of Sequences of Items by a Neural Network 245

localistically in output as the activation of a single spreading of atiation, a pattern of activation
specific unit out of the total 20 output units. We appears ,,:i- output units. Then the activation
used a universe of 20 different items that are lccl of the input units is modified according to the
conventionally identified with letters. Our input second input pattern (letter) and there is a new
sequences were composed of 7 items selccted flor spreading of acti-vation. After the last item of the
the universe of 20 letters. Tables I and 2 shox lo% sequcncc has been processed, the network is said to
the 20 letters are represented at the input level and at haxe retalled the sequence if its output units show a
the outo. level. pattern of activation in which the units

corresponding to the letters of the presented sequence
Table 1: Input Patterns are on and the other units off.

A = 0 0 0 0 1 M = 0 1 1 0 0 For example, if we present to the network the
B = 0 0 0 1 0 N = 0 1 1 0 1 sequence of 7 letters TGEMBAI), after the last
C = 0 0 0 1 1 0 = 0 1 1 1 0 spreading of activation we want the activation pattern
D = 0 0 1 0 0 P = 0 11 11 shown in Table 3 on the output units (since tie
E = 0 0 1 0 1 Q = 1 0 0 0 0 activation values of the output units are continuous,
F = 0 0 1 1 1 R = 1 0 0 0 1 the items corresponding to the 7 most activated units
G = 0 1 0 0 0 S = 1 0 0 1 0 are considered as the items recalled by the network):
H 01001 T 10011
1 0 1 0 1 0 U 1 0 1 0 0 Table 3: F,xample of Output Pattern
L = 01011 V = 0101 11011010001000000100

Table 2: Output Patterns If the network produces the output pattern shown in
Table 4, instead of the pattern of Table 3, this means

A = 10000000000000000000 that the network has recalled the sequence
B = 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TGI.,MI3VI) instead of TGEMBAI) (i.e. it has
C = 00100000000000000000 recalled the letter 'V instead of'A').
D = 00010000000000000000
E = 00001000000000000000 Table 4: Example of Output Pattern
F = 00000100000000000000
G 00000010000000000000 01011010001000000101
H = 00000001000000000000
I = 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 lhow can tile network remember the letters of an
L = 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 input sequence? When the network processes the first
M = 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 input pattern (letter) the input units and the weights
N 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 on the connections between the input and the hidden
0 = 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 units generate a particular pattern on the hidden
P = 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 units. This pattern is stored (copied) in the memor
Q = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 units due to the connections %ith fixed %eight I from
R = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 the hidden units to the memory units. When the
S = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 input pattern corresponding to the second letter is
T = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 activated, the actiation pattern that is generated on
U = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 the hidden units depends on both the new letter and
V = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 tile prcious pattern stored in the memory units

which send connections with learnable weights to the
When a sequence of letters is given in input to the hidden units. '1 his newt, pattern on the hidden units is
network, first the activation level of the mcmor) stored in the mxmory units and it Nil influence the
units is set to 0 and the activation level of the input network's reaction to the third item, and so on. In
units is set equal to the input pattern corresponding lh% "a't many, input patterns (letters) arc stored as a
to the initial letter of the sequence. 'ollowing a single pattern in the network's memory units. This
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pattern itself, when the sequence ends, determines the BTHVEFD QINEUFR LCSMPVH
final activation state of the output units from which SFHANLR QTDOEMG CSULOID
it can E. ascertained how many letters in the EQFGPMN BSCVTDP ILRNMOQ
sequence have been remembered. MVAEIBC CDSLGHR VOBCQGM

UDHAFTS HEVFUCG QSRMPIO
The weights of the connections among the units QBANUOR GCSLDVM PQDMGEB
(with the exception of the fixed weights from the LNSFRUI CQPTDSI FHGVAOR
hidden units to the memory units) are learned by LNTFBPS VODMIUE FPMVBAU
back-propagation. The network starts with random NCGTOEL AGUDHQT BSNROCE
weights but it is trained with a set of letter sequences SLGOMHR PQCIDFE MQPAOBG
as input and a set of desired outputs (correct recalls) CHFTDEU TNLESRI OAMBHGF
as teaching input. During the training the weights are EAQUMON LICHDVP ODNABMU
modified, using the teaching input information, in the FECTSPG BNMVGIT CAQPHEF
direction of improved performance. After the QEHLCPO GSDBAVN LHTGSOR
training, the network is tested for its recall of the VNMIEUB PUONQDA RUICVNA
particular sequences it has experienced during the DRLUANV NUVQPTA HRIUTAV
training (old sequences) and also of new sequences
that were not included in the training set (new Three different simulations were run, one with 11,
sequences). one with 15, and one with 19 hidden units. The

networks used in the three simulations all have 5
During training we presented to the network 87 input units and 20 ouput units. A learning rate of 1.0
sequences of 7 randomly selected letters (see Table 5) and the same training set of sequences were used in
for 500 times, and we asked the network, after each all three simulations. After learning, the networks
spreading, to recall all the letters of the current iere tested with an additional set of 87 sequences of
sequence which had been presented up to that point. 7 letters also randomr.!y selected from the universe of
For example, for the sequence DELNGAII, after 20 letters (see Table 6).
presentation of the first letter, we gave the network a
teaching input of I for the output unit corresponding Table 6: New Sequences
to the letter 'D' (the fourth output unit) and a
teaching input of 0 for all the other output units. IFSOENA ULBCHTD UPRVCLO
Then, after the presentation of the second item, we QHEGFMI MESFUHQ ANPIGBO
gave a teaching input of I for the two output units HMBSQLN TCGAFOV HSMCQTR
corresponding to the letters 'D' and 'T' and a PBIONGV DPOHENV GALTSMQ
teaching input of 0 for all the other units, and so on. SLEBADI QOCTUGF VDOTPUQ

REGINLH CEOLDNS GFIPRMQ
Table 5: Training Sequences ABOVMQC DFEHTLN FRTMBAI

NPEULCH LPDGHQR VFNEASC
ECAIVRU IONGVTA BARIDEQ CSLFIDU AVRQNOP IDHMFEL

LPFONST TSRGBQN OMDFLSE USQRBTG QPCIDVR HFGOMUS

LTBPNFV UDESGRH RVNDELM DMGUVNH ELROQFI GCDRLSO

ICGASBP EBQINPG MHCTDVF PHTBMIQ EQHRMOC LTDIFVG

VEIDMLB UGTFHQO IHELOUC GMOUTBD PERIQFN COQPUSA

TMAQSPB FRBHTOL MDPAGEN GITBDNR USTHRQC OMLDIGE

REGVLHP NOTFSBQ UVSTMQC DILMVTP ERUCBNQ BLTSCIV

OLDEIHF AQUMFHG BONRICF EPFUMGH TOHQMIP SUCFDLG
DTGOVMP FLSERIQ MRCQUGF UARHTMN SLPCGOI FCTPBAV

AITPLBS ASOCRIB FLPGOHM MOGULDI PDRFTUE LNQMHSI
OBCVLDT EFABGHI SEHTMIU PAIRCUV GSETFMH ESPLFOU

PQBRCGF UCRHINQ TOSLGPM IGNTBVC OUPQASN FHDLEMG
OCUAMLB FTDESPH MOGSCAL MABVICR DETOFHS OASFBEI
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GNCPLMD RLFSVGD MNQHPAO different sequential positions we obtain the results
ATFOMQB CNEGUIL DPMBVFN shown in Figure 3. The Figure gives the percentage
IAUCQST TRNSBDC QHFIVOM of letters correctly rccalled in new sequences as a
BREUSIQ DLONMFH LTDCOPQ function of the serial position of the letter in the
VFBGIUE NGAVOPM BQVEOCF sequence and of number of hidden units.
NVADGRB RVAESBT LGUARHT
HDVAPRL ATVDHCB HBLVEUA
HQVNRAS BANEPVU SUPNARM % 100

so!
r !|i I hidden

3 RESULTS e 60i
.. 15 hidden

a40
All the three networks (with 11, 15, and 19 hidden I 19 hidden
units, respectively) learned to recall the letter 20 I
sequences they saw during the training and were also d _

able to generalize this ability to new sequences they 1 2 3 4 5 6 7
had never seen before. item serial positions

The global performance of the three simulations is
shown in Figure 2. The Figure shows the percentage Figure 3: Recall of Items in Different Serial Positions
of letters correctly recalled by each network when
tested with old and new sequences (chance level is An analysis of variance was performed on recall of
35%). new sequences. The analysis of variance included two

factors. The first factor (l.etter position) had seven
levels (from first through seventh position). The

100 second factor (Number of hidden units) had three
80 level-, (I!1 vs 15 vs 19 hidden units). There were 87

r sequences for each type of network. The analysis was
60  - l old sequences performed taking sequences as source of variation.

S'The results show a significant effect of letter position
40 I new sequences (F (6,1806) = 17.13, p < .001), but no effect of

! 20 number of hidden units (F (2,1806) = 1.51, pe 20
d .21,8). The interaction between Letter position and

0 Number of hidden units was significant (F(12,1806)
1i 15 19 - 3.86. p - .001)

number of hidden units

These results show that the probability for a letter in
Figure 2: Total Recall of Old and New Sequences new sequences to be correctly recalled varies as a

as a Function of Number of I lidden Units function of the letter's serial position in the sequence.

More specifically. the last letters of a sequence seem
As the Figure shows, the networks with 15 and 19 to be better recalled than the letters in the middle
hidden units yielded the best results for the training part of the sequence. The first letters appear also to
sequences, with the network with 15 units being be somewhat better recalled than the middle letters.
slightly better than the network with 19 units. This he data shown in Figure 3 represent the percentage
seems to show that there is an optimal number of or letters correctly recalled by the network at the end
hidden units and that adding more hidden units does
not improve performance. I lowever, the results for of a sequence, i.e. after the last letter has been
the new sequences are almost identical for the three presented. Hovewer, unlike what can be done with
networks, real human subjects, we can also look at a network's

performance during the presentation of a sequence by
If we consider the recall performance for letters in testing how much the network recalls of the
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presented letters after 1, 2, 3, 4, etc., letters have been
presented. In a sense, it is as if we had done a 1
number of different experiments with letter squenccs " !
of different le-ngth. r qoI

C
One type of result that we can obtain from this type c r
of analysis is a global measure of recall for sequences a
of increasing length. The result, shown in Figure 4. is 60
that total recall decreases with increasing sequence
length. d

40 o

1 2 3 4 5 6 7
1O0

% item serial position
80

r 60Figure 5: Recall of Letters in D~ifferent
C Serial Positions When Performance is
aTested Xftcr Each New Letter

e 20 As we have said, the data in Figurc 5 rcfer to the 15-20 ... .. hidden units network. I lowever, similar results were
1 2 3 4 5 6 7 obtained with the I I- and the 19-hidden units

sequence length networks. The results appear to show that, even
during the course of sequence presentation, the first

Figure 4: Total Recall for Sequences and the last letters presented are better recalled than

of Increasing Length the other letters. For example, after presentation of
the 6th letter (see, the curve that stops at the 6th
position), the sixth letter and the first one are better

Another result concerns the shape of the recall curve recalled than the others. Then, after the presentation
during the course of sequence presentation. Figure 5 of the se-,nth letter (see the curve that stops at the
shows the percentage of letters correctly recalled in 7th position), the percentage of recall of the 6th letter
new sequences as a function of the serial position of goes don and the seventh and first letters become
the letter in the sequence for the 15 hidden network the beust recalled. We can conclude that the U-shaped
(i.e. the network with the best performance). when recall cunre vdich is obtained at the end of a
the network is tested after 1. 2. 3 .... 7 letters sequence presentation is constructed dynamically
respectively have been presented. Curves have during the cour e of the presentation of the sequence
different lengths because we are considering onl. the and that the partial recalls also have an 1; shape.
letters already presented. For example. the curve of
length 2 represents the percentage of letters correctly The data reported in Figure 5 can be analy7.ed from
recalled after the first 2 letters of each sequence liate anuther perspcctive in order to clarif, the recall
been presented. process during sequence presentation. We can

determine how the n-th letter of a sequence :;
recalled after an increasing number of subsequent
letters have been presented. For examplc. we may
want to know how the first letter in a sequence is
recalled after the first letter is presented, then after the
second letter. after the third letter, and so forth. The
results at shown in l'igure 6.
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100- of 67.8% in tile same conditions. This shows that
. letters start with a better recall if they are not

preceded by too many other letters.
r 80
C

4 DISCUSSION

!60 -- We have been able to .nstruct a neural network
I that can free recall a sequence of items that the

d network has been given as input. After training,
40-- -,, , during which the network processes a list of

1 2 3 4 5 6 7 sequences and a corresponding list of correct answers,
time the network is able to correctly remember (to some

extent) new sequences which it has never seen before.

Figure 6: Recall of Letters in Different Serial In other words, the network developed a general
Positions After an Increasing Number of ability to recall sequences of items. This general

Successive Letters has been Presented. ability is incorporated in the weight matrix that has
been modified during learning but is fixed when the

In this case, the curve of length 7, which starts at network is storing the irornation necessary to recall
time 1, represents the percentage of correct recall of a new sequence of items.
the first letter after just the first letter has been In order to recall sequences of stimuli the network
presented (100% recall), and then after the second, .,,ust be able to acquire various abilities:
the third, until the seventh and last letter, has been
presented. The curve of length 6, starting at time 2, (a) It must learn to recognize the different items that

represents the percentage of correct recall of the are presented in input. The items are represented by

second letter after presentation of the second letter, patterns that partially overlap. Hence, the network
after the third, and s,., on until the last letter has been must learn how to distinguish among them in order
presented. to associate each distributed pattern in input with the

appropriate localist pattern in output.
Figure 6 is based on data of the 15-hidden unit
network but in this case too similar results are b) The network must be able to compress various
obtained for the other two networks. The figure input patterns into a single pattern which is the

'ows two results. The first result is that letters are pattern stored each time in the memory units. This

best recalled immediately after presentation and then task is related to the previous one because, in order
their recall decreases as more letters are subsequently to compress information in a small space, it is useful
presented. For example, the 4th letter goes down to eliminate redundancies.
from a percentage of 67,8 correct recall immediately
after the 4th letter has been presented to a percentage c) The network must be able to translate the
of 58,6 three letters after, i.e. after the last letter has compressed pattern stored in the memory units into
been presented. (Cp. the curve that starts at position tile required output pattern.
4.) This indicates that letters in the middle positions
which are not well recalled at the end of a sequence, He first two abilities arc involved in every task in
may be better recalled during sequence presentation. which a network with memory units, in order to

It is the subsequent occurrence of other letters that appropriately process the current input, must take

interferes with their recall at the end of the sequence. into account the preceding inputs it has already
The second result is that letters in the first positions processed. Therefore it seems interesting to try to
of a sequence are better recalled than letters in the understand the properties of our of networks.
last positions when they are first presented. For
example, the very first letter is perfectly iccalled Another interesting issue is that our networks seem
(100%) just after presentation whereas the second to perform in a way that appears similar to human
letter has a recall percentage of 75.9% and the third performance in that they show:
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same global performance is obtained as in our
1) better performance on shorter than on longer simulations, or a much worse performance. In the
sequences (see Figure 4). latter case, sequence length, i.e. number of memory

trace compressions, would be the real limiting factor,
2) better performance on the last items of a sequLnce as proposed by the second, "dynamic", explanation.
and also, although to a less extent, on the very first
item (see Figure 3 and 5). However, aside from this global effect, we may ask

why the network's performance varies as a function
From Figure 4 it is clear that the network, e~en if it of item serial position and why the last items and the
has only been trained with sequences of length 7, first one are better recalled than the middle items.
performs better with shorter sequences than with This effect appears to be independent of the number
longer ones. The percentage of items correctly of hidden units and of sequence length.
recalled is about 75 for sequences of two items, 65
for sequences of three items, and so on. It is important to keep in mind that in this kind of

network the process of pattern compression is a
There might be two possible explanations for this dynamical process. Each time a new item is given in
effect of sequence length on recall. A first input to the network, all the preceding items, or
explanation, which could be called structural, is more correctly, the compressed pattern that
based on a capacity limitation of the memory store collectively represents the preceding items, must be
used by the network to recall sequences of items. The processed again to generate a new compressed
network is provided with a limited amount of spatnc, pattern that includes the new item. (What we call
i.e. a limited number of hidden and memory units, to "compression" is the process of generating a new
store many items. This can explain Ahy it does not internal representation on the hidden units based on
have perfect recall and why its performance decreases information coming from the new input and from the
gradually with the increase of the number of items to compressed representation of the preceding items as
be recalled. stored in the memory units.) This fact can explain

why, during the presentation of a sequence, items are
A second explanation has a more dynamic character recalled better immediately after they have been
since it puts an emphasis on the process of memory presented and the percentage of correct recall of an
trace formation during the presentation of a item gradually decreases as new items are presented
sequence. We know that this process implies a (cp. Figure 6). Each time the memory representation
compression of information from the preceding trace of the preceding items is re-processed to include a
with information from the new item. This process is ncw item there is the possibility of losing something
repeated as many times as are the number of items in included in that raprescntation. In other words, new
the sequence to be recalled. There might be a items interfere with the recall of the preceding ones
J;mitation in the number of times this process can go (retroactive interference).
on without seriously damaging the memory trace,

i this independently of the capacity of the memory On the other hand, items just presented are not
6torc, i.e. of the number of hidden and memor) always correctly recalled with a probability of 100%,
units. with the single exception of the first item (cp. Figure

6). In other words, if the recall of an item is tested
The results of the present simulations may not be just after the item has been presented, there is perfect
sufficient to test which of the two explanations might recall only if tile item is the first in the sequence, but
be the correct one, although the fact that increasing the immediate recall of an item becomes worse for
the number of hidden (and memory) units from 15 items in successive serial positions. This can be
to 19 does not lead to a better performance could be explained by the fact that the more the items are
interpreted as against the first explanation based on already represented in the compressed pattern stored
capacity limitation. A more direct test would be to in the memory units (i.e. the more the items
see if by substantially increasing both the number of preceding the current item), the more becomes it
hidden (and memory) units and sequence length, the diffi.ult to compress the new item with the already
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compressed rappresentation of the preceding ones. In
other words, the preceding items make it more The percentage of correct recall of the first item is
difficult to process and recall the current item 100% when the preceding context is empty (i.e. at
(proactive interference), time 1), it decreases dramatically when the second

item is presented, and then it decreases more
These two facts taken togeher could explin why the gradually.
last items and the first item of a sequence are better
recalled than the middle items. The last items are Similarly, if we consider how proactive interference
those that are re-processed a smaller number of times affects the recall of the last item as a function of how
and so have less chance to be damaged (i.e. they are man items have already been presented, we get the
less affected by retroactive interference). The first curve shown in Figure 8.
item is more easily processed the first time because it
is compressed with an empty prior context (i.e. it is
the least affected by proactive interference). But 100
another logical step is still missing from this
reasoning. Retroactive and proactive interference are r 80 /

C 8
two opposite forces since the first decreases the C
probability of the first items and the second, the a
probability of the last items being correctly recalled. 60 -

As a consequence, only if these two forces have non- d
linear effects should we expect significant differences 40
of correct recall among different item positions of the 6 5 4 3 2 1 0
kind we get. Otherwise, if the effects of the two preceding items
opposite forces of retroactive and proactive
interference were linear, we should expect that the Figure 8: Recall of the Last Letter as a Function
two forces would balance and neutralize each other of Number of Preceding Letters
and we should get the same amount of recall for all
serial positions in a sequence. As a matter of fact, The percentage of correct recall of the last item is
our data appear to show that the effects of retroactive 100% if the previous context is empty (i.e. if the
and proactive interference, while being opposite, are sequence has length 1), it decreases dramatically if a
non-linear. For example, if we look at how single item has already been presented, and then
retroactive interference affects the recall of the first decreases gradually with the increase of the number
item (i.e. how much the percentage of recall of the of items already presented. (Surprisingly, the
first item decreases with the arrival of new items), we percentage of correct recall of the last item is better if
get the curve shown in Figure 7. (The curves for all the context contains 6 items instead of 5. This could
item positions are shown in Figure 6.) be due to the fact that the network has been always

trained with sequences of length 7.)
100.

% We conclude that a network architecture in which
r 80 memory units store the activation pattern on the
e hidden units elicited by one stimulus and re-input
C
a .. .. this pattern to the hidden units when the next

60 stimulus is processed, can simulate free recall of
sequences of items. We do not imply that this same

d 4 architecture underlies human performanc. on this
2 3 4 5 6 7 task. Ilowever, it is an interesting res... that two

time specific properties that are observed in humans when
they free recall item sequences, i.e. decreasing recall

Figure 7: Recall of the First Letter as a Function with increasing sequence length and an U-shaped
of Number of Successive Letters recall curve, are also observed in the performance of
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Abstract 1 INTRODUCTION

To model all aspects of human cognition itis ron devallaspelptes whhumancognih e- There are currently two competing approaches for mo-ploit the advantages of both parallel distri- deling human cognition and for building intelligent sy-buted processing and symbol manipulation stems: the classical symbolic approach and the connec-because the advantages of each approach are tionist approach, each with non-overlapping strengthscomplementary. To approach this goal it is and weaknesses. However, to deal with all aspects ofproposed to start with simple paralled dis- human cognition it is reasonable to develop systemstributed processing models and to modify which exploit the advantages of both approaches. Howtriuthem s o teyg a els cabl tofy- can this be done? One way is to build hybrid systems,bolic manipulation. A theoretical analysis of where traditional symbolic algorithms and connectio-boli maipuatin. theretcalanaysi of nist networks work together
the essential aspects of physical symbol sy-
stems and their relation to human informa- A more challenging and appealing way is to build a to-
tion processing, and the analysis of feedfor- tally connectionist model with the ability to do both a
ward and recurrent PDP models converge to kind of symbol manipulation and parallel distributed
the same conclusion that the crucial steps to- processing. The human brain - a huge and very com-
wards symbol processing lie in incorporating plex "connectionist system" - is an existence proof
an episodic short-term memory for serial or- that this is possible.
der information and a selective attention me-
chanism in PDP models. An important first There are three ways of approaching this goal. The
step towards constructing these mechanisms first is to build functionally hybrid connectionist sy-
is based on a neurally inspired solution of stems consisting of two subnetworks, one with symbo-
the binding problem which assumes that the lic and one with PDP properties. They combine their
exact timing of neuronal activity may play an strengths by communicating with each other. (For ex-
important role for information processing in ample a "symbol module" capable of following explicit
the brain. Based on these ideas a new model rules can train a"PDP module", Goebel, 1990b).
is developed which posesses a flexible short- The second way is top-down. start with classical sym-
term memory and an attention mechanism bol systems and implement them in a connectionist
The model overcomes many problems of ordi- network hoping that on the way down connectionist
nary PDP models, e.g., representing multiple strengths like parallel constraint satisfaction can be
objects, structured (hierarchical) distributed added. Most work in this direction has been done using
representations, position independent appli- localist (structured) connectionist networks (e.g., Sha-
cation of knowledge and explicit rule follo- stri, 1988), but some success is also achieved with
wing. The model is a promising step towards networks using distributed representations (e.g., Tou-
a PDP cognitive architecture, of power and retzky and Hinton, 1988). Unfortunately all these ap-
generality previously attained only by sym- proaches suffer from several drawbacks. The most im-
bol manipulation models such as ACT* and portant problem of such networks is that almost all
SOAR. connections have to be "hand-wired", thus requiring a

large amount of human effort. Because these networks
*address after November 1, 1990: Department of Psy- are implementations of symbolic schemes (production

chology; University of Braunschweig, Spielmannstr. 19, D- systems or semantic nets), they lose many advanta-
3300 Braunschweig, FRG ges of distributed connectionist models, especially the
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ability of gradual learning, applied to the expression '(A B C). The QUOTE sign

The third way - the way which is adopted in this (1) determines that the list (A B C) serves as data for
the CAR function producing the symbol A as output.

study - is "bottom-up". This way proposes to start The application of CAR is structure-sensitive because it
with simple PDP networks and to move towards sym- is performed without caring about the concrete symbol
bol manipulation without sacrificing any advantage of appearing in the first position or how many and which
parallel distributed processing. elements appear after the first position in the list. The

According to this approach the following questions a-e only crucial fact is the structure of the expression, na-
raised: mely (CAR '(<first element> <other elements>)

producing <f irst element>. The parts of the struc-
" What are the essential aspects of symbol proces- ture are variables which can be filled with any symbols.

sing? What and how much of human information This example shows that symbols are treated as atomic
processing is best characterized as symbol mani- elements. Symbol structures are interpreted and sei-
pulation? ally manipulated by a processor. The ability of symbol

* What are the essential aspects of parallel distribu- systems to construct and manipulate arbitrary symbo-
ted processing? What and how much of human in- lic structures built from a set of elementary symbols
formation processing is best characterized as par- together with the distinction between process and data
allel distributed processing? allows symbol systems to do universal computations.

" Is it possible to modify PDP models so that they This is in contrast to PDP models which are generally
are also capable of symbol manipulation without task-specific networks.
sacrificing their natural properties?

The answers to these questions should lead to some 3 PARALLEL DISTRIBUTED
insights into the nature of the problem and hopefully PROCESSING
point to promising directions for building a new model.

Connectionist networks using distributed representa-

2 SYMBOL SYSTEMS tions stress the rich internal structure of entities. A
symbol is not an atomic entity but an activity pattern
over a large number of units. These activation patterns

According to Newell (1980) a physical symbol system are not interpreted but directly evoke other activity
consists of a set of symbols, which can occur as com- patterns through connection weights. Each weight con-
ponents of expressions (symbol structures). A symbol tributes a small influence (a 'weak constraint', a 'soft
system also contains a collection of processes that ope- rule' or a 'microinference') to the mapping from one
rate on expressions to produce other expressions. Es- activity pattern to the next.
pecially important are the following notions:

Distributed representations naturally lead to the ad-
" Interpretation: Symbol systems are able to inter- vantages of parallel distributed processing as shades

pret expressions through the fundamental distin- of meaning, similarity-based generalization, simulta-
ction between process and data. neous consideration of many pieces of knowledge. Ad-

" Designation. An expression can designate other ditionally, PDP models show how symbols with rich

expressions. This allows, e.g., to bind a symbol to internal structure might emerge and how they change

arbitrary expressions and to recursively expand their appearance through simple learning rules. These
small symbols to larger ones and to package large rules slowly modify the weights to improve perfor-
expressions to smaller ones. mance on a given task.

The ability of symbol systems to construct arbitrary 4 HUMAN COGNITION
combinations out of other symbols or symbol struc-
tures is called compositionality (Fodor & Pylyshyn, Before the central assumptions of this paper are pre-
1988). A symbol may also designate a process (ope- sented it is important to specify the concrete views of
ration). A process is applied to data in a structure- connectionist models and symbol systems considered
sensitive way. here. This is important because in general both fra-

To illustrate these concepts, consider the following ex- meworks offer universality (e.g., connectionist models
ample In LISP, the function CAR returns the first ele- are implemented on serial computers). In the following
ment of a list, e g, (CAR ' (A B C)) produces the ele- the terms 'symbol manipulation' and 'symbol system'
ment A The whole expression serves as data and is are meant in the sense of a LISP interpreter. 'Parallel
interpreted by the EVAL function. The exrression is distributed processing' or 'subsymbolic interactions' is
analyzed or parsed by EVAL resulting in tle recogni- meant in the sense of simple PDP models, especially
tion that CAR designates an operation wh;ch is to be feedforward and recurrent back-propagation networks.
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hart & McClelland, 1986), hierarchical data structures
(e.g., Elman, 1988; Pollack, 1988) and even structure-

Symbol sensitive processing (Chalmers, 1990) it is argued that
Manipulation this works only for learned regularities: PDP models

are unable to appropriately represent and handle new
constellations of multiple objects which are against
learned regularities.

controlled pro To reach the universality of symbol systems other me-
chanisms are proposed which are assumed to be mani-

_____ _ Ofest in human short-term memory and selective atten-
tion. The goal of this paper is to modify PDP models
so that they possess a kind of short-term memory and

0 0 ,attention but otherwise work as ordinary PDP mo-
PDP dels. This allows symbol manipulation and PDP-like

processing to evolve side by side over time. This is dif-
ferent than, for example, the distributed connectionist
production system (Touretzky & Hinton, 1988). Alt-

automa.tic hough this model uses distributed representations the
processing 0parallel interactions work only at the symbol level and

thus loses the spirit of subsymbolic computation.
0 V The assumption of the coevolution of symbol mani-

pulation and parallel distributed processing also im-
plies that the PDP approach is the natural one to

Figure 1. The dualistic nature of a symbol start with. Compared with the manipulation of 'high-
level' symbols it requires a lot of time for a symbol
system to precisely compute the effects of subsymbolic

The central theses of this paper can be summarized as interactions because the single processor must 'slip' in
follows: (see figure 1): each processing element to serially compute the paral-

lel interactions. Thus a serial symbol system is unable
" The real power of human cognition lies in the fact to manipulate high-level symbols and to produce the

that it can simultaneously view a symbol as an associative effects of subsymbolic interactions at the
atomic entity and as an entity with rich internal same time scale.
structure. In general human cognition is viewed as a fruitful mix-

* Human controlled processing corresponds to some ture of controlled processing (best described as sym-
extent to symbol manipulation. Short-term me- bol manipulation) and automatic processing (best de-
mory for serial order information and selective scribed as associative processing in the spirit of PDP
attention constitute the basis of (concatenative) models). Language processing (syntax and semantic
compositionality and structure-sensitive proces- aspects) and the gradual development of (cognitive)
sing. skills are considered to be prime examples of this in-

" Human automatic processing corresponds to some teraction.
extent to associative processing as produced by In the following section the proposed relation between
PDP models. symbol manipulation and controlled processing is ela-

* Since human cognition is always a mixture of con- borated.
trolled and automatic processing it is best descri-
bed as the coevolution of symbol manipulation
and associative processing. 4.1 CONTROLLED PROCESSING AS

SYMBOL MANIPULATION
The distinction of a symbol as an atomic entity and
as an entity with rich internal structure corresponds Psychologists distinguish between controlled (or deli-
to Smolensky's (1988) distinction between symbols berate) and automatic processing (Shiffrin & Schnei-
and subsymbols. Smolensky argues further that sym- der, 1977). A central characteristic of controlled pro-
bol manipulation is an emergent property of subsym- cessing is that it requires attention while automatic
bolic interactions. Although this is generally true, in processing does not. Controlled processing also de-
this paper it is argued that symbol manipulation can pends on a flexble but limited short-term memory.
not emerge from subsymbolic interactiuns of the kind If a task requireh too much information to be retained
found in ordinary PDP models. Although PDP mo- in this "working r, emory" it is overloaded resulting in
dels are able to produce implicit rules (e.g., Rumel- performance errors.
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Short-term memory for serial order Note that in this example the task was treated as pre-
information sented as a visual processing task, thus attention could

be guided to spatial locations. However humans can
Human short-term memory is able to retain item and do this task even if the expression is .;resented audi.
serial order information. Another important point is torily or if elements of the expression are presented
that it is able to store this information with only one sequentially in the same retinal position. Thus seleL-
presentation of a sequence. This seems trivial but it is tive attention must also work on the representations
important to note that humans can store and repro- in short-term memory.
duce sequences they may never have seen or heard be-
fore (as long as short-term memory is not overloaded).
An example is to retain a new seven-digit phone num-
ber until it is dialed. Even simple rules can be stored,
reproduced and correctly applied after one presenta-
tion (Hadley, 1990). 4.2 AUTOMATIC PROCESSING AS

The term 'episodic' short-term memory (eSTM) is PARALLEL DISTRIBUTED
used henceforth to emphasize the challenge for connec- PROCESSING
tionist models to retain item and order information
with 'one-shot' or 'single-trial' learning.

Episodic STM is important because it shows that hu- Consider again a simple LISP expression. (CAR '(PDP
mans have the capability, albeit limited, to immedia- is important)). According to the previous section,
tely store arbitrary combinations of elementary objects attention is first focused on the CAR symbol, then on
which is required for compositionality. the first symbol in the list, leading to the answer PDP.

Is this really all what happens?

Selective attention for structure-sensitive Although humans can do a kind of structure-sensitive
processing processing, they are unable to do only structure-

sensitive processing because the processed symbols di-
Attention is studied primarily in visual and auditory rectly evoke associations. In contrast to the effortful
perception. In this study, however, the important role process of controlling attention, the processed symbols
of attention for symbolic manipulation is stressed, that automatically provide . cloud of associations. Thus if
is how it controls read-out from eSTM. humans do the LISP task they can not focus on the

It is assumed that attention allows the segregation symbol PDP without having "in mind" associated ideas,
of arbitrary segments of the information present in as, for example, knowing that PDP is an acronym for
of arbTary segments ofn then informa proc ese t paralled distributed processing. Furthermore it is dif-
eSTM. The segments can then be processed further. ficult to 'gnore the other symbols in the list as is ty-

To illustrate the proposed role of attention consider pical for 'real' structure-sensitivity, one simply must
how a human (familiar with LISP) might evaluate the read the sentence. More generally, it is impossible to
expression (CAR '(A B C)). A simplified description totally suppress the context, which always do influence
might be as follows: processing in parallel.
First attention is focused primarily on the left side of Context may operate on different levels, e.g., a human
the expression. This leads to the recognition of the CAR
function. The retrieved knowledge about this function ting a LISP expression is likely unaware of the fact
lets the human now focus attention at the position that CAR may also represent an automobile in other
following the '( where the letter A is found. contexts.

This example shows that humans are able to process These examples illustrate the central thesis of this pa-
information as symbol manipulators: the LISP expres- per that controlled processing (symbol manipulation)
sion is 'interpreted', that is attention is focused on the and automatic processing (directly evoked associati-
left side to identify what to do next. Through the se-
gregation of the left side the symbol CAR is found. The ons) always evolve side by side over time.
knowledge about the CAR function is retrieved reco- In the following section the claim that PDP models are
gnizing that it is a function. This corresponds to the unable to do symbol manipulation is explained. This
designation process. It is also retrieved that CAR re- claim is based ,n several reasons. The most important
turns the first element of its argument. Thus atten- one for t,. prcoent study is the inability of PDP mo-
tion is focused on the first position of the list (A B dais to appropriately represent and handle arbitrary
C) and the element A is segregated. This is a kind of combinations of multiple objects. This is required for
structure-sensitive processing because what counts is compositionality. The nature of the problem can be
not the concrete symbol but only the position where clearly revealed in the context of the binding problem
it appears. (Hinton et. al., 1986; Smolensky, in press).



Binding, Episodic Short-Term Memory, and Selective Attention 257

5 THE BINDING PROBLEM OR red, blue, an A and a B. Thus the fundamental pro-
WHAT GOES WITH WHAT blem of PDP networks is that they must represent

whohv expressions and their relations to the constitu-
The binding problem is the problem of "what goes ting parts with the set of active units. This is very
with what". It is mostly studied in the visual domain difficult.
where it is also known as the feature integration pro-
blem (Treismann & Schmidt, 1982). In this study ita The proposed solution to these problems is to use bin-
general relevance for representing multiple objects at ding or conjunctive units (e.g., Smolensky, in press)
each processing level is stressed. In the uisual domain which detect combinattuas of occurring objects. This
it is wel! known that features of objects (e g, shape, solution works for specific tasks but is not appropriate
color, motion) are analyzed in different areas (maps) in general (von der Malsburg, 1981). To represent all
of the brain. What is the problem with that? imaginable groupings, huge numbers of conjunctive

Suppose there are four local units, two for representing units are necessary. Even more severe is that they must
the shape of Lhe letters A and B respectively and two exist in advance to foresee all possible groupings. Corn-
for the colors red and blue (ste figure 2). Now sup- binations of objects which are not anticipated sim-
pose a red A is presented at the retina for some time. ply can not be represented. Additionally, the repre-
Then the units representing red and A are active (see sentation buries the individuality of the elements bo-
figure 2a). The information that a red A is presented und tcgether leading to further diifficulties (Fodor &
is represented through the simultaneous activity of the McLaughlin, 1990).
units for red and A Conjunctive units are of course important to capture

higher-order regularities but they should not have the
a) b) burden of representing all possible bindings. To solve

the binding problem a much more flexible solution is
desirable which establishes temporary bindings at the
time they are really needed.

5.2 OSCILLATING UNITS: WHOLES AS
0 B -- @B DESYNCHRONIZED PARTS

An interesting solution to the binding problem is based
on ideas proposed by Legendy (1970) and more con-w red @ red cretely by von der Malsburg (1981, 1986). In contrast
to most connectionist models assuming that only the0 blue * * blue average output activity of neurons encodes informa-
tion between neurons, they suggest that the exact ti-
ming of neuronal activity (firing of individual neurons

Figure 2. The whole as the set of active units or 'bursting' of cell groups) plays an important role for
information processing in the brain. The central idea is
that a unit receiving constant input does not respond

Now suppose that additionally a blue B is presented with a constant output but with oscillating behavior.
for a while. Then also the B unit and the blue unit are This allows objects to be labeled with different time
active (see figure 2b) Note that from looking at all phases. if multiple objects are to be represented, the
four units it is now impossible to decide wether there parts of one object can be linked together through syn-
is a red A and a blue B or whether there is a blue A chronized (phase-locked) activity and separated from
and a red B. The representation does not specify what other objects through firing at different phases.
goes with what thus all combinations or groupings of Synchronization can be stabilized through synaptic
activated units are possible leading to "illusory con- S onzation an e sale togh syatjunctions", modulation of fast weights (see also Hinton & Plaut,

1987; Feldman, 1982): Units oscillating in phase in-
crease the weights connecting them and units out of5.1 WHOLES AS THE SET OF ACTIVE phase decrease the connecting weights. Thus if two ob-

UNITS jects are desynchronized for a while and then both are
presented at the same time the fast weights (togetherThis problem arises because the simultaneous activity with some noise) tend to desynchronize them again.

of units can not represent which active units go to-
gether, the activity only represents the whole expres- Consider again the previous example. first a red A is
sion as the unordered set of active units. Instead of re presented stimulating the corresponding units fur red
presenting the whole as composed of the constituents and A. These units now respond with pha.5e-locked ac-
red A and blue B something is represented which is tivity (see figure 3a). Then a blue B is additionally
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presented Figure 3b shows that although now all 4 same phase nothing is gained because within a phase
units are stimulated, unit red and A on the one hand the whole is represented as the set of active units in
and unit blue and B on the other hand are grouped to- the same way as in ordinary PDP models.
gether through phase-locked oscillations and both are The first steps done to resolve these and further pro-
seperated from each other because they oscillat in dif- blerns lead to the development of a new model, PAD-
ferent phases. Thus the whole "a red A and a blue B" blms le l d edymol modelaD-is represented correctly because the parts (the red A SYMA (parallel distributed symbol manipulation).

The name of the model emphasizes th- t it is designed
and the blue B) are both distinctly represented. to combine the strengths of PDP models and symbol

manipulation through the treatmeant of symbols both

a) b) as atomic and as distributed patterns.

~ I II -'GII~liii6.1 OVERVIEW OF THE MODEL
Figure 4 shows a sketch of the model. The architectureB I i [ [ of the model is very simple to demonstrate the general
ideas of the proposed eSTM and selective attention
mechanism, e.g., there are currently no modules fo,

""iiii different sensory modalities or motor control.

Figure 3. The whole as desynchronized parts

In this example synchronization was established
through simultaneous stimulus onset but grouping in-
formation could also come from location information.
Generally, long-term knowledge and attention can also selection
be sources of grouping information.

6 PADSYMA, THE NEW MODEL AN
The described binding mechanism constitutes the first
important step to achieve the dualistic treatment of
symbols: multiple objects, each maybe a large distri- episodic STM
buted pattern of activity, can be represented simul-
taneously yet preserving its individuality. The distin-
ctness of the objects is represented on a very rapid
time scale. For a very short time one object is active
and then the other object etc. On a somewhat slower
time scale - e.g., 'a psychological moment' consisting
of some oscillations - the experience of the whole ex-
pression is represented. input

However some further steps must be done to achieve
an eSTM and an attention mechanism as the basis
of symbol manipulation with distributed objects. The Figure 4. A sketch of PADSYMA
mechanism as described so far can group objects to-
gether and seperate them from other objects. However,
this is not sufficient for representing sequences because An input sequence is presented to the input layer
the serial order information between distinct objects which feeds into the episodic short-term memory. The
must be represented, too. If all elements of a sequence eSTM units are totally connected with each other ex-
would oscillate in a different phase they would be re- cept to themselves. The weights are modified according
presented individually but no order information would to a Hebb-like learning rule on a fast time scale. If these
be established. If all elements would oscillate in the units are stimulated for some time they exhibit bur-
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sting behavior. activation rises until a gliding average a which is set to 0.92 in all subsequent simulations.
of activity is reached followed by a 'refractory period' The net input also depends on the influence of the n1
where the unit is quiet even if it is further stimulated. input units and the other (n - 1) eSTM units. Unit i
Then the next burst can occur. also receives activation from the corresponding unit of

A special unit in the eSTM, the inhibitory unit H the selection layer as, multiplied by the activity of the

(not shown in figure 4), limits the total activity of the attention node aA. Additionally, it gets negative input

eSTM layer and plays an important role for synchro- from the inhibitory unit (win = -0.2) and small noise
eSTMzlny and ynchronizing blockspo tia led tsy - values r(t) randomly chosen from an interval rangingnising and desynchronizing blocks of activated units. from 0 to 0.01. Noise is important to break accidental

All eSTM units project to the inhibitory unit with sroniato betwe wea cople u nt

fixed small positive weights and receive connections synchronization between weakly coupled units.

with small negative weights. The final activation is computed according to

The eSTM units have one-to-one bidirectional connec- ai(t + 1) =/R(t) 1

tions to corresponding units in the selection layer with 1 + e(O-Sneti) '.2

fixed weights of 1. These connections are for simpli- The refractory function R(t) takes the values of 1 or
city one-to-one in the current model but can be any 0 depending on the value of the gliding average Gi(t):
bi-directional weight pattern. The selection layer holds
the information which is currently in the focus of at- Gi(t + 1) = (I - 5)Gi(t) + 6ai(t)
tention. The selection layer feeds to the context layer
and receives recurrent connections from this layer. The If Gi(t) reaches the upper threshold value gu = 0.5,
loop - selection layer, context layer, selection layer - Ri(t) is set to zero. Then also ai(t) is 0 and the gliding
constitutes the higher processing levels. Long-term me- average decays with time constant (1 - 6) until the
mory is represented in the weights between these layers lower threshold gi = 0.02 is reached (6 = 0.35). Then
and the weights projecting to the attention node. This the refractory period is over, R!(t) is set back to 1 and
allows top-down effects to influence the knowledge in unit i may respond to receiving signals.
eSTM and to control attention. The incoming weights wii from the other eSTM units
The attention node (AN) gates the input from the (all weights are positive) are changed according to a
eSTM to the selection layer thus determining the Hebb-like rule:
strength with which information present in the eSTM
reaches the selection layer and vice versa. Focusing at- r aiaj if Ri < Fi
tention is represented in a high (oscillating) activity of wij(t + 1) = wij(t) + caiaj - otherwise
the attention node. The attention node gets its input
from the selection and context layer. Note that if the At each time step the weights decay slowly towards
attention node oscillates in a special phase the selec- 0 with time constant y = 0.98. Each unit has a fi-
tion layer 'sees' only the information of that phase. xed amount of "weight substance" W = 0.7 that it

can distribute among its incoming weights. The avai-
6.2 SYSTEM DYNAMICS lable weight substance at the current time step is

Fi(t + 1) = W -I l w~i (t) . If there is not enough
The units of the input layer a:e simply turned on or F1 (t + 1
off. The weights between the input layer and the eSTM weight substance for all requested weight changes (
are fixed. Ri(t + 1) = ' , caiaj ) then F(t + 1) is distribu-

ted among the incoming weights in proportion to the
The units in the eSTM must be able to exhibit oscilla- amount of the individual weight change requests.
ting behavior. There are many ways to achieve this. In
the present version of the model oscillation behavior
is not modeled on the level of individual spike trains The inhibitory unit H is updated as follows (,6 = 0 63;
but on the averaged activity of cell groups (Schneider WHi = 0.01):
& von der Malsburg, 1986). Each cell group is repre-
sented with one eSTM unit. The net input of eSTM aH(t + 1) = 1/(1 + e° -(130,+w,,0())o 2)
unit i is computed according to the following difference
equation: The attention node is influenced by the ns selection

units and the nc units of the context layer (nR = ns +

ntn nc) (all weights positive) which can drive its activity
l =towards its maximum value 1. Without stimulation the

net,(t + 1) = a(t) + L wijat + L w32aj + attention node decays quickly (A = 0.6) to a small
i j4i resting level (b = 0.2):

as, aA + wilall + r(t)

Thus the net input of unit i at time step t + 1 depends aA(t + 1) = b + \aA(t) + (1 - a4 ()) E WARaR
on its previous activity determined by the parameter R=1
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Long-term memory sonance of the eSTM units with the corresponding sel-
ection layer units (the attention node is at its resting

Long-term memory is established in the recurrent loop level). If the first letter A appears the unit in STM gets
- selection layer, context layer, selection layer. Since activity and can also activate its corresponding unit
this paper focuses on short-term memory and atten- in the selection layer. The connections between these
tion long-term memory effects are not considered in layers are bidirectional so that the selection layer ac-
detail. In the following simulations necessary weights tivates the unit in the STM layer and vice versa. If the
are set by hand. In this section the primarily functions input stimulus is strong enough both units gets more
of long-term memory based on first simulation experi- and more active until the STM unit reaches the up-
ments is briefly described, per threshold of the gliding average. After this burst

While the eSTM weights store the temporal bindings the unit is quiet and therefore also the corresponding
(associations) between elements, the weights in the selection unit.
recurrent loop contain the long-term knowledge. The The important point is that this process needs some
weights between the layers of the recurrent loop change time. Thus if the next element is presented after a
on a much slower time scale than the fast weights of short time interval the first one is still active and so
the eSTM layer. The weights are updated according to on. The result is that there is some overlap between
the back-propagation learning rule adopted for recur- the elements which is proportional to the proximity of
rent networks (Goebel, 1990a). The error at each time the elements in the presented sequence. This simple
step is determined by the difference between the actual overlap - resulting naturally of the temporal behavior
activation of the selection layer and the activity pro- of the units - is sufficient to store the serial order in-
duced by the recurrent loop. Thus the recurrent loop is formation in the fast weights of the eSTM layer. The
trained to predict the next state of the selection layer resulting weight pattern after one presentation of the
(Elman, 1988). This develops useful representations in sequence is shown in figure 5.
the context layer which can be used for pattern com-
pletion and the recognition and production of known ( A B C )
sequences. New sequences, rehearsed in eSTM, can be
learned by heart. (
Due to the long-term memory weights each distribu-
ted symbol active in the selection layer evokes its typi-
cal associations. The serial order information between A
these elements determines how the associations of the
single elements interact to produce a coherent repre- B
sentation of the whole sequence (e.g. the meaning of a
sentence).

Long-term knowledge is primarily applied to informa- C
tion currently in the focus of attention. But also the
unattended information modulates processing because )
it too reaches the selection layer however with weaker M
strength. Long-term memory also controls the activa-
tion of the attention node. Figure 5. Fast weights after presenting ( A B C )

6.3 SHORT-TERM MEMORY FOR Note that the weights resemble a (graded) context-

SERIAL ORDER sensitive representation! However this representation
is not hand-designed (rtumelhart & McClelland, 1986)

The following simulations demonstrate how the eSTM or slowly learned for a special task (Mozer, 1990), but
is able to store the serial order of a presented sequence developed "on the fly", at the time it is really needed.
(no long-term memory effects are considered). The mo-
del must cope with the most difficult case that is that Rehearsal
only one element is presented at each time step (ima- Now consider how the order information can be re-
gine an auditorily presented input or that the elements tow Asme ho the tar ymol ( ets
are displayed successively). For simplicity first a local trieved. Assume that only the start symbol ( getsrepresentation is used. top-down activity at the selection layer. Then the ac-

tivity of the corresponding eSTM unit rises and ac-
Suppose the sequence (, A, B, C, and ) is presented tivates through the learned (fast) weights the next be-
in successive order. Serial order information can unly quence elements. The magnitude of this 'priming' ef-
be established if some information about the past is fect decreases with the distance of the elements in the
retained over time If the elements are presented, in- sequence ab reflected in the established fast weighs (see
formation about past elements is retained through re- figure 5). A. time proceeds all elements burst in the
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right order (see figure 6). Thus the problem of storing sent. Generally, the limits of representing repeating
both item and order information is solved as follows, subsequences are those of context-sensitive representa-
Item information is present because each element of tions. In PADSYMA this limit is reached if an element
the sequence oscillates in a distinct phase, serial order occurs more than 3 times in succession (see the weights
info..iation is present because the elements are activa- in figure 5). However there is anCoher problems if a
ted in the appropriate order. unit in the eSTM layer has bursted it can't be ac-

tivated again until its refractory period is over. Inte-Note that there are sy mnmetric weights in both direc- retn yth difcl es o PA S M wth ep a d

tions. This has the effect that primed elements also
'help' the priming elements to reach their upper thres- subsequences on a fast presentation rate seem to fithold. nicely with those of humans (Kanwisher, 1987).

It is assumed that on slower presentation rates long-
During this retrieval process the (slowly decaying) term knowledge enhances the capability to represent
weights are also strengthened again. Through repea- subsequences in that it allows to recode the informa-
ting this process the serial order information can be tion (e.g., A A as double-A).
retained as a spatio-temporal pattern over time as long
as desired. 6.4 SELECTIVE ATTENTION

The attention mechanism has two apparently distinct
functions: to segregate information of the eSTM and to

_bind elements by synchronizing their activity. In this
study only the first function is demonstrated.

A _ _ __ Segregation is accomplished through the oscillation of
the attention node in a special phase. All elements ac-

B tive in that phase reach the selection layer with high
intensity. This has the important consequence that the

C selection process has not to be determined by specific
connections. It is sufficient to have simple one-to-one
connections between the STM layer and the selection
layer and let the activation of the attention node deter-

) _ __ mine which specific information goes through. This is
in contrast to complicated pull-out networks (Mozer,

Figure 6. Spatio-temporal pattern of ( A B C ) in press, Touretzky & Hinton). The point in time when
the attention node is active determines which specific
information arrives at the selection layer. Note that if

The same simulation was repeated with distributed the attention node is active over a longer time period
(partially overlapping) representations for the ele- (e.g., as long as one period) the selection layer "sees"
ments. The obtained results were qualitatively the the whole information but if it oscillates in a special
same as the reported one. Since all units of one element phase over time it has a 'stroboscopic view' of know
are activated at the same time they possess the highest ledge of that oscillation phase. Thus the system can
fast weights among themselves. This makes the retrie- focus on the whole expression or on arbitrary parts!.
val process even more robust so that the described be-
havior is relatively unsensitive to parameter changes. To demonstrate this consider again figure 3b. A simu-

lation was conducted with the 4 units of the figure
Although the described mechanism can store and re- placed in the eSTM layer and corresponding units in
produce sequences it requires a high presentation rate. the selection layer. Furthermore a positive weight was
Note that it is only critical to achieve the described established from unit A of the selection layer to the
overlap between elements. If elements are presented attention node.
at slower speeds other mechanisms must establish this If unit A in the eSTM layer bursts, its corresponding
overlap. This has not been done yet, but a possible so- unit in the selection layer gets some activity, too. Due
lution is to assume that the sequence elements stored to the positive weight from that unit to the attention
so far are rehearsed all the time and that the overlap node all eSTM units active in this phase reaches the
depends on the number of joint rehearsals. selection layer intensified. Thus at the selection layer

unit A and also unit red are highly activated. Although
Representing repeating subsequences attention is focused only on the element A the bound

element red is also retrieved! The activity of the atten-
The eSTM has the capability, albeit limited, to store tion node decreases quickly to its resting level. When
and to retrieve sequences containing repeated subse- the 'unattended' B and blue units burst in the eSTM
quences because through the described priming effect only a fractiun of their activation reaches the selection
the necessary information about the right order is pre- layer. Thus over time the selection layer 'sees" only the
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red A. by multiple role-filler combinations; each role also may

There is an analogy to spot-light models of visual at- have multiple arguments or multiple fillers. This can
Thein narowgdo t spotlight equls ro w ato be represented in PADSYMA with oscillating subse-
tention. To narrow down the spotlight equals narrow to quences, each representing one role-filler combination
a special phase, to shift the spotlight in space equals to (e.g-, ROLEI ARG1 ARG2; ROLE2 ARGI" . This flexibility
shift the focused oscillation phase. This corresponds to is achieved because spatio-temporal patterns exploit
serially scanning the representation in the eSTM and concatenative compositionality which allows arbitrary
is assumed to be mediated by top-down influences, structured representations (cf. LISP-lists).

7 PROPERTIES OF THE MODEL 7.3 VARIABLE BINDING AND EXPLICIT
RULE FOLLOWING

PADSYMA offers interesting solutions to many pro-
blems of ordinary PDP models. First simulation re- Variable binding counts as a difficult problem for PDP
suits are very encourag'ng. Due to space limitations models (e.g., Norman, 1986). An anlysis of this pro-
only the main ideas are presented briefly. blem using binding units can be found in Smolensky

(i.. press).
7.1 POSITION-INDEPENDANT Variable binding is especially important for explicit

KNOWLEDGE ACQUISITION rule following. Consider the rule X < Y - Y > X. If
values are bound to X and Y on the left side then they

In many connectionist models multiple roles are repre- must also be instantiated on the right side. The solu-
sented in that an input or output layer is divided in tion of this problem in PADSYMA is very appealing.
some parts or 'slots' each holding the information ab- Suppose the me.,tioned rule is presented sequentially
out a slot-filler. This apprach has some disadvantages, to the model. Suppose further that the value 3 is bound
e.g., that only a fixed representation scheme can be to X and the value 5 to Y (a matching process is not yet
used. Another important problem is the following: if established) that is the variable-value pairs have posi-
different slots are filled with the same object (in the tive bidirectional fast weights. Thus if the sequence is
same input pattern or in different input patterns) then rehearsed the variables on the right side will produce
the knowledge acquired about an object (filler) in one the corr. ponding values due to the fast weights!
role is seperated from the knowledge about the same
object in another role. If, e.g., the network has learned Thus variable binding and variable instantiaion are
that a person appearing in the subject slot is a woman only special cases of the general binding method used
then the network does not know this if the same person in PADSYMA. The simulation of the attention mecha-
appears in the object slot! This happens because kno- nism (section 6.4) shows how the value of a variable
wledge about an object is learned position-dependant can be retrieved in general. attention is focused on
in the weights emanating fron. the slots, the variable (in the example the letter A) and the va-

lue appears automatically in the selection layer (in the
A possible solution would be to replace slots by units example the color red).
for roles and to represent a role-filler relation as the
simultaneous activity of the involved role and filler These ideas will be pursued ia further research and
units. However this again leads to the binding pro- also the problem of matching within the framework of
blem if more then one role-filler combination is to be the model will be addressed. However the possibility
stored. of PADSYMA to store a sequence (of limited length)

immediately and to do variable binding promise an
The solution proposed in PADSYMA is to store elegant way towards a system capable of following ex-
each role-filler combination as a two-element sequence plicit rules. Since the higher levels of the model are
(e.g., ROLEl FILLER1) which are bound through fast trained to predict the information present i the sel-
weights. This allows the same filler to appear in combi- ection layer, PADSYMA also shows a mechanism how
nation with different roles and the acquvred knowledge explicit rules can be 'compiled' to automatically ap-
about the filler in different roles rests mainly in the plied implicit rules.
weights emanating from the filler.

7.2 HIERARCHICAL (STRUCTURED) 8 DISCUSSION
DISTRIBUTED REPRESENTATIONS

PADSYMA is preliminarily in nature, much has to be
The previous section also points in a prormi'ng direc- done. The model is ba.-ed on the idea that the exact
tion how to achieve very flexible structured distribu- timing of activity exchange among units is :mportant.
ted representations as is required, e.g., to represent a This relatively old idea (Legendy, 1970, von der Mals-
syntactic tree of a parsed sentence. A flexible repre- burg, 1981, recently also proposed by Damasmo, 193)
sentation requires that an object may be represented seems nowv mature to stimulate concrete modeling ac-
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tivity. The recent interest is primarily due to empiri- problems. The solutions are not as 'perfect' as the cor-
cal findings demonstrating that synchronized oscillati- responding processes in symbol manipulation systems.
ons occur in the cat visual cortex presumably to link However the limits of PADSYMA seem to resemble
(bind) features of objects together (Eckhorn, et. al., those of humans making the model especially inte-
1988; Gray & Singer, 1989). resting for modeling psychological phenomena. Due to

the dualistic treatment of high-level symbols as atomicSome modeling activity related to this work can be fo -elements and as entities with large internal structure

und in Lange et.al., (1989) and Shastri & Ajjanagadde the model preserves all advantages of parallel distribu-

(1990). They also use oscillating units to solve the va- ted presng ad vntage of ple a-

riable binding roblem. However their work is done ted processing and thus is not merely an implementa-
withn te f, iwor ofloca (srucure) cnneto- tion of symbol manipulation. Instead the advantageswithin the fr, i, work of local (structured) connecto- of both approaches are brought together in a fruitful

nist networks.

Horn & Usher (1990) and Wang et. al. (1990) show way.
how long-term knowledge can be used to decompose a The most important contribution of the proposed mo-
whole expression in its (distributed) parts. This indica- del is that it clearly indicates a promising way towards
tes another interesting role for the long-term memory a PDP cognitive architecture, of power and generality
of P,_.)SYMA. previously attained only by symbol manipulation mo-

Although PADSYMA is in an early state of develop- dels such as ACT* and SOAR.
ment it touches a broad range of psychological pheno-
mena ranging from short-term to long-term time sca- Due to the explicit relation of the model ;o psycho-
les. Therefore the model will be studied carefull,, mo- logical phenomena the further elaboration of the mo-
dified to explain concrete data and its limits identified. del promises to lead to a deeper understanding of the
In the present state only qualitative descriptions can microstructure and its relation to the macrostructure
be made. Facing the model with psychological data of cognition.
also provides a way to fix the free parameters deter-
ming the time behavior of the model. Acknowledgements
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Considerable evidence indicates that a primary influence
on reminding is the degree of direct semantic similarity

ABSTRACT between the cue and objects in memory (Gentner & Lan-
ders, 1985; Gick & Holyoak, 1980; Holyoak & Koh,

The mechanisms by which people are initially 1987; Ross, 1989). Though the evidence is not as com-
reminded of analogies remain poorly understood. pelling as for semantic similarity, some recent work has
Psychological evidence suggests that memories shown that structural consistency (i.e., analogy) also in-
retrieved tend to be semantically similar and fluences the retrieval process. Structural consistency re-
structurally consistent with the new situation. quires that if two propositions are placed in correspon-
This paper describes a hybrid sym- dence, then their predicates and arguments should also
bolic/connectionist model of analogical retrieval correspond (Falkenhainer, Forbus, & Gentner, 1989;
that is influenced by the language understanding Holyoak & Thagard, 1989). Figure 1 illustrates a simple
process. In this model, activation is spread example of variation in structural consistency. Suppose
through a semantic network that disambiguates a person has studied the sentences The sailboat followed
and makes inferences about the input cue. A the dolphin and The porpoise followed the ferry, and is
network of units is then dynamically created to then cued with The boat followed the whale. If the cue is
represent competing mappings between the viewed as being mapped to potential targets in memory,
cue's winning interpretation and the activated then the former target yields a consistent mapping in
subset of potential targets. Connections created which similar objects fill the corresponding agent and ob-
from the semantic network to these new map- ject roles, whereas the latter target generates an inconsis-
ping units imposes priming by semantic simi- tent "cross mapping" in which similar objects play dis-
larity, with links between mapping units enforc- similar roles. Ross (1989) found that cross mapping im-
ing structural consistency with the cue. The paired retrieval of formulas to solve story problems when
mapping network then settles by constraint sat- the analogs involved similar objects.
isfaction into the most coherent analogical
match to the cue, after which the winning map- We believe, however, that the effect of analogy on re-
ping units feed activation back into the semantic minding will be influenced by several other factors.
network, where the most highly-activated target First, cue/target semantic similarity is a necessary condi-
is retrieved as the analog. tion for structural consistency to affect reminding. If two

situations are dissimilar, then the retrieval cue will likely
1. INTRODUCTION fail to make contact with (activate) a stored representation

of the individual concepts, in which case configural prop-
Human memory retrieval involves more than just match- erties will be irrelevant. Second, there is considerable ev-
ing text against items in memory. Comprehension pro- idence that human memory is sensitive to retrieval inter-
cesses, such as disambiguation and inferencing, will alter ference effects (Nickerson, 1984; Crowder, 1976; Barnes
the effective retrieval cue. Thus a realistic model of & Underwood, 1959). Because of retrieval com-etition,
episodic reminding must integrate the process by which a stored potential analog that maps inconsistently to the
the retrieval cue is understood with the process by which retrieval cue may be less likely to be recalled if a rival
it is used to recall information from memory. analog with a consistent mapping to the cue is also

stored in memory (see Figure 1).
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(argetl) (target2)

The sailboat followed the dolphin. Te porpoise followed the erry.

The boat followed the whale.
(cue)

Figure 1. Cue that shares similar concepts with two targets, but maps consistently to one only (heavy arrows).

Finally, the impact of structural consistency and retrieval because they can perform noise-resistant associative re-
competition influences and is influenced by the compre- trieval, are robust against damage, and can usually be
hension processes involved in lexical disambiguation. trained by learning mechanisms that perform stochastic
The reversal of case role fillers, which can alter the struc- category generalization. However, few distributed models
tural consistency of a mapping, can also alter preferred have been built to perform semantic natural language un-
interpretations of individual lexical items. For example, derstanding. Two of the most advanced models are those
the fish in The surfer ate the fish is small, dead, and cut of Miikkulainen and Dyer (1989) and St. John (1990),
up, whereas the fish in The fish ate the surfer is very which are able to use recurrent networks to learn to pro-
large, alive, and whole. In such cases, a role reversal can cess short texts based on scripts (such as going to a
effect the interpretation of lexical items, which in turn restaurant) or script-like stories (Schank & Abelson,
can alter the similarity of individual concepts in the cue 1977). Unfortunately, there may be significant problems
to the concepts in a stored potential analog, as well as al- in scaling such distributed models to more complex lan-
tering configural resemblance. The inferences needed for guage understanding that goes beyond recognizing and in-
the comprehension process are also crucial to retrieval - stantiating previously-trained scripts. Much of language
without a minimal understanding of how the concepts understanding involves the inference of causal relation-
and actions of a cue are related, it is unlikely that a rea- ships between events for completely novel stories in
soner will retrieve a proper analogy to a given cue. This which no script or previously-trained input/output pair
is especially true if the potential memories are indexed in can be recognized. This requires dynamic inferencing -
ways that can only be inferred indirectly from the cue. a process of constructing chains of inferences over simple

This paper describes SAARCS (Spreading-Activation Ana- known rules, with each inference resulting in a poten-
log Retrieval by Constraint Satisfaction), a hybrid sym- tially novel intermediate state (Touretzky, 1990).

bolic/connectionist model that performs both language Other distributed models explicitly encode variables and
comprehension and analogical retrieval in order to model rules, such as the models of Derthick (1988), Touretzky
the effects of inferencing and disambiguation on the and Hinton (1988), and Dolan and Smolensky (1989).
memory retrieval process. Because of this, they are able to perform some of the dy-

namic inferencing necessary for language understanding.
2. CONNECTIONIST MODELS Unfortunately, however, the types of rules they can cur-

rently encode are generally limited. More importantly,
Symbolic artificial intelligence and case-based reasoning they are serial at the knowledge level because they can
models (e.g., Kolodner, 1984; Owens, i989) have so ar fire only one rule at a time. This is a serious drawback
been the main models to integrate complex language un- for natural language understanding, particularly for am-
derstanding and analogical (or episodic) retrieval. Con- biguous text, in which multiple alternative interpreta-
nectionist models, however, have appeal because of their tions must often be explored in parallel (Dyer, 1990).
massive parallelism, their generally simpler and more
universal processing mechanisms, and their potentially 2.2. MARKER-PASSING MODELS
more realistic cognitive performance. Several classes of
connectionist models exist, each with its own strengths On the other end of the connectionist spectrum are
and weaknesses for language understanding and retrieval, marker-passing models, which spread symbolic markers

(i.e., structured pointers) across labelled semantic net-
2.1. DISTRIBUTED MODELS works in which concepts are represented by individual

nodes. Their symbolic nodes are far more complex than
Distributed connectionist (or PDP) models represent those of distributed networks, and they do not have dis-
knowledge as patterns of activation across a large number tributed networks' learning mechanisms. However, they
of simple numerical processing units. They are valuable are able to easily represent variable bindings with their
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symbolic markers, and more importantly, propagate them trieval. The system combines aspects of a language un-
across the network in parallel to generate inference paths derstanding model (Lange & Dyer, 1989; Lange, in press)
representing alternative interpretations of the input. Be- with a model of analog retrieval (Thacard, Nelson,
cause of this, marker-passing models have been able to Holyoak, & Gochfeld, in press). Because we are inter-
perform much of the high-level inferencing necessary for ested in modelling the processes of disambiguation and
language understanding (cf. Charniak, 1986; Granger, inferencing and their effects on analogical retrieval,
Eiselt, & Holbrook, 1986; Norvig, 1989; Riesbeck & SAARCS combines marker-passing with a structured
Martin, 1986). The drawback to marker-passing mode!s spreading-activation network in a single integrated model.
is that because of the generally all-or-nothing nature of The previous retrieval model to which SAARCS is related
marker-generated paths, they must use a separate sym- is ARCS (Thagard et al., in press), which uses a parallel
telative paths generated. This presents a serious problem constraint-satisfaction approach involving sensitivity to
ternativeipaths eneraa. Tis preses aconfigural relations and competitive retrieval. Thagard et

al. (in press) describe similarities and differences between

ARCS and earlier retrieval models that lack some of its
key properties (e.g., Anderson & Thompson, 1989; Car-

Structured spreading-activation models are connectionist bonell, 1983; Hammond, 1989; Kolodner, 1984). None
models that represent knowledge in semantic networks of these models, including ARCS, deals directly with
like those of marker passing networks, but in which the comprehension and its effects on recall. Related models
nodes are simple nineric units with weighted intercon- of comprehension include the work of Kintsch (1988) and
nections. The activation on each conceptual node gener- Lange and Dyer (1989).
ally represents the amount of evidence available for its SAARCS consists of a structured connectionist network
concept in a given context. As in marker-passing net- that encodes a knowledge base of concepts (e.g., objects,
works, structured connectionist networks have the poten- actions, plans, and goals) and general knowledge rules for
tial to pursue multiple candidate interpretations of a story inferencing between concepts. Also indexed into this
in parallel as each interpretation is represented by activa- p
tion in different local areas of the network. In addition, semantic network are nodes representing long-term mem-
however, structured spreading-activation networks are ide- ory episodes that are potential targets for retrieval. Using
howeve strut rd sporlecadiabiation e kse i- this network, the understanding and analog retrieval pro-ally suited to perform lexical disambiguation because it escnisso ormao tgs
is achieved automatically as related concepts under con- cess consists of four major stages:
sideration provide graded activation evidence and feedback (1) Activation is spread through the semantic network
to one another in a form of analog constraint relaxation to disambiguate and infer an interpretation of the cue.
(cf. Cottrell & Small, 1982; Waltz & Pollack, 1985). (2) Symbolic markers (cf. Chamiak, 1986) are propa-
On the other hand, structured networks have had difficul- gated from the nodes of the winning inference path to
ties representing variable bindings and encoding rules. find the targets that are semantically similar in the cur-
While recent structured spreading-activation models have rent context to the cue's interpretation.
some variable binding and inferencing abilities (e.g., Aj-
janagadde & Shastri, 1989; Barnden, 1990; Holldobler, (3) A network of units is dynamically built to repre-
1990), they resemble marker-passing models in that the sent the possible competing mappings between the cue's
networks no longer perform disambiguation. An excep- interpretation and the semantically similar targets found
tion is ROBIN (Lange & Dyer, 1989), a structured spread- by the spread of markers. The excitatory and inhibitory
ing-activation model which propagates signature activa- connections between units of this new mapping network
tion patterns to generate possible interpretations of an enforce semantic and structural consistency with the cue.
input text, while at the same time using the network's (4) The new mapping network is settled by a constraint-
evidential constraint satisfaction to select the most plau- satisfaction process; the mapping units active after set-
sible interpretation in a given context. However, even tling constitute the most coherent match to the cue.
with the variable binding and rule-firing abilities of re-
cent structured models, such purely spreading-activation Because the units in the mapping network formed by the
models do not use the powerful symbolic search and spreading-activation and marker-passing process feed back
comparison mechanisms of marker-passing systems, fea- into the corresponding units in the semantic network, the
tures that are potentially useful for analogical retrieval, activation of the target most semantically and structurally

similar to the cue increases. The target episode in the
3. A HYBRID SPREADING-ACTIVA- semantic network with the highest activation is retrieved.
TION MODEL OF DISAMBIGUATION 3.1. UNDERSTANDING AND CUE DISAM-
AND RETRIEVAL BIGUATION: ROBIN

SAARCS is a hybrid symbolic/connectionist model that As previously mentioned, SAARCS is built upon ROBIN
integrates language comprehension and analogical re- (Lange & Dyer, 1989), a structured connectionist model
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(FRAME Ingest-Food Action (Roles (Actor (Animate 0.05))
(Object (Edible-Object 0.60)))

(Phrase (P-Devoured 1.0 (Actor Subject))
(Object Direct-Obj))

(Plan-For (G-Satisfy-Hunger 0.7 (Actor Actor))
(Refinements (Carnivore-Ingest-Human 1.0 (Actor Actor)

(Object Object))
(Human-Ingest-Food 1.0 (Actor Actor)

(Object Object))

Figure 2: Simplified definition of the frame representing the action Ingest-Food. The weights (numbers)
from each of the concepts correspond to the relative amount of evidence they provide for Ingest-Food.

that uses these features to allow it to perform lexical and R2: [Actor X Ingest-Food Object Y]
pragmatic disambiguation and reinterpretation (Lange, in == refinement ==>
press), while also being able to represent the variable (Actor x Carnivore-Ingest-Human Object Y]
bindings and perform some of the general knowledge
rules necessary for high-level inferencing and understand- Finally, the numbers in Figure 2 represent the connec-
ing. This section gives a short overview of how ROBIN tion weights from those concepts to Ingest-Food, and
(and thernfore SAARCS) performs inferencing, but a de- are chosen on the basis of how much evidence they pro-
tailed description may be found in (Lange & Dyer, 1989). vide for it. For example, if a human has just eaten
ROBIN uses structured networks of simple connec .,,iist something (Human-Ingest-Food), then the network can
RoBINdusesenc stru ict networks of simles conen .definitely infer that an Ingest-Food has happened, so
nodes to encode semantic networks of frames representing the weight from Human-Ingest-Food to Ingest-Food
world knowledge. Each frame has one or more roles, is maximal (1.0). On the other hand, if something edible
with each role having expectations and selectional restric- has beeni nicntioned in a story, then there would be sub-
tions on its fillers. Every frame is related to one or more stantial, though not certain, evidence that it will be
other frames, with pathways between corresponding roles eaten, so a corresponding "middling" weight of 0.5 from
(representing general knowledge rules) for inferencing. Edible-Object to Ingest-Food's Object role is given2.

As in nearly all structured models, ROBIN's knowledge Definitions of frames such as that of Ingest-Food de-
base is hand-built. Figure 2 gives an example of how scribe the knowledge base needed for a given domain.
knowledge is defined in ROBIN (and SAARCS). It defines These definitions are used to construct the actual net-
the conceptual frame Ingest-Food, which represents a works' structure before any processing begins. The basic
general eating action, and which has two roles: an Actor networks thus constructed are much lie other structured
that does the eating (which must be an Animate), and an connectionist models, with a single node in the network
Object that is being eaten (which must be an Edible- ronneeting me or role nce in e -
Object). The rest of Figure 2 defines Ingest-Food's re- representing each frame or role concept. Relations be-
lations to other frames: it is directly accessed by the tween concepts are represented by weighted connections
phrase P-Devoured (as in The man devoured the steak), between the nodes. Activation on frame and role nodes is
it is a Plan-For the goal G-Satisfy-Hunger, and it has evidential, corresponding to the amount of evidence
two possible refinement frames, Carnivore-Ingest- available for that concept and the likelihood that it is se-
Human and Human-Ingest-Food l. The relations and lected in the currnt context.
their role correspondences shown in the figure also define Simply representing the amount of evidence available for
the network's general knowledge rules, e.g.: concepts, however, is not sufficient for complex inferenc-

ing and understanding tasks. The network must also be
RI: (Subject X P-Devoured Direct-Obj YI capable of representing dynamic variable bindings and al-

- phrase -> low them to be propagated according to general knowl-
(Actor X Ingest-Food Object Yl edge rules. ROBIN handles this problem by having addi-

tional structure in the network which can hold uniquely-
identifying activation patterns, termed signatures. Every

1Refinements of frames are useful because they allow concept in the network has a set of signature nodes that
more specific inferences to be made when role-bindings output its signature, a constant activation pattern differ-
are known. For example, if the network has inferred ent from all other signatures. A dynamic binding exists
that a human is eating or wants to eat (Human-Ingest-
Food), then it could infer that possible plans for it are 2The actual weight: chosen are clearly arbitrary.
cooking or going to a restaurant. However, quite What is important is that they be in a range reflecting
different inferences would be made were a crocodile to the amount of evidence the concepts provide for their
eat a person (Carnivore-Ingest-Human), related concepts in a certain knowledge base.



Analogical Retrieval Within a Hybrid Spreading-Activation Network 269

a ) -- ---- .. .. .. .. .. .. . .. .. .. .. .. .. .. ...... ..... .-- - -- - -- - -- - -- -- ...... ....... ........ ..... .... ... .... ..... ... ..... ... .............

e~Moe

........ ......

Figure 3. Simplified ROBIN network segment at two different cycles during processing of The shark ate the
diver. Each figure shows the parallel paths over which evidential activation (bottom plane) and signature activa-
tion (top plane) are spread for inferencing. Signature nodes (outlined rectangles) and binding nodes (solid black
circles) are in the top plane. Thickness of node boundaries (ovals) represents their levels of evidential activation.
(Node names do not affect the spread of activation in any way. They are simply used to initially set up the net-
work's structure and to aid in analysis.)

when a role or variable node's binding nodes hold an acti- the signatures for C-Shark and D-Shark (Figure 3a),
vation pattern matching the activation pattern of the representing the candidate bindings from the word shark,
bound concept's signature. and a binding node of its Object role is bound to the sig-

Figures 3a and 3b illustrate how the network's structure nature for Diver (not shown).
automatically propagates signatures to perform inferene- The activation of the network's conceptual nodes is equal
ing over rules such as RI and R2. For simplicity, the to the weighted sum of their inputs plus their previous
signatures are arbitrarily-chosen unique scalar values, activation times a decay rate. The activation of the bind-
Evidential activation for disambiguation is spread ing nodes, however, is equal to the maximum of their
through the paths between conceptual nodes on the bot- unit-weighted inputs, allowing signatures to be propa-
tom plane (i.e., Ingest-Food and its Object role), while gated without alteration.
signature activation for dynamic role-bindings is spread As activation starts to spread after the initial clamped ac-
across the parallel paths of corresponding binding nodes tivation values in Figure 3a, Ingest-Food receives evi-
(solid black circles) on the top plane. Nodes and connec- dnilatvto rmPDvuerpeetn h
tions for the Actor roles are not shown. Initially there is dtoenidenc ativatio frometP-Devourbe, repreentiCncthe

no ativtionon ny f th coceptal r bndin noes. rently, the signature activations on the binding nodes of
Figure 3a shows the state of the network after it has been P-Devoured's roles propagate to the corresponding
presented with input fo. the simple sentence The shark binding nodes of Ingest-Food (Figure 3b), since each of
devoured the diver (Killer Shark). In this network, the the binding nodes calculates its activation as the maxi-
word shark has two alternative meaning senses, C-Shark mum of its inputs. Notice, however, that the network
(a large, carnivorous shark) and D-Shark (a cut-up dinner does not allow role bindings to propagate blindly - the
shark). When input for Killer Shark is presented, the links are actually gated by nodes in the network (not
lexical concept nodes for each of the words in the phrase shown) that calculate when a frame's selectional restric-
are clamped to a high level of evidential activation, di- tons have been violated. In this case the signature for
rectly providing activation for concepts C-Shark, D- D-Shark (5.2) did not propagate to the corresponding
Shark, P-Devoured, and Diver. To represent the role- binding node of Ingest-Food's Actor (Figure 2), since it
bindings given by the phrase, the binding nodes of each expects only Animates as its filler2. Similarly, as time
of P-Devoured's roles are clamped to the signatures of goes on, evidential and signature activation reach Carni-
the concepts bound to them1. The binding nodes of its yore- Ingest- Human, but not Human- Ingest- Food (a
Actor role are clamped to the activations (1.9 and 5.2) of human was being eaten, and not doing the eating) (Figure

t RoBIN does not currently address the problem of de- 2thte network structure that gates the sprad of activa
ciding upon ie original syntactic bindings, i.e. that don based on selectional restrictions (essentially by
"shark" is bound to the Actor role of phrase P- comparing the signature activations of the bindings to
Devoured. Rather, ROBIN's networks are given these those of the selectional restrictions) is not important
initial bindings and use them for high-level inferencing. for this paper, but is described in (Lange & Dyer, 1989).
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Figure 4. Expanded area of Figure 3 showing how two target episodes, Carnivore-ingest-Human.1 and
Human-Ingest-Food.2, are connected to the network. Shown are the activation of the evidential layer's nodes
after presentation of input for The shark devoured the diver. The labels next to roles (i.e. D-Shark, C-Shark,
and Diver) show the concepts inferred over the binding nodes with the signatures.

3b). Inferencing would continue in a larger network hav-
ing specific frames related to the newly-inferred instantia- 3.2. FINDING SIMILAR TARGETS
don of Carnivore-Ingest-Human. SAARCS' networks are built from ROBIN's networks,

When the network has settled, C-Shark ends up with but in addition have nodes representing the episodes in its
more evidential activation than D-Shark (thicker node long-term memory. Each of the elements of these
boundary), so that the word shark has been disambiguated episodes is an instance of a frame in the semantic net-
to the large, carnivorous kind. The interpretation of the work, and so is connected (without signature binding
input is then the most-highly activated path of frames paths) to the evidential nodes of those frames. The
and their signature role-bindings, in this case simply strength of those weights is relative to how "well" the
(Actor C-Shark Ingest-Food Object Diver) -) (Ator episodes have been remembered: particularly salient
(ActrC-Shark ingest-ood Object Diver). (Actor episodes will have high connection weights, and "fading"
C-Shark Carnivore-Ingest-Human Object Diver), memories will have low connection weights.

As can be seen, inferencing is crucial to understanding Figure 4 shows an example of how a simple episode is
even simple sentences such as Killer Shark. If the connected to the network. In figure 4, the episode The
original phrase's role-fillers had been reversed (the diver crocodile ate the swimmer is represented by the instance
ate the shark), then D-Shark would have won because of Carnivore-Ingest-Human.1, whose Actor is connected
feedback from the role-bindings allowed to propagate to to C-Crocodile.1 and whose Object is connected to
Human-Ingest-Food. The role of inferencing and the Swimmer.1 (not shown). The sailor consumed thefish
evidential combination of the evidential network is even is represented by Human-Ingest-Food.2.
more important in more complicated examples, such as
John put the pot inside the dishwasher because the police The spread of activation used to understand the input has
were coming, which requires a complex plan/goal analy- the side effect of activating targets that are semantically
sis to understand (Lange & Dyer, 1989). similar to the interpretation of the cue. For example, in

Figure 4, which shows the results of the processing of
The shark ate the diver (from figure 3), the target Carni-
vore-Ingest-Human.1 has become strongly activated
due to activation from Carnivore-Ingest-Human.
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Figure 5. Some of the mapping units (rectangles) created by passing of markers in Killer Shark. All
links shown are excitatory. Unidirectional dashed lines have weights proportional to the total weight distance
between that particular concept and the target being mapped.

To start memory retrieval, symbolic markers are spread
from the frame and role nodes of the cue's winning inter- 3.3. BUILDING THE MAPPING NETWORK
pretation. These markers hold both a symbolic back- The marker-passing process finds large numbers of par-
pointer to their originating node and a strength equal to tially-active long-term instances that are semantically
the numeric product of the link weights they have propa- similar to part of the cue. Each of these correspondences
gated over. The frame and role markers only propagate are potential analogs. However, to retrieve a single co-
over links between corresponding frames and roles, re- herent episode most analogous to the cue, these isolated
spectively, and only over active portions of the network. correspondences must compete against each other. This
This propagation of markers finds, in parallel, all of the competition is driven by parallel satisfaction of the two
instances in memory that are semantically similar to the main types of constraints, semantic similarity and struc-
cue in the current context. Equally important is that the tural consistency, that are believed to operate in both ana-
markers' backpointers tell exactly which part of the cue logical retrieval (Thagard et al., in press) and analogical
they are similar to. For instance, in Figure 4, one mapping (Holyoak & Thagard, 1989).
marker will reach Carnivore-lngest-Human.1 from the To perform this competition, a mapping network is dy-
inferred Carnivore-Ingest-Human, and another marker namically formed whose units represent the possible
will reach C-Crocodile.1 from C-Shark1.  mappings between each pair of semantically similar con-
This marker-passing naturally constrains the search for cepts, as in the ARCS model of ana.jgical retrieval
similar targets because of two features of the network: (Thagard et al., in press). In SAARCS, these are the pairs
(1) instances not semantically similar to the cue in the found by propagation of the markers. For example, in
current context will have little or no activation, and so Killer Shark, markers hitting nodes for the target The
will not be reached (e.g., Herbivore), and (2) instances crocodile ate the swimmer would cause mapping units to
that are active, but which are semantically distant from a be created for the hypotheses that C-Shark=C-
cue concept (such as C-Crocodile.1 from Diver) will Crocodile.1, Diver=Swimmer.1, and Carnivore-In-
not be reached because of their separation in the network. gest-Human=Carnivore-l ngest-Human. 1. Target

roles that receive markers also create units representing
the possible mappings between those roles and the mark-
ers' originating roles. This in itself enforces partial

1Markers are used here rather than signatures since structural consistency, since only corresponding roles
each instance in the targets may be semantically similar that can be reached over inferencing paths (dashed lines in
to multiple concepts in larger cue stories, and thus need Figure 4) will receive markers. The units created for the
to hold several markers at once. Since signatures are potential mappings between Killer Shark and The
activation patterns, binding units can hold only one crocodile ate the swimmer are shown in Figure 5.
signature "backpointer" at a time. This is also true of As in ARCS, structural consistency is enforced by excita-
other current spreading-activation variable binding tory connections between corresponding mapping units.
approaches, such as the use of different segments of a As shown in Figure 5, excitatory connections are created
phased clock (Ajjanagadde & Shastri, 1989). between units mapping two roles (e.g., C-I-HAActor=C-I -

H.1 AActor) and the units mapping their frames (e.g.,
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Carnivore-lngest-Human=Carnivore-Ingest-Hu- process activates the similar target much more highly
man.1). Units mapping two concepts that serve as the than any others. This is the case when The crocodile ate
fillers of two mapped roles also have excitatory connec- the swimmer and The sailor consumed the fish are the
tions (e.g., between C-Shark=C-Crocodile.1 and C-I- closest potential targets for The shark ate the diver. The
HAActor=C-I-H.1AActor). carnivorous crocodile episode is so similar to Killer

Shark that it becomes highly active just from the infer-
All of the above types of connections between strut- encing process, especially in relation to The sailor con-
turally consistent mapping units have a small positive sumed thefish (see Figure 4). Structural similarity pres-
value (0.05). Excitatory weights are also constructed to sures from the mapping network only marginally helps
mapping units from the nodes in the semantic network retrieval in these kind of cases.
that they map, with the link weights being proportional
to the total path weight product between the concepts In other cases, however, multiple targets can have ap-
(0.05 * strength of the marker that caused the mapping proximately the same semantic similarity to the cue, so
unit to be built). These weights thus give importance to structural consistency plays a larger part in retrieval. An
both (a) semantic similarity, since the weights to map- example of this is that the target The sailboat followed
ping units for two very similar concepts will be higher the dolphin (Ptrans-Follow.1) is a better analogy for
than those for two less similar concepts, and (b) prag- The boat followed the whale than is The porpoises fol-
matic relevance, since important and relevant goals will lowed the ferry (Ptrans-Follow.2). In this kind of case,
have more basic activation in the semantic network, thus the pressures due to structural consistency allow the bet-
biasing retrieval towards units mapping those goals. ter analogy to be retrieved first.

Competition between potential mappings is facilitated by Figure 6a shows the activations of these target episodes
inhibitory links between all rival mappings (-0.20 in the during retrieval in SAARCS. Activation reaches the two
simulation). For instance, there will be an inhibitory targets after presentation of the cue at cycle 16, and the
link between Diver=Swimmer.1 and the mapping unit semantic network settles by about cycle 39. Although
created for Diver=Sailor.2 (from the target The sailor activations of the cue (not shown) clearly indicate that a
consumed the fish). Boat was Ptrans-Following a Whale, the activations of

the two targets is about the same, essentially because
3.4. COMPETITION AND RETRIEVAL they both involve sea mammals and boats following each

other. At this point, markers propagate from the cue's
During and after creation of the units representing candi- interpretation, so that at cycle 41 the competing mapping
date analogical mappings, the new mapping network is units for Ptrans-Follow=Ptrans-Follow.1 and Ptrans-
settled using a constraint-satisfaction algorithm. The Follow=Ptrans-Follow.2 are formed (Figure 6b). Be-
mapping units that are most active after the network has cause of the excitatory connections enforcing structural
settled will be those that constitute the most coherent similarity between them and the other newly created map-
match to the cue (Thagard et aL., in press). ping units, Ptrans-Follow=Ptrans-Follow.1 soon be-

Because mapping units are created with bi-directional gins to win, dominating by about cycle 80. This activa-
links from their target nodes in the semantic network tion feeds back into the semantic network, driving
(e.g., from C-Shark=C-Crocodile.1 to C-Crocodile in Ptrans-Follow.1 to saturation and allowing Ptrans-
Figure 5), activation from the winning mappings feeds Follow.2 to decay. The sailboat followed the dolphin is
back into the targets. This boosts the evidential activa- thus retrieved as the best analogy for the cue.
tion of targets most analogous to the cue, so that they The final set of simulations have tested SAARCS' ability
tend to become highly activated. The target retrieved is to perform retrievals which require a plan/goal analysis of
the episode with the highest evidential activation, the cue. For instance, to understand John put the pot in-
4. SIMULATION RESULTS side the dishwasher because the police were coming, the

ROBIN portion of the network must first make multiple
SAARCS has been implemented in the DESCARTES con- inferences to decide that John was most likely trying to
nectionist simulator (Lange, Hodges, Fuenmayor, & hide his marijuana from the police inside an opaque ob-
Belyaev, 1989). The model has been tested on three dif- ject (the dishwasher), because he didn't want to get ar-
ferent types of competitive and non-competitive retrieval: rested. These inferences combined with ROBIN's spread
examples in which the targets can be retrieved solely on of activation allow the network to disambiguate and form
the basis of semantic similarity after interpretation, ex- an interpretation of the cue (see Lange & Dyer, 1989).
amples in which analogical similarity plays a crucial Once a reinterpretation has been made to Hiding Mari-
role, and examples in which plan/goal analyses of the cue juana due to confluences of evidential activation from
must be made before retrieval is possible. the inferred plan/goal analysis, SAARCS' retrieves the

The first class simulated are retrievals in which a single analogous episodes Bill hid the cocaine in the stove so
target is clearly the most semantically similar to the cue that he wouldn't be arrested, as opposed te the previously
after interpretation. In such examples, the interpretation most analogous episode Mary put the cooking pot in the

dishwasher to clean it.
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Figure 6a. Activation of target nodes Ptrans-Fol- Figure 6b. Activation of mapping units Ptrans-
low.1 (The sailboat followed the dolphin) and Ptrans- Follow=Ptrans-Follow.1 and Ptrans-Fol-
Follow.2 (The porpoises followed the ferry) after pre- Iow=Ptrans-Follow.2 after they were created due to
sentation of The boat followed the whale. presentation of The boat followed the whale.

5. DISCUSSION semantic network to the corresponding mapping units,
while excitatory connections between consistent mapping

Although it is in the early stages of testing, SAARCS in- units and inhibitory connections between inconsistent
tegrates language understanding and analogical retrieval, units impose the soft pressures of structural similarity.
and does so in a manner that is driven by the primary The mapping network then settles by constraint satisfac-
constraints that seem to drive analogical reminding: se- tion into the most coherent analogical match to the cue,mantic and structural constraints. To review, SAARCS' after which the winning mapping units feed activation

networks have three interacting spreading-activation back into the evidential semantic network, where the
structures, each performing different tasks in parallel: the most highly-activated target is retrieved as the analog.

permanent signature role-binding and inferencing paths,
the permanent evidential semantic network structure, and A final aspect about to note about SAARCS is how 'an-
the dynamically-constructed mapping network. guage understanding and retrieval processes come full cir-

cle. The analogy retrieved depends crucially on the inter-One of the main strengths of SAARCS is the signature pretation of the cue from the spreading-activation net-
inferencing paths and evidential semantic network struo- work's inferences. Once an analogy is retrieved, it inture from ROBIN (Lange & Dyer, 1989). Propagation of turn primes the activation of the evidential spreading-ac-

signatures allows SAARCS to hold role-bindings and tivation network, perhaps leading to a different disam-
make chains of dynamic inferences, possibly activating biguation and therefore interpretation of the next cue.

several alternative interpretations or plan/goal analyses of

the cue. The concurrent spread of evidential activational- 5.1. OTHER RETRIEVAL MODELS
lows the network to select the most plausible of those
ambiguous interpretations in a given context. Although there have been numerous symbolic and con-
When long-term target instance nodes (episodes) are built nectionist models of language understanding and analogi-into the evidential network by connections to the seman- cal retrieval, few have dealt with how the two processes
intfraeo f the vietial network , by conecin t the eare integrated and effect each other. Here we comparetic frames of the inferencing network, as in SAARCS, the SAARCS to the main models that can retrieve extended
instances that are semantically similar to the interpreta- s o e min ca n retriev e extnde
tion of the cue being processed automatically become ac- episodes: symbolic case-based retrieval models, and the
ivated. Propagation of symbolic markers from theretrievaltivaed. ropgatin o symoli marersfromthe (Barnden & Srinivas, in press) and ARCS model of ana-

frames and roles of the cue's interpretation finds these po- logical retrieval (Thagard et al., in press).
tential analogs. Because the markers only spread across
active areas of the network, the only targets that have the 5.1.1. Case-Based Reasoning Models
potential to be mapped are those that are semantically
similar to part of the cue, as appears to be the case in Symbolic memory retrieval models (e.g., Kolodner,
human retrieval (Ross, 1989). 1984) and case-based reasoning models (e.g., Hammond,
Retrieval itself is driven by the constraint satisfaction of 1989; Kolodner, Simpson, & Sycara, 1985; Owens,

the mapping network created by collisions of cue markers 1989; Schank & Leake, 1989) attempt to retrieve the
with active targets. Each collision causes a mapping (symbolically represented) episode from memory that is
unit to be built representing the possibility of that ele- most likely to help them in their current task. To do
ment being retrieved as the mapping for the marker's cue this, they search memory for episodes that share analo-
node. The soft pressures of semantic similarity on re- gous goals, plans, enablements, or failures with the cur-
trieval are imposed by connections from the evidential rent problem situation, depending on the reasoning task.

To limit the number of retrievals, they generally apply a
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symbolic/conditional classification of the current prob- mal symbolic parsers as front-ends to the retrieval sys-
lem to index similarly-classified episodes in memory. tern. However, for stories with the types of inferences
These classifications initially search memory with fairly that SAARCS is able to process, SAARCS seems more
specific indices, but use more and more general indices psychologically plausible and better able to handle ambi-
each time the search fails. For example, when SWALE guity and its effects on the retrieval process. Symbolic
(Schank & Leake, 1989) attempts to find a relevant ex- parsers, for instance, have a very difficult time with am-
planation for the anomalous event of a young race horse biguous stories such as John put the pot inside the dish-
dying of a heart attack, it initially searches for episodes washer because the police were coming, and so could not
of premature deaths of race horses. If no episode is form the proper indices for retrieval. This is not a prob-
found, it searches for episodes of premature deaths of lem in SAARCS. Another example is the effect of prim-
horses in general, and then finally of any animals. ing on retrieval in SAARCS. For instance, SAARCS

normally retrieves the target Jacques Cousteau studied the
Whenever the indexing mechanism retrieves episodes sharks when given the cue The astronomer saw the star.
from memory, the case-based reasoning models check However, when the network is primed by activation of
them for their relevance to the current problem and eim- Celebrity, it interprets star as a Movie-Star, so instead
mnate those that are not. MEDIATOR (Kolodner et al., retrieves the target Bill saw Magic Johnson.

1985), for example, first eliminates any episodes in

which the goal relationship is different than that of the
current case (a structural similarity rule), and then elimi- 5.1.2. CONPOSIT
nates any episodes where the derivation of the goal rela- Bamden and Srinivas (in press) have recently proposed a
tionship is different than that of the current case (a par- case-based reasoning extension to CONPOSIT, a connec-
tially structural and partially semantic similarity rule). If tionist model that performs rule-based reasoning
all of the episodes were rejected, then the models may go (Barnden, 1990). CONPOS1T uses relative-position en-
back and generate more general indices with their classifi- coding to represent complex, symbolic data structures in
cation mechanism and try again, two-dimensional "Configuration Matrix" (CM) arrays of

Both SAARCS and case-based reasoning (CBR) models neural subnetwork "registers", each holding a dynami-

use structural and semantic considerations for retrieval. cally-changing activity pattern representing a symbol and

SAARCS, however, has much looser semantic constraints binary flags. The structure of the episode in a CM is en-

- any form of semantic similarity that is activated be- coded by the adjacency relationships of the symbols and

tween target episodes and elements of the cue or infer- flags in its registers. In the CBR version of CONPOST,

ences from it can lead to a potential mapping, whereas each episode is represented by a separate CM. To retrieve

CBR models only look for specific semantic relation- one of those episodes, a winner-take-all mechanism arbi-

ships (indices) depending on the problem for which they trarily chooses one of the proposition symbols of the

are looking for a solution. The difference in enforcement cue's CM to be broadcast to all episodic CMs. Any CM

of structural similarity between SAARCS and the CBR that contains a symbol matching the broadcast one adds

models is similar - structural differences between a cue the "degree" of that match to its "total degree of match"

and a target in SAARCS form a negative pressure against activation. After all of the cue's propositions have been

that target's retrieval which can be overridden by the broadcast in this manner, the CM episode retrieved is the

combined activation from semantic similarity, whereas one with the highest total degree-of-match.

pertinent structural differences in CBR models generally Because CONPOSIT's Configuration Matrices can encode
completely rule-out retrieval. Part of these differences more complex structures than can currently be encoded
can be explained by the different objectives of SAARCS with signatures, it can store and retrieve more complex
and case-based retrieval models. Most CBR models try episodes than SAARCS can. However, as in symbolic
to retrieve only those episodes that will provide useful CBR models, CONPOSIT's retrieval mechanism is rela-
information to the task at hand. SAARCS, on the other tively brittle. To match a symbol in an episodic CM,
hand, is an attempt to model the less ideal world of gen- the cue proposition and its role-bindings broadcast must
eral human memory retrieval, where semantic similarity be exactly the same. To match similar propositions with
appears to play a more important role, and in which re- non-identical role-bindings (e.g. matching John kissed
mindings are not always so specific or helpful. Mary to Peter kissed Susan), CONPOSIT must randomly

On the basis of ability to represent and retrieve long and "hide" symbols in both the cue and episodic CMs, until

complex episodes from memory, the symbolic case-based eventually a match is found (e.g. the above will match
when John, Mary, Peter, and Susan are eventually allmodels have a definite advantage over SAARCS because hidden). Besides being expensive, this hiding process

of the current relative difficulty of representing and pro- he.s ids b ein expnseti hidirocess
cessing complex structured knowledge and rules in con- thr t B ot strucr and se ily o
nectionist networks. On the other hand, most of the that Billy kissed Becky is no more likely to match
case-based models do not currently integrate language un- Johnny kissed Sue than is The beauty kissed the beast.
derstanding with the retrieval process as SAARCS does. One important ability that CONPOSIT has that SAARCS
The ones that do (e.g., Kolodner, 1984) simply use nor- currently lacks is the ability to add "advice" from the re-
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trieved episode as inferences to the cue. On the other are currently performing a number of psychological ex-
hand, as an integrated model of language understanding periments to test these predictions.
and retrieval, one of CONPOSIT's main drawbacks is that
such advice is its only means of performing inferencing. ACKNOWLEDGEMENTS
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Abstract or modified by learning procedures. The properties of
assciative infereice are essential to most connectionist

While the techniques of connectionism and ym- netvork models, but some of them can also be found in
bolic Al have been applied to many problems many traditional AT systems, such as MYCIN (Davis et al.,
individually, there are far fewer systems which 1977), wl "ch employ probabilistic representations. I will
attempt to combine these techniques. This pa- often re,.. to connectionist implementations of the asso-
per presents a possible sct of factors one might ciative paradigm.
use to determine when such hybrid appioaches The term "hybrid" refers to explicit combinations ofare appropriate. These factors include charae- Tetr bi"rfr oepii obntosoteristics of the problem as well as the intended symbolic and associative techniques, such as Hendler's"Marker Passing Over Microfeatures" (Hendler, 1989),uses of the system. SCALIR, a hybrid system Lange's ROBIN system (Lange and Dyer, 1989), and
for retrieving legal documents, is presented, and SCALIR (Rose and Belew, to appear), which will be de-
is used to illustrate the motivating factors. Prob- scribed in Section 4. Note that this does not include what
lems unique to hybnd systems are discussed, might be considered "functionally hybrid" systems - as-
and possible sulutions are given. sociative systems trained to replicate symbolic ones.

To understand how the hybrid a -proach is motivated in the
1 Introduction case of SCALIR, it is useful to understand the system's

domain, legal research. When an attorney (or paralegal)
Different problems demand different szlutions, in zrtificial wishes to investigate a particular legal issue, .e or she
intelligence (Al) as in any domain. In iecent yeats, solu- is often interested in finding all of the court decisions
tions to Al problems have fallen primarily into two classes, which pertain to that issue. There are several traditional
the traditional "symbolic" approach and the neurally- sources that hase been used for this task, as well as some
inspired "connectionist" approach. Yet the problems to newer, computer-based tools. Some of these are concep-
which ,hese techniques are generally applied do not fall tually linked together )y West Publishing's hierarchical
neatly into the same two classes. In some cases, hybrid taxonomy of the law.
solutions which utilize both approaches are most appropri-ate. In this paper, I investigate what characteristics make West's taxonomy first divides law into seven general ar-ate Inthi paerJ ivesigae wat harcteistcs ake eas: Persons, Property, Contracts, and so oni. These areasa problem well-suited for solution by a hybrid system. I a:Pros rpry otrcs n ooi hs rathen consider some difficulties facing hybrid systems, and are divided further; for instance, "Property" contains suchdhecribe how one system - SCALIR, a system for con- topics as Automobiles, Crpyrights and Intellectual Prop-ceptual retrieval of legal documents -attempts to resolve city, and Franchises. Further subdivisions continue untilthem while exploiting the advantages of connectionist and the legal issues are quite specific, e.g. what constitutes in-symbolic techloniques, fringement of copyright for sound recordings. Cases canbe characterized by several topics, but they must be drawn
For the purposes of this paper, I will use the term "sym- from the preexisting list.
bolic" to refer to systems which depend on axiomatizedinference methods for the explicit manipulation of discrete The legal researcher's first source is the set of "reporters"
symbols. These characteristics are often found in the tools such as the Supreme Court Reporter which contain thesymbols. thes chaaistaresen such s ful text of all cases of a given court system, in chronologi-
and techniques of mainstream Al research, such as produc- zal order. The most common reporters, produced by West,
tion systems, logic, and semantic networks. In contrast,
I will refer to those systems which employ unstructured
statistical inference on graded, continuous representations 'Supreme Court it..orter is a registered trademark of West
.s "associative." Their representations are often created Publishing Company.
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contain additional "headnotes" before each case, summa- that hybrid approaches offer "the best of both worlds."
rizing how the case bears on a particular legal issue. The However, this ignores the added costs that the complexity
issues are labeled with "key numbers" which indicate their of a hybrid system incurs. (Some of these will be con-
location in West's legal taxonomy. sidered in Section 3.) It is important to consider specific

In addition to reporters, there are "digests" which are orga- aspects of the problem domain and of the system goals;

nized by areas of the law. West's digests use the same key together these factors may determine whether a hybrid is

number system as its reporters, so a researcher can use the
digest to find all cases which contained a headnote labeled Since this paper is presented in a forum for connectionist
by a given key number. research, I will not attempt to motivate the use of as-

isCitations2 "cator, a sociatie methods. Their success at problems involving
Finally, there is the Shepard's tatince Citaton learning and statistical inference is widely described in the
backward-pointing index (similar to the Science Citaion literature. But there are many cases in which the problem
Index) which lists all cases which cited a gien case. can be addressed more effectively by combining symbolic
Many of the citations listed in Shepard's are annotated methods with associative ones. Thus I will focus on cases
with a label describing the nature of the relationship. in which the additional use of symbolic techniques is ap-Some of these labels refer to the history of the case (e.g. propriate. Each of the following factors motivates the use
whether the cited case was affirmed on appeal); others re- o rids; iach cae fllind factor s

fer to its treatment (whether the decision was criticized, of hybrids; in each case I will indicate how this factor is

limited, etc., by the citing case). present in SCALIR's domain, legal information retrieval.

Most of these traditional resources are now available on- Symbolic characteristics of the problem. Some problem
listhou the tWESTLAW3 and LEXIS4 information domains, such as symbolic integration, inherently involveline through theSTLAW an for ISxam omas o the use of discrete representations. In the law, there are
services. A WESTLAW user can, for example, ask to r many such representations, such as the hierarchical taxon-
all cases which have a certain key number headnote, or omy of the law formed by West Publishing's key numbers
all cases which cited a given case. In addition, these sys- used to index cases. A symbolic component in a legaltems support Boolean term searches. However, there are research system allows us to take advantage of the con-

many limitations with systems like these (Blair and Maron, strintemro lowsds t o take advantation.
1985). They are not well suited for the kinds of complex straints provided by the existing representation.
conceptual requests that a human researcher could han- Task involving artifacts. Humans solve many problems
dle, such as "find me all the cases about copyrights on through the use of cognitive arifacLs, artificial devices
computer programs, especially those related to Apple v. (such as an airline pilot's checklist) that enhance cogni-
Franklin." Notions like "about" and "related to" cannot tive abilities (Norman, in press). If we want a computer
be defined exactly and so are are difficult for symtolic sys- system to interact with humans and assist them at exist-
tems to handle. Should a case on video game copyrights ing tasks, that system should be able to use our artifacts.
be retrieved? Other cases involving Apple Computer? For example, we use a certain notation for writing music
Cases cited by Apple? Cases citing it? it is this broader whic'i normally supports the representation of twelve dis-
set of conceptual retrievals that SCALIR is designed to tinct tones. Even though the frequency of sound waves
support. is not inheirently quantized or "symbolic," a computer-

While it is tempting to try to develop the necessary rela- based music composition system would o well to accept
tionships by relying on the associative mechanisms of a and present the conventional notation. Many artifacts are
connectionist network, this approach alone is unlikely a used by lawyers to solve the legal research problem. For
hannetiohit entor tis oreaplech a ist oun ld t example, Shepard's Citations (describel in Section 1) listshandle the entire task. For example, such a system would noolywacsecidacsenqutinbtinht
not easily support logical relations like "overturned-by," not only what cases cited a case in question, but in what

way -- e.g. criticized, questioned, etc. 3urthermore, thenor would it perform well in the real-world domain where labels drawn from Shepard's standardizea set have taken
literally tens of thousands of cases must be considered. on the status of "reserved words," coriving meanings
As will be discussed below, these are some of the rea- beyond (and often different from) their nat iral-language
sons for employing both symbolic as well as associative conerat
mechanisms in SCALIR. counterparts.

A priori knowledge. One of the primary virtues of as-
sociative systems is their ability to learn by experience.

2 Motivating a Hybrid Solution However, if the system designer has a priori knowledge
of the domain, this type of inductive learning may be inap-

There are some general reasons why one might want to prupriate. First, the task may not be well-suited to induc-
use a hybrid solution for a given task. One rr.ght believe tive learning. For example, in his connectionist model of

beam-balance physics, McClelland suggests that the high-
2Shepard's is a registered trademark of McGraw-Hill, Inc. est level of understanding - using the concept of torque
3WESTLAW is a registerLA -ademark of West Publishing to predict which way the beam will fall - cannot be

Co. learned from examples and requires explicitly transferring4LEXIS is a registered trademark of Mead Data Central. knowledge (McClelland, 1989). Second, many learning
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algorithms are often designed to extract previously un- tion when solving their individual tasks.
known regularities from their environment. Thus the rep- An alternative is to convert the representations of each
resentations they develop may not be comprehensible to Anmaltent ito con the r si on of
their users (Belew and Forrest, 1988). Finally, if the rel- component into a common language, or simply use one of
evant features are already known (as is the case with the the original representations for this purpose, reducing the
Shepard's citations mentioned earlier), it makes little sense amount of translation required. A variant of this is for eachto train an associative representation when these ielation- representation to operate on different aspects of the same

toaio n these citete medium. For example, Shastri's variable-binding network
ships could be explicitly embedded in the architecture. (Shastri and Ajjanagadde, 1990) uses phase to represent
Efficiency. Associative systems have had difficulty seal- "Fnibolic" information and amplitude for associative ac-
ing up to large problems. In some cases, there may be tivity. Similarly, SCALIR uses amplitude for activity and
computationally efficient ways to symbolically solve cer- vector dimension (viewed conceptually as "color") for la-
tain sub-parts of the problem. Also, simply decomposing bels. This is explained in more detail in Section 4.2.
the problem may reduce the overall complexity. (This has The credit assignment problem has haunted machine learn-
also been a factor in the growing use of modular connec- The crems an ers: hw hauntemine leart
tionist systems such as the Mfeta-Pi network (Hampshire ing systems for many years: how to determine which part
and Waibel, 1990).) The ,.iformation retrieval domain of the program should be rewarded (punished) when posi-
involves large databases; for example, SCALIR contains tire (negative) feedback is supplied. If a game-playing
over 7500 nodes just to represent approximately 1500 doc- program loses, what parameters should be changed?
uments - the Supreme Court and Federal Appeals Court Which ones were responsible for the loss? The problem
cases for one small area of law. While the system's rules can be largely solved by using a homogeneous representa-

for propagating activity and for learning could be imple- tion and adjusting all "learning parameters" with a single

mented by a pure associative system, it would require an mechanism. This is exactly the approach used in most

order of magnitude more links, which would render it im- connectionist systems; the learning parameters are link
practical for real-time use. weights, and the single mechanism is a learning rule such

as back-propagation. Thus each unit of the system can be
modified in proportion to its contribution to the result.

3 Problems with Hybrids However, hybrid systems are heterogeneous by definition.
In addition to determining, for example, how much to

Hybrid systems face two problems not found (or found change each weight in the connectionist network, one may
need to know how much - or whether - that network

to a lesser extent) in their single-paradigm counterparts, played a role in that particular result. There are several
First, the symbolic and associative components in a hybrid possible approaches to this problem. The simplest is to
system must be able to communicate. Second, if learning restrict !earning to only the associative system. A more
is to be supported, credit must somehow be assigned to powerful but more complex approach is to train the in-
each component. dividual components separately, fix their parameters, and

The communication problem arises because the two then train the combination together. This is similar to
paradigms use different representations. In most connec- the technique used on some modular networks. Unfortu-
tionist implementations of the associative paradigm, th. natel,, it does not work in real-time learning domains such
state of the system is contained in the real-valued acti- as SCALIR's. Finally, the systems can attempt to learn
vations of the units, while the long-term knowledge is simultaneously. Thcugh there is a risk of instability, the
embodied in the connection strengths, which can be ex- s stcm can be damped 1y making the learning parameters
pressed as a weight matrix. In contrast, state information from both components 'compete" for the same resources
in a symbolic system is contained in the positions and As Section 4.3 .xplains, it is essentially this approach
labels of a discrete set of tokens, such as the database used by SCALIR tu azsign credit to its connectionist and
of a production system or the markers in a semantic net- semantic networks.
work. Long-term knowledge is represented as a set of
static structures such as the production system rule base

r the IS-A and other labeled links of the semantic net. 4 The SCALIR System
Associative systems are generally good at statistical infer-
ence which involves the gradual accumulation of evidence
for a solution, while symbolic systems excel at logical in- SCALIR, which stands for "Symbolic and Connectionistference (though not necessarily that of first-order predicate Approach to Legal Information Retrieval," is a hybrid sys-
calculus). tem for assisting legal research about copyright law. When

completed, SCALIR will contain all (approximately 4000)
One solution to the communication problem is to sub- federal court decisions dealing with copyright law, in ad-
divide the problem, delegating one set of tasks to each dition to the relevant statutes. As of this writing, about
component. This approach might be appropriate for cer- 1500 cases were actually installed in the system. The de-
tain tasks, but it restr,,cts the effectiveness of the hybrid, sign of SCALIR was largcl, ,,pired by Belew's Adaptive
the components cannot benefit from each other's informa- InfurmationRetrieval (AIR) s)stem (Bele,, 1986), though
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AIR did not use a hybrid architecture. (Salton, 1968); it also establishes the relative association
strength or "term weight" from document i to term j. TheEach case and statute section is represented by a node following formula is used:

in SCALIR's network. In addition, there are nodes for
terms which occur in the cases and statutes. The nodes Fi ogNDj
are connected by various types of links - some with TWIj =
variable weights, unlabeled, and others with labels and Nk~t(Fik x log(N/DFk))2

constant weights. Thus the different link types form two

interleaved networks, one connectionist and one similar
to a semantic net. The network is unlayered and contains where F,D is the number of occurrences of term j in doc-man reurrnt onnctins.In most cases, a (directed) ument i, DF is the number of documents in which term
many recurrent connections. Imotcsa(drte) j occurs, and N is the total number of documents in thelink from one node to the other is accompanied by a sec- corpus
ond link in the opposite direction, though their weights corpus.
and/or labels are usually not symmetric. Nodes related in The most highly-weighted terms (usually ten to fifteen
a structured, a priori manner (such as one case overturn- of them) are then chosen to be installed as term nodes
ing another) get connected by "symbolic" links known as in the network and linked to the documents that contain
S-links. Nodes related by statistical inference (such as them. In order that SCALIR's propagation scheme (ap-
a case and a term that occurs relatively frequently in it) proximately) conserve the initial amount of activity in-
are connected by connectionist links called C-links. In troduced by a query, all outgoing weights from a node
addition, there is a third class of link which shares some must sum to unity; the term weights are thus normal-
properties with both of the others. ized appropriately to become C-link weights. The inverse

(term-to-document) links are also installed, weighted in-To retrieve documents, a user indicates possible terms or versely proportional to the number of document nodes to
cases in which he or she is interested. For instance, Figure which they are connected. The C-link weights can later1 shows a user interested in retrieving information about bemdfdthogtelariguebysrfebck

the terms "computer" and "software" and the case Apple be modified through the learning rule by user feedback.
v. Franklin.5 The system then propagates activity through S-links represent fixed, a priori knowledge of relation-
the network using a hybrid activation scheme described ships or constraints in the domain. For example, each
below. Nodes whose activity surpasses a certain signifi- case is indexed by West Publishing Co.'s "key numbers"
cance threshold are presented as part of the response set. (described in Section 1) indicating what areas of law the
Since the weights on outgoing links sum to 1.0, and nodes' case touches upon. Since these keys form a hierarchical
activities are "squashed" by a sigmoidal function, the total taxonomy of the law, S-!inks can be constructed to repro-
activity of the system graually decreases. This process duce this hierarchy in a manner similar to IS-A links in a
is hastened by halting activity flow from nodes which fall traditional semantic net. S-links are also used to indicate
below a quiescence threshold. To accommodate the activ- indisputable relationships between cases, such as that case
ity loss, the significance threshold decays to allow nodes A overturned case B on appeal. Finally, S-links are used
related to the query by a set of longer, weaker chains of to indicate dependencies in statutes, as shown in Figure 4.
association to be considered relevant. The propagation Some relationships can be labeled explicitly and reasonedalgorithm is summarized in Figure 2. Smreaonhpscnblaedexiityn rsoe

about logically, but are not indisputable facts. An example
A typical result is shown in Figure 3. At this point, the of this is a citation from one case to another. Did the judge
user can indicate (by selecting items with a mouse) how to in the citing case criticize, limit, or question the holding of
pirsue the search by pruning certain nodes or "xpanding the cited case? These decisions are madie by the editors of
on them. In addition to interpreting the feedb2.k signal as Shepard's Citations, also described in Section 1. Shepard's
a new query, SCALIR uses it as a reward or penalty for a identifies each citation as falihng into a small, fixed set of
reinfocement learning rule. Thus the network is gradually categories. The decision about which category label to
modified to agree with users' relevance judgements. use is a subjective one, made by an editor with limited

time and resources to read the citing case and describe
4.1 Building the Network the judge's intentions.

For these labeled but subjective relationships, SCALIRAs the SCALIR network is constructed, initial weights uses a third type of link, called an H-link (for "hybrid").
and labels are assigned based on a statistical anslysis of Like S-links, H-links bear lp'Jels and can be the subject
the documents and various properties of the domain, of logical inference. But like C-links, they have modifi-
All initial C-links connect case or statute nodes to term able weights. Further.nore, similar Shepard's "treatment
nodes. Each document is analyzed to determine whi,.h phrases" (the categories mentioned above) are represented
words occurring in it are most predictive of its content. as links with the same label, but different weights. For
This is a standard practice in information rctrieval rest..h example, both "harmonized" and "followed" citations are

expressing agreement on the legal issue or rule, though
5Recall that the entire database contains cases on copyright the latter is stronger than the former. Thus SCALIR rep-

law, so the user does not need to specify the term "copyright." resents them as two instances of an H-link labeled "similar
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Figure 1: Querying the system.

Set signif icance-threshold to initial value.
Set ACTIVE-NODES to the set of nodes queried by the user.
Repeat {

Set RESPONSE-SET to a!l nodes in ACT:VE-NCDES with activity above si.gnificance-threshold.
Remove from ACTIVE-NODES ali nodes with activity below quiescence-threshold.
Add neighbors of nodes in ACTIVE-NODES to ACTIVE-NODES.
Update activities of all nodes in ACTIVE-NODES.
Decay signif icance-threshold.

)Until ACTIVE-NODES is empty or RESPONSE-SET reaches maximum size.

Figure 2: SCALIR's retrieval algorithm. Lower-case labels are real- .alued propagation parameters, upper-.ase labels
are sets of nodes.
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Su1.Ma4e Figure 5: H-ybrid activity propagation
(national origin)

tion. Furthermore, since the networks are fully interleaved
(i.e., the different links share the same nodes), the system

Figure 4: Some dependencies in the Copyright Act of must provide a mechanism for communication between
1976. them. This is accomplished by conceptually dividing up

activity into a vector of several components. Each com-
ponent corresponds to activity filtered by a certain type of

rule." In contrast, the citation of a dissenting opinion is S-link. except for one component reserved for the "mis-
orthogonal, and has its own H-link label. cellaneous" activity carried by C-links.

The three classes of links are summarized in Table 1. When activity traverses a C-link, all components of the
activity vector are individually multiplied by the weight

4.2 Hybrid Activity Propagation on the link. When activity traverses an S-link, only the
component which matches the link type is allowed to pass;

A typical connectionist netw c employs spreading ac- the others are set to zero. We can think of the different
tivation, the activity of a noae is the result of repeat- components of activity as different wavelengths (colors)
edly computing a real-valued function of the activity of of light. C-links serve as grey filters, modulating the in-
its neighbors and the weights joining them. Once a node's tensity of all wavelengths. S-links are like colored filters,
activity is computed, it does not matter (for the purposes allowing only light of the right wavelength to pass.
of determining the next state or the output of the system) An example of the two kind.s of propagatton is shown in
which of the infinite possible combinations of weights and Figure 5. The large circles in the figure represent nodes
neighbors' activations was actually present.6  in the SCALIR network; the different arrows represent
In contrast, the marker-passing in a semantic network - different kinds of links. C-links are shown as solid ar-
though also generally termed "spreading activation" - rows, S-links (of various types) as arrows with various
has quite a different character. There may be several dif- shadings. The rows of dots represent the activity compo-
ferent types of inaikers and link labels, and the decision nents tor each node; the single dot on the left hand side
of a node to pass or not pass a marker may be a complex corresponds to "miscellaneous" activity, while the other
logical function of these labels. Some semantic nets also dots are specific types of activity. Suppose the node A
contain provisions to prevent the unbounded spread of ac- at the top of the figure is activated with all colors. Since
tivity; the constant weights on SCALIR's S-links play a the link to node B is a C-link, it passes all of A's colors
similar role. of activation to B, attenuated by the weight on the link.

In contrast, the link to node C is an S-link of type 1; so
Since SCALIR contains both connectionist and symbolic" only the corresponding component of activity gets passed
links, it also must support both types of spreading activa- along. Finally, note that node D gets no activity, since

the type of the link from C to D does not match the type
6We have referred to this property elsewhere (Rose and of activity present at C.

Belew. 1989) as interchangeability.

Since H-links are labeled and support logical inference. they This approach has two immediate benefits. First, and per-
will be treated as a spc;ial .ase of S-inks in the discussion of haps most obviously, it supports both associative (connec-
activity propagation. tionist) retrievals and logical (symbolic) retrievals. Sec-
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LINK TYPE INFERENCE LEARNING INSTANCES
C-link no yes term '- case (word occurrence)term - statute (word occurrence)

any nodes (from feedback)

H-link yes yes case *-- case (Shepard's treatment phrases)
S-link yes no statute statute (structure)

statute ,--statute (cross-reference)
term ,- term (West key number taxonomy)
case - case (Shepard's history)

Table 1: SCALIR's three classes of links.

ond, the logical operations are completely local to indiv id- of the node receiving feedback (as might be suggested
ual nodes. For example, suppose one is interested in only by error-correction rules) does not improve performance.
cases which supported a certain decision. The user could Accordingly, a simplified version of SCALIR's learning
draw a "supported-by" link to a node representing some rule is:
unspecified case. The first node would thus be instructed w = wij + r'fia
to pass activity only along the corresponding vector. Af- where fi is the (binary) feedback given to node i by the
ter activity traversed the first S-link, however, no other user. We are experimenting with various values of 17, on
nodes would need this instruction. Due to the filtering of the order of 0.1.
the S-links, only the desired component of activity would
be present at successive nodes. It is as if all other S- For nodes that do not explicitly receive user feedback, the
links were instantaneously disabled. This feature makes f values are computed by propagating the user's feed-
the system especially amenable to future implementation back signals "back" through the network. "Back" simply
on parallel hardware. means the link directions are reversed; other than that,

feedback propagation uses the same algorithm as activity
4.3 The Hybrid Learning Rule(s) propagation (shown earlier in Figure 2). As with activity

propagation, the fact that the total activity never increases

Typical connectionist systems use either supervised, unsu- (since outgoing weights sum to 1.0), and is attenuated by
pervised, or reinforcement learning. However, as Belew both the squashing function and the quiescence threshold,
notes in his discussion of AIR's learning rule (Belew, guarantees that the system will not get stuck in an infinite
1987), these three approaches do not exhaust the possibil- loop. Restricting the set of active nodes (those which get
ities. AIR "sed what Belew calls a "localized reinforce- to participate in propagation) to just those with "signifi-
ment" .. , in which the reward or penalty is a vector, cant" levels of activity further speeds up the process of
rather than a scalar value. In the information retrieval do- moving to a stable state.
main shared by AIR and SCALIR, relevance judgements There are two final considerations for updating weights.
are made by actual users, whose feedback is then used to First, recall that in order to conserve activity, SCALIR
train the weights. requires that all outgoing weights from a node must sum

Thus SCALIR uses the localized reinforcement ideas from to 1. This means that all weights from a node must be
AIR, but implements them with weight adjustments simi- renormalized whenever any one of them is changed. This
lar to the type used in error-correction rules such as back- also means that C-links and H-links must compete for a
propagation. In a simple error-correction rule, the new share of the total weight, thus addressing the heteroge-
weight w' is computed from the old weight (from node j neous aspect of the credit-assignment problem.
to node i) as follows: Second, since SCALIR contains several types of links,

w j = wij + 7)(ti - ai)aj and nodes have vector-valued activity, we need different
1J learning rules to handle the different classes of links. S-

a, and aj are the activities of nodes i and j, respectively, links have fixed weights, so they actually do not learn
and ti is the "target" f- the correct value that node i should at all. C-links pass all components of activity, so we can
have produced. r7 is a learnipg rate, which is generally replace the scalar-valued activities aj and feedback fi with
kept small in order to avoid "Overshooting" the correct vectors ai and fi to obtain the following rule:
weights. In SCALIR, user feedback is used in lieu of a
target. In other words, when a user says "I liked that case, w~j = wij + rf7fa
give me more like it," the system treats this as "that node H-links, in contrast, each pass only one type of activity.
should have been maximally activated." When a user says Thus they are changed in the following way:
"I didn't like that one, don't show it to me," the system
interprets this as "that node should not have been acti- w'U = wij + i7ff(aj + a )
vated." Early experiments suggest that scaling the weigh v, here the supers,.npt 1, mndi,.ates the "mis-.cllancous," or
adjustment by an amount proportional to the activity a, unfiltered ,omponent of aLtiitvy, while r is the "typed"
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component passed by that link. In words, this rule says to indeed be a consideration, but which approach - hybrid
change the H-link weight in proportion to "postsynaptic" or bingle-paradigm - provides this simplicity depends on
feedback of the correct type and any "presynaptic" activity the phenomenon being studied. The hybrid may still be
that can traverse the link (namely, miscellaneous acti it) appropriate if some of the other conditions from Section 2
and activity matching the link type). obtain. There may for example be explicit constraints on

there is a superficial similarity between the problem which must be represented; embedding these
Although ineis agority eten an underlying associative representation may confoundSCALIR's learning algorithm and back-propagation (BP), the analysis of the system.
it lies only in the idea of "reversing" the propagation of

activity. The differences are more striking. BP works for Finally, one may be interested in a specific modelling task,
layered networks with scalar-valued activity and a sin- in Awhich the components of the connectionist system are
gle link type. BP also approximates gradient descent meant to stand for components or groups of components
to any desired degree, and generally finds error min- in the actual system exhibiting emergent behavior and
ima, though possibly local. SCALIR's learning proce- possessing no explicit symbol-manipulation capabilities.
dure works for unlayered, (potentially) fully recurrent net- (While the elements of the system being modeled are of-
works with vector-valued activity and a multiplicity of link ten neural, they need not be.) We would not be satisfied
types, some symbolic and some connectionist. Further- w ith a model that had an omniscient rule-based control
more, since relevance judgements cannot be made for all mechanism intern ening in the network's behavior. Under
possible future queries, and the set of "outputs" changes these circumstances, the success of the model can be es-
according to the query order, we have no way to mea- tablished only by discarding the hybrid solution in favor
sure a "correct answer," and thus it is unknown whether a of a purely connectionist approach.
global error is being optimized. SCALIR's learning rule The ul
is a heuristic which, based on early tests and previous ex- timate quetor hyr ysms is phthe the
perience with AIR, seems to produce the desired behavior, whole will be greater than the sum of its parts. As we

have seen, the answer is both no and yes. In one sense,
any sufficiently powerful representational system can erru-

5 Discussion and Conclusions late the computations of another, associative systems uan
be trained to duplicate the results of a hybrid. But as

We have seen that there are many factors which may mo- SCALIR demonstrates, the different strengths of the two
tivate the use of a hybrid system, and that the difficulties paradigms can be combined effectively, resulting in a sys-
introduced by hybridization can be overcome. SCALIR, tem with behavioral properties different from and betterintrducd byhybidiztio ca be verome.SCAIR, than a system constructed using only one approach.
though just one example, illustrates both of these points.
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Abstract Hero 2000 that are relevant to this paper are the fact
that it is autonomous and mobile, its primary sense is

The Connectionist Navigational Map (CNM) sonar range-fin.,ag, and its spatial environment is a
is a parallel distributed processing architec- floor of research offices in a modern building. It is this
ture for the learning and use of robot spa- experimental situation that is implicit in the follow-
tial maps. It is shown here how a robot can, ing discussion and illustrating examples- For instance,
using a recurrent network (the CNM predic- the notion of "sensations" in the case of Hero can be
he map), learn a model of its environment taken to be a vector of n numbers, the first indicat-
that allows it to predict what sensations it ing, roughly, the distance to the closest surface directly
would have if it were to move in a partic- ahead, the next number indicating the distance to the
ular way. It is shown how this predictive closest surface at a heading of L- radians to the right
ability can be used (via the CNM orienting of front, etc. Also, it is important to the proper func-
system) to enable the robot to determine its tioning of the CNM that the sensations to which the
current location. This ability, in turn, can robot attends are static, i.e., the sensation vector for
be used, when given a desired sensation, to a given location in the world is cunstant.
generate sequences of goal states that pro- There are three main components of the CNM system.
vide a route to a place with the desired sen-
sory properties. This sequence is given to a the forward model, or predictive map;
the CNM's inverse model, which in turn gen-
erates a sequence of actions that effects the e the ability to determine to which place on the map
desired state transitions, thus providing a a particular sensation might correspond, or ori-
sort of "content-addressable" planning capa- enting system ;
bility. Finally, the theoretical motivation be-
hind this work is discussed. * the ability to generate the actions that will reach

a desired state, which is provided by the inverse
model.

1 INTRODUCTION Each of these components will be discussed in turn.

The Connectionist Navigational Map (CNM) is a sys-
tem being developed to impart to an autonomous 2 THE PREDICTIVE MAP
robot the ability to map its spatial environment and
use this map to navigate in that environment. The pri- One can view the process of robot map construction
mary theoretical motivation for constructing the sys- as the learning of a model of the environment, such
tern is to under.-'and how a robot can make the the that once the model is learned, the robot can use it to
transition from pre-conceptual to conceptual represen- predict what sensations would occur if it moved in a
tations of space.'

The CNM -' being designed with a lleathkit Hero 2000 2The usage of "orienting system" here should not be
robot as the intended testbed. The features of the confused with the usage of "orienting subsystem" in Car-

penter and Grossberg's various papers on Adaptive Reso-
'Also affiliated with Xerox PARC Systems Sciences nance Theory, e.g. (Carpenter and Grossberg '87). "Ori-

Lab, 3333 Coyote IHill Road, Palo Alto, CA 94304. Email. enting" is used here in a way similar to the way one does
chrisleylcsli.stanford.edu when talking of orienting oneself using a field map and

'See section 6. compass, or the north star.
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particular ego-centrically specified manner (e.g "rotate Predicted sensations
I radians to the right", "move forward 10 feet"). 3

Of course, this will require the agent to have some D
kind of representation of its current location, since, -
in general, the mapping from actions to sensations
is dependent on where one is in the world. That is, 10000001
the mapping sensations x actions i-+ sensations is Predicted 4 N T
one-to-many, since more than one place can have the statevector
same sensory properties. Thus, the spatial environ-
ment, and therefore a model of it, can be seen instead
as a function from current state and current action [ 00 0

to predicted sensations. The input consists of a state State vector Action vector

vector, corresponding to the current location I of the
robot, and a vector representing the move m being Figure 1: A PDP architecture for learning a predic-
made. The output of the network is a vector that is tive mapping (states x actions F-+ sensations) by corn-
supposed to be equal to the sensation vector the robot posing a topoiogical mapping T (states x actions
would receive from its senses if it were actually at the states) with a descriptive mapping D (states i-,
place that is reached by making the move m at location sensations).
1.

2.1 TOPOLOGICAL AND DESCRIPTIVE
MAPPINGS for a predictive map. The activity pattern on the hid-

There is more structure to space than the mapping den units at time t is sent back to become the state

states x actions " sensations indicates. Specifically, representation in the input at time t + Ls This im-

location and action determine a new location, which poses a relation on the patterns representing states, so

itself determines the sensations of the robot. Thus, it that they become meaningful and useful. For exam-

might be easier to learn a model if its structure reflects ple, if the robot considers moving forward and then

this regularity of the spatial environment. Consider turning right, it can use the map to predict what sen-

the PDP architecture depicted in figure 1. sations it would have after those moves by calculating
D(T(T(l, forward), right)), where I is a state vector

As said before, the input consists of a state vector cor iding to the robot's location before the moves,
and an action vector, the output is a vector that is and ,L T are the mappings indicated in figure 1. It
supposed to be equal to the sensation vector the robot is the r.. -rent connection in the network that allows
would receive from its senses if it were at the place that this composition of the T mapping.
is reached by making the move at the location repre-
sented by the state vector. The network is a composi- The ,--pping also becomes learnable, since all neces-
tion of two mappings. a T mapping and a D mapping sary inputs and outputs are provided or can be calcu-

(explained below). The recurrence between the hid- lated.
den layer4 and the state vector portion of the input Learning a model of the environment, then, can be
layer allows this network to be a viable architecture decomposed into learning two mappings: a topological

3It should be made clear at the outset what is meant by mapping T from states' and actions to states, and a

a 'map". "Map" is not taken to imply any kind of visual or descriptive mapping D from states to sensations.
imagistic reoresentation. Rather, a map is any data struc-
ture that asso'ciates representations with actual locations,
and with othet representations that indicate the proper-
ties that that redresented location has. Furthermore, the
location represent tions are related to each other in a way a hidden layer between the input and output layers of the
that indicates what kind of motion would be required to descriptive mapping, D.
get from one to the other. The point is that there isn't 'Such a use of recurrence has been suggestcd by (Jor-
much weight being put on the word "map" itself, and if dan '86) and (Elman '88). A notable difference is that Jor-
one prefers, one can jist mentally replace it with adescrip- dan's network has recurrent links from the outputs, while
tive/topological data structure" The reason why this kind Elman's network has recurrent links from the hidden units,
of data structure should be of any interest is brought out as does the architecture in figure 1.
in section 2.1. 61 will hereafter use "state instead of 'location" not

41n all discussions of network architectures in this pa- only because the network will have to represent orienta-
per, I suppress any mention of a hidden layer unless the tions as well as locations, but because I want to allow ac-
activation patterns of that layer are used somewhere else tivity patterns in the network to be interpreted in ways
in the network. For example, it is consistent with figure that do not involve the objective, absolute places that the
1 (and is presumed by my discussion) that there may be word "location" connotes.
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S M
2.2 A PRIORI AND EMPIRICAL

TOPOLOGIES 4 -NM
There are two approaches to having a mapping net-
work learn a model of the environment. In one ap-
proach, the topological mapping is assumed to be A 3 Q P M
known a priori, and the network only has to learn the
descriptive mapping. The structure of space is known; N h
all that remains to construct the map is to "fill it in." 2 M
In the second approach, no such a priori knowledge
is assumed; the network must learn both mappings.
Although there are many reasons why such a "tab- 1 R P
ula rasa" strategy would be more appropriate for the
purposes of psychological modeling and philosophical
understanding, one should not underestimate the ad- ' I .
vantages of an a priori topology for the purposes of 1 2 3 4

engineering a working navigational system. The "em-
pirical topology" that would result from learning both
mappings would most likely fail to guarantee such es- Figure 2. A schematic spatial environment used to il-
sential properties as idempotency under the null ac- lustrate the holis'ic natdre of the actitity pattern
tion, invertibility, and composability, in the mappings tuorld state referential relation. Capital letters indi-
it produces. For example, it would be possible for a cate the (idealized) sonar sensation at that location.
network to learn a topology where the following are
true:

cally, in learning a mapping F : X 1- Y, the net-
T(z, null) x; work is presented with a number of samples, (zi, y),
T(x,a)=ybutT(y,a-1 )-X; where xi E X, yi E Y, and F(z) = yi. This
T(x,a) = y and T(y,b) = z, leaves much of the learning process unspecified (e.g.,

but T(z, b o a) 0 z; whether the samples are presented simultaneously, al-

where a- ' is the inverse of an action (moving back 2 lowing epochal learning, or serially, requiring learning
feet as opposed to moving forward 2 feet), and b o a is on a particular sample before the next sample can be
an action that is equivalent to performing a, then b. examined), thus allowing for several distinct possible

learning strategies. Hlowever, before discussing these
Thus, PDP learning methods might produce topol.- different strategies, an observation needs to be made
gies that can play an important role in explaining about the holistic nature of maps.
navigation behavior in animals, and in understanding
concept acquisition, 7 but it is hard to see how they 2.3.1 Maps are holistic
could produce a topological mapping that would be as
accurate and general as a hand-crafted topology that The place that a particular symbol on a conventional
had these three desirable properties, inter alia, built- road map represents is not an intrinsic property of the
in- This is not to say that such topologies could not be symbol, but is determined by where the symbol is in
learned; but the development of such general topolo- some reference frame: how the symbol is spatially re-
gies from experience alone, while theoretically of great lated to other symbols. Similarly, which world state
import, and even potentially superior in terms of sheer a particular CNM activity pattern represents is not
performance, is not a prerequisite for a working sys- determined merely by the intrinsic properties of that
tem. pattern. or even by that pattern and the sensory prop-

erties assigned to it under the descriptive mapping;
2.3 LEARNING THE TOPOLOGICAL rather, a pattern's referent is also determined by its

AND DESCRIPTIVE MAPPINGS connections, under the topological mapping, to other
activity patterns and their sensory associations given

The best strategy for learning the predictive map will by the descriptive mapping.
depend on which of the two kinds of topologies, a For example, consider the spatial environment de-
priori and empirical, is being used. All the learning picted in figure 2.
strategies considered in this paper assume -he kind
of learning situations available to back-propagation of Note that in this toq %",rld there are t.L, qualitatiiclh
error in multi-layer, feed-forward networks. Specifi- identical places, (2,3) and (4, 1), each nith the ideal-

ized sonar sensation P. Now suppose that there hap-
?An elaboration of such philosophical benefits can be pen to be two activitk patterns in the CNM, xZo and

found in section 6. X2 , that, when input to the descriptive mapping, yield
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P. That is: tional relationship between an activity pattern and a

D(zio) = D(z 2) = P world state depends on both the topological and the
descriptive mappings, the pattern that corresponds to

It is impossible to tell from this information alone a particular world state will change as the two map-
which of the two places each pattern represents. Thus pings in the network change. This means that the
it would not be possible to determine what input pat- input/output mapping to be learned will be dynamic.
tern to give to the network in order for it to learn a The network'- learning task will be a "moving target"
mapping involving the place (2,3). situation6: the desired output for a given input will

But suppose that the topological mapping had the fol- change as the weights of the network, and hence the

lowing properties: mappings they realize, evolve.

T(xio,a) =X3; Several standard approaches to collecting the in-
D(x3) = Q; put/output pairs for the learning process would be of
T(x2, a) = Z4; little use then. For example one could not just select
D(Z4 ) = R; the samples on the basis of the world states one wants

the network to learn about. It might be easy enough to
where a is an action that results in the robot moving get the desired output, but what should the state vec-
to the west. tor input be? One would have to come up with some

In this case, there would be an indication that x1o rep- way of determining, given a network and its current

resents (2,3) and X2 represents (4, 1): the topological weights, what pattern represents a particular location.

relations between patterns as defined by T helps de- We have already seen that this procedure would be de-
termine the referents of the patterns themselves. But pendent on the state of the entire network, and that

note that the four properties above do not conclusively the topological evidence can be contradictory. It is

determine the reference of x1o and X2. the relation of very likely, then that the computational cost of the

z10 and X2 to other states in the CNM might indi- procedure would be prohibitively high. Furthermore,
cate just the opposite, with the abo-e mappings being it would reqiire some teacher to actually choose and

a local error. For example, we might have, for the collect this data.
north-bound action f6: An alternative strategy is to let the robot generate

T(xi,fl) = zi+1 for 10 < i < 14; the samples itself by moving through the environment.
D(i) = if for 10 < i Z 14; That is, make the sampls causally and temporally
T(x,, Pl) = xl; related to their predecessors and successors. The robot
D(Zx) = N; starts with an arbitrary state vector and makes some

move. The desired output is the sensations it receives
which would indicate just the opposite: that 12 rep- at the location reached by the move. Thus, the first
resents (2,3) and x1o represents (4, 1); the evidence training sample is created. Another action is chosen.
for this conclusion would be even stronger if Q and and it, along with state vector on the hidden units,
R were very similar. Thus, not only do the referen- would become the input for the next sample, etc.
tial properties of states depend on both the topological
and descriptive mappings, but reference also depends Note that this is not mcrely a matter of incorporating
on the entire mappings. context. It is common, for example, in training net-

works for speech recognition or text-to-speech tasks
2.3.2 Empirical topologies: learning both to present to the network the samples as they are en-

mappings at once countered in the environment, as this facilitates incor-
porating context effects. The network gets its input

As mentioned above, in the standard approach to get- from a %indow on the input stream, and the window
ting a PDP network to learn a mapping, a database is moved down the input stream to provide another
of input/output pairs for which the mapping holds is input. The actual order of the windowed input I irrel-
required. For the CX.M predictive map, this would re- -eant, however. the window could be placed anywhere
quire a set of pairs where each pair compriLses a state on the stream to ,-nerate a usful input sample. But
vector and an action vector as input, and a sensation this assumes an input stream that exists independently
vector as the desired output. of the netwcrk's states, whereas the strategy of using

environment-determined inputs for the CNM is in or-tHowever, the spatial world does not provide an agent der to generate such a stream. Nor is the importance

with explicit information as to which state it is in. der nerate to stea!.ysiri s th at

A mapping network which does not assume an a of ordering related to superficially similar schemes that

ori correspondence between states of the network and -Both (Mikkulainen and Dyer '88) and (Chalmers '90)
states of the world will have to generate its own system explicitly mention the "moving target" nature of their net-
of representation of world states. Thus, the point just works' learning situation. In both cases, the networks were
made about the holism of maps is relevant in choosing successful in developing an appropriate representational
a learning strategy. Since, as we saw, the representa- system.
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improve learning times, accuracy, or convergence, fixed topology might be unacceptable:

This iterative means of actually generating the train- Error due to noise, failure, or unforesee-
ing samples does not mean that learning has to be able events. This isn't just a problem for fixed
serial. One could, after collecting enough data, use an topologies: any means of predicting future states
epochal learning strategy, in which all weight changes from the current one will be faced with the uncer-
from each sample are calculated before any are made. tainty and error that comes from being embedded
But this would necessitate either a human assistant or in a complex physical world. This is addressed in
prior navigation routines in order to generate actions the CNM by the orienting system, which refines
for the robot while the data is being collected, since the robot's estimate of its current location based
the CNM would not be able to be used for navigation the r ene e te f ios current sed
until after the data for the epochal learning had been on the coher enw the robot's current sen-
collected and some learning had taken place. sations and the sensory expectations provided by

the predictive map. See section 3.
In a non-epochal system, the weights are changed after e S tti error. General orienting and local-
each sample presentation. (Jordan '90) has shown that izatemiti e neras ri enti nd ,it i posibe insuc caes t lern he ivere mdel ization abilities are necessary, as just mentioned,
it is possible in such cases to learn the inverse model but other, systematic sources of error could beat the same time as the forward model. In the case h nl d wt i p e eh d nod rt r v n
of CNM, this means that navigational abilities should handled with simpler methods in order to prevent
be able to be learned at the same time as the predic- could be computationally expensive or unreliable.
tive map. If so, the robot's navigational system could could be al e o rele.
choose the actions to be taken, even at the very first Specifically, the CNM should be able to reflect
stages of learning, as Jordan's systems do. Thus, no but thert e wpockets of topological regularity in
human teacher would be required; the system would b heere pce o topolog
be capable of generating all of its inputs and desired a heterogeneous space. For example, the topolog-
outputs.9  ical mapping should be able to take into account

that the kind of state transition that a move m
effects in a room with thick carpeting is differ-

2.3.3 Learning with a priori topologies ent from the transition effected by m in a tiled
corridor, that floors can be sloped in some areas,

There are two kinds of a priori topology: fixed and etc. These deviations from a uniform topological
variable. In a fixed topology, the weights that im- mapping are systematic enough that they could
plement the topological mapping are frozen 10 , with be addressed directly by allowing slight modifi-
learning in the CNM only changing the weights that cations to the topological mapping, rather than
implement the descriptive mapping; as said before, all relying exclusively on orienting strategies.
that remains to construct the map is to "fill it in". A
variable a priori topology, on the other hand, initial- Limited resources. A network has a finite
izes the topological mapping to some idcal state, but quantity of representational resources, which it
allows subsequent modification and refinement on the must distribute over space, which is infinitely
basis of experience, dense. A fixed a priori topology will have a distri-

bution of representational states over world states
To learn a predictive map with a fixed a priori topol- that will be independent of the qualitative char-
ogy, one would initialize the robot's state vector to acter of those world states. For example, the
the one that corresponds, in the a priori topology, to amount of actual distance corresponding to the
the initial location of the robot. Then, the robot would minimal effective difference between state vectors
chose a move to make. The topology is again consulted will most likely be constant in an a priori fixed
to yield the state vector that corresponds to the loca- topology. Even if it isn't constant, it certainly
tion that robot would occupy if it were to make that won't vary in a way related to the presence of ob-
move. This vector is used as input to the descriptive stacles, doors, walls, etc. in the environment. A
mapping, which yields a predicted sensation as output. more optimal use of the limited representational
The robot makes the move, and uses the difference be- resources of a network would be to allow, e.g., a
tween what it actually observes and what it expected sparse representation of regions in which there are
to observe as an error signal for weight change in the few or no obstacles, while regions around doors,
descriptive mapping network. or areas cluttered with permanent furniture are

However, there are several reasons why an a pnri, modeled in finer detail, with a smaller grain size.
This requires an adaptive, variable topology.

9 How the inverse model is to be learned and used for
navigation is discussed in sections 4 and 5. The point is that the only major drawback of an em-

"°Actually, in the case of a fixed topology, there seems to pirical topology was that it seemed unlikely that a
be no practical reason for having the topological mapping fully general topology could be learned through the
implemented in a PDP network at all. weak method of error minimization. However, if the
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timations drift away from the actual location
quickly.

The orienting system, then, is a system that, given
6.. 0. the robot's movement history, the predictive map, and

recent sensory information, attempts to the find the
activation pattern that corresponds to the current lo-
cation.

3.1 STATE ESTIMATION: GRADIENT
100. DESCENT IN ACTIVATION SPACE

Suppose the robot has constructed an acceptable, but
not necessarily highly accurate, predictive map for a
given region. But suppose, for some reason, the robot
is in a different world state (Pactual) than the one that

Figure 3: An illustration of the orienting system. A corresponds to the current state vector (x). Then itbird's-eye view of a two dimensional world is displayed. is no surprise that D(z) 0 S(pactuai), where S is the

Rectilinear solid lines indicate walls. The robot is ac- function from world states to the sensations they cause
tually at location A, from whence it receives its sen- in the robot. Thus, there is error in the CNM: there
sory data (radial lines). Its state vector initially cor- is a difference between what is expected and what is
responds to location B. The state vector is iteratively observed.
modified so as to reduce the difference between ex- Formally, error in a network is reduced or eliminated
pected and actual sensations. The trajectory ofsucces- by modifying the weights of that network. But we are
sive state modifications is shown, with the final fixed- assuming that the map is more or less correct. Ex hy-
point, C, being a rather good estimate of the actual lo- pothes:, the source of error in this robot's CNM is its
cation. (The orientation of the robot, which remained erroneous state estimation, not its predictive map as a
constant throughout all simulations described in this whole. The way to reduce error becomes clear, then.
paper, is indicated by the horizontal bar extending use the error to modify the erroneous state vector, not
from the robot's circular image.) the weights. Back-propagate the error signal from the

output of the descriptive mapping network to the in-
put, and change the activation patterns of the input

topological network is given a very good initial state, units in proportion to the negative gradient of the er-
then perhaps one can have both a general and adap- ror. Propagate this new input through the descriptive
tive topology. Of course, simply allowing the weights mapping again. If the output is still substantially dif-
of a "correct" topological netv .- k to be modified does ferent from what is observed, then back-propagate this
not guarantee that it will succ6: .fully compensate for error again, and so on.11

regular distortions in space, nor that it will optimally
distribute its representational resources. Nor does it A state vector x, is a fixed-point of this iterative pro-
guarantee that the generality of the initial topological cess if D(z,) = S(pactuai2 . That is, the network will,
mapping can be maintained. Rather, these possibili- if the process converges, 2 find a state vector that is
ties will have to be explored in future research, consistent with the current sensory data. This process

is depicted in figure 3.

3 THE ORIENTING SYSTEM

1"The idea of using back-propagation to alter activations
Two observations explain the need for an orienting sys- instead of weights has been considered before. (Williams
tem: '86) introduced the idea; (Mikkulainen and Dyer '88) used

it to generate better internal representations; (Linden and
* Most means of using a map for navigation require Kindermann '89) and (Kindermann and Linden '90) pro-

the robot to know which map representation (a vide good analyses of the proccdure, and apply it to pattern
position on the paper in the case of a standard completion problems, as well as other uses, (Chen, Belew,
map; a state vector in the case of the CNM) cor- and Salomon '90) apply the idea to finding fixed points in
responds to the current world state (location of iterative associative memories.
the robot). 12A rigorous study of the convergence properties of the

orienting system has not yet been performed, but infor-
* Even with the best topological models and most mally tested cases generally converge, even with a poor

accurate sensors, odometry-based location es- predictive map.
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3.2 SIMULATION DETAILS

To generate behavior like that illustrated in figure 3,
a 2D world, with walls and a robot, was simulated.
The sonar sensations of the robot at any given time
were calculated by finding the distance to the nearest
wall at each of the angles L-; k = 1, 2,... 8 from the
current orientation of the robot. Each component of
the input vector was one of these distances, or 100,.
whichever was less (to reflect the range limitations of
sonar). C6
A fixed a priori topology was used for the sake of sim-
plicity and experimental control, so the robot only
had to learn the descriptive mapping. Each sample A56.
in the training data consisted of an activation vector -

corresponding to a location, and the sensory input the
robot had at that location. This data was collected
by moving the robot around the environment, peri- Figure 4: An illustration of how the simple orienting
odically storing the current location coordinates and system is dependent on initial conditions. The system
the current sensations (distances at the eight angles)- converges on the location (C), closest to the initial
The coordinates were scaled to be within the range guess. that best matches the actual sensory data. The
0.. 100. Each scaled coordinate and (pre-scaled) dis- robot is roughly in the same actual location (A) as it
tance was then translated into a four-unit activation was in figure 3, but since it has a different initial guess
vector using a representation scheme roughly based on (B) as to where it is, the orienting system produces a
one mentioned in (Hancock '88). A simplified descrip- different (and in some sense incorrect) estimate of the
tion of the translation procedure is: if the value to current location. This ambiguity can be overcome, if
be coded is 0,33,66, or 100, then all the units have 0 desired, by chaining constraints (see text).
activation except for the unit 1,2,3 or 4, respectively,
which has an activation of 1; if the value to be encoded
is 0.25 of the way between 33 and 66 (i.e., 41.25), then a scale factor of 0.2, and then added to the activa-
unit 2 has an activation of 0.75 and unit 3 has an tion of each input unit. Activation values less than 0
activation of 0.25, etc. These four-unit vectors were or greater than 1 were truncated tc 0 and 1, respec-
composed to make the appropriate input and output tively. This process was iterated u.4 a fixed-point was
vectors (i.e., the input vector was composed of two reached. Each change of input activation corresponds
four-unit vectors, one for each 2D coordinate, while to a revision of the network's estimate of the robot's
the output vector had 32 units, 4 units for each of the location, and is depicted in figure 3 by the chain-like
8 sensed distances). Roughly 200 samples were col- succession of robot images.
lected in this manner. The absolute orientation of the
robot was kept constant. 3.3 OVERCOMING AMBIGUITY:

The network was trained on this data, using Scott CHAINING CONSTRAINTS
Fahlman's Quickprop algorithm (Fahlman '88), and
his Lisp implementation of this algorithm. The net- Of course, since any state vector x, for which D(x,) =
work had 8 hidden units, and converged to within 1% S(pa,,tia) is a fixed-point of the orienting by'.em, there
of its final error within 500 trials, is no guarantee that the state converged to corresponds

to Pactual. Rather, the orienting system will (mostAfter convergence, the behavior displayed in figure 3 likely) converge to the state vector, closest to the ini-
was generated as follows. The robot was placed at the tial state, for which D(x) = S(p.,uag). See figure

location A, and its current location coordinates were 4, which as p sing the simulatioud

encoded into an input vector via the process described 4, which was produced using the simulation just de-

above. This input was forward-propagated through scribed for figure 3.

the network to produce an output vector, o. This was Note that even though this orientation scheme is sub-
compared to the actual sensations the robot was re- ceptible to local minima, this does not mean that it
ceiving, s, to yield an error signal 2(s _o)2. This error can't be useful in navigation. For example, odome-
was back-propagated in the normal manner (Rumel- ter drift is a constant problem, but it. beldom happens
hart, Iinton, and Williams '86). The error signal at that a robot's estimate is so wrong that the orienting
each input unit was normalized by dividing it by the system would converge to the wrong loation. Thus,
number of weights from which the unit received an er- even the "nearest-neighbor" orienting sybtein just de-
ror signal. This error value was then multiplied by scribed would be of use mvhencver the odumetcr drift
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is bad enough to make corrections based on the pre-
dictive map to be of use (i.e., whenever the odometer ASI AS2
drift is greater than the relatively high margin of er-
ror of the predictive map), but not so bad that the E
robot could drift into another sensory "well" between
consultations of the orienting system.

Furthermore, the final state vector is not (necessarily) Psi P2 PS3

the closest in actual space, but in activation space. D D D
Thus, if the network uses a state vector space of a di- sv' ST SV3
mensionality higher than actual space, and it uses an
empirical (or at least variable) topology, it might be
able to construct the mapping between state vectors
and world states to be such that minimizing distance
in activation space would correspond to some interest- T P--- TT
ing trajectory in real space. For example, the orient-
ing system might converge to a state vector for which M3
D(x) = S(pa.tual), but that also has some higher-order
similarity to the initial state, such as "being in a room
with one exit", rather than being merely the closest Figure 5: Using the method of chaining constraints in
in a raw spatial sense. Such possibilities are suggested order to find the state vector that corresponds to the
by the analysis in (Servan-Schreiber, Cleeremans, and current world state. The modification to a state vector
McClelland '89) of the internal representations of a is determined not only by what error it yields under the
network that !earns a finite state grammar, and war- descriptive mapping, but also by the error produced
rant further exploration, under the descriptive mapping by state vectors that

follow and depend upon it. SV = state vectors; PSV
These qualifications aside, it is nevertheless in general = predicted state vectors; AS = actual sensations; PS
desirable to have an orientation system that will work = predicted sensations; M = moves; D = descriptive
even when the initial location estimate is very poor, mappings; T = topological mappings; E = sources of
and when the state vector topologies are of little use. error.
In such a case, the orienting system can operate by
chaining constraints.

To chain constraints for orienting, a cascade structure Simulations examining this more robust means of ori-
like the one in figure 5 is used. All D and T mappings enting are currently underway.
are copies of the descriptive and topological mappings,
previously learned. SVI is initialized to the initial state
estimate, and the current sensations are stored at AS 1 . 4 THE INVERSE MODEL
All other values are as yet undetermined.

The basic orienting process occurs between SVI and At least part of the task of navigation is this: given
AS,: SV is modified until PSI matches AS,. Then where I am and where I want to be, how do I get there?
a move is made, and the activation pattern for this In the case of the CNM, this might correspond to the
move is imposed on Ml1 . SV and All are propagated robot being given two state vectors, a and b, with a
to PSV2 , and SV2 is initialized to PSV2 . The move at representing its current location and b representing its
A is made. desired location, and the task being to come uj, with

The sensations after the move are stored at AS 2 , and a move or set of moves that isil ta't Lhe robot from
the orienting process occurs between SV_, and AS2. If R(a) to R(b), where R(z) is the world state ., wiich
the first orienting process yielded an incorrect guess as x refers.
to the location before the move, then there will most Of course, it would be very unlikely that this problem
likely be a discrepancy between PSV2 and Sl11. This could be solved in general by a simple mechanism, for
is a source of error that can be back-propagated to the states that are arbitrarily distant from each other, sep-
original SVI, which is changed accordingly, and the arated by arbitrary obstacles. Rather, a simple mach-
entire process repeats from the beginning. Of course, anism can only provide moves that make transitions
one move may not be enough to disambiguate, or the between relatively local states, and it must be up to
initial guess might have been correct. In such a case, some other system to find the sequence of states to be
the process is extended to SV3, and so on. In order traversed Such a system will be discussed in the next
to prevent memory overflow, older states. moves, and section; for now we will consider how the CNM couldsensation can nbw forgottnenr.o te NMcol
sensations can be forgotten. compute the function P : states x states i-* actions

for nearby states.
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4.1 DERIVING THE INVERSE MODEL the sensory information also 2erv .s as the state infor-
FROM THE PREDICTIVE MAP mation. Neverthless. his analysis is appropriate as

long as care is taken to remember these discrepancies.
There are several ways a robot could use the predictive ln scr stknt eebrteedsrpnis
map to compute the function P: One idea of how to learn art inverse model is to try to

learn it directly, by training a network on input/output

A priori solutions. Any CNM with an a prz- pairs of the form (a, b)/m. In Jordan's framework, the
on topological mapping might just as well have robot could generate these training samples by actu-
an a priori inverse topological mapping. For in- ally performing an action in the world and observ-
stance, if the a prtori mapping used the Cartesian ing what states result. The initial and final state are
coordinate system to represent states, and had as- used as the input, the action that led from one to the
sociated with each move a corresponding vector, other is the desired output. But, as pointed out be-
(Ax, Ay), that indicated the change of state that fore, in the case of spatial mapping the state vector
action produces, then it should be trivial to also corresponding to a particular location is not directly
have the inverse association, from the difference observable, so the best a robot could do would be to
between the actual and desired state, to a move generate the training samples by inputting a state a
that makes that transition. 13  and a move m to the forward topological mapping (T),to produce 'a, T(a, m))/m as a training sample.

" Heuristic search. The robot could input a into t p m
the map, and test, for various moves m, whether Jordan provided three reasox.s for rejecting this
T(a, m) = b. If not, another m is tried. Iowever, method:
it is unclear what means of sampling the space
of moves (other than obvious heuristics such as 9 One-to-many. Since there is more than one way
"If you have just tried move m, don't try rn- ") to move from one state to another, the training
would make a feasible search strategy. data for a direct inverse model is potentially one-

to-many. Back-propagation handles one-to-many
* Gradient descent in activation space. It a training situations by averaging the desired out-

manner similar to the mechanism proposed for puts, which in general will not be a meaning-
the orienting system, the inverse model could be ful solution. This might be able to be avoided
computed by inputting the a and an initial move by restricting the set of actions being considered
"guess" rn to the mappingT. The error T(a, m)-b in forming the inverse model. For example, one
is back-propagated to the input units, and the might want to restrict the possible state trani-
move vector is changed so as to effect a gradient tions learned to be those that can be achieved by
descent reduction of error.14  a simple action: motion in a straight line for some

small distance, or rotation clockwise or counter-Although this last idea seems very promising, and is clockwise through less than r radians. This would
currently under investigation,1 the possibility of actu- make the states x actions i-* states mapping
ally learning the inverse model directly (as opposed to one-to-one, so its inverse, tie states x staies
being given it, or deriving it from the forward model) actions mapping, would be one-to-one as well.should be considered.

s Not goal-directed. Direct inverse modeling

4.2 LEARNING THE INVERSE MODEL samples action space to generate its training sam-
ples, and, at least in the cae of Jo. dan's ap-

(Jordan '90) discusses how a network might learn an plications, using this method does not guarantee
inverse model similar to the kind we are considering, that the network will learn the mapping for the

One major difference is th.t. Jordan assumes that the "desired" inputs (state vector:;) in which one is
state information is availabk_-, or in other wo-ls, that interested. (However, it is unclear whether tie

proper "goal" for the CNIN inverse model is to
30[fccurse, such a topolrgs- will haee all the problems of learn about specific desired states or actions in

inflex.ility mentioned beijre; ?- variable. a prior: inverne general.)
topology i~ght overc me --cme of ise pioblems. The • No direct connection to the world. Jordan
learning involved in such a topology will be similar to thatin a em iri al t~ ol gyse' secion~ iem~ s, Aritlyw arns about using thle netw ork's forward m odcl asin a n e m p iric a l to p o lo g y ; s - s e c tio n 4 .2 .a m e n of g e r t g t ai ng d a . I i s u c

"Although gradient desrmi (Ithe thltd ilem is, ,rictly a means of generating training data. It is muche
speaking, a form of heuristic seich (the se.cor, , I better to use the world itself when one can. The
mean to make a distinctioi .here between heuristicz on the problem is that the world does not directly pro-
(conceptual) level of actions (heurihtic searchl and those vide the state information that is needed to gener-
on the (non-conceptual) level of act.vat.:o (gr ad;enL de- ate the training data, so the network must rely on
scent). For a discussion of the concepiudlnon-conceptuai its own predictions of what state will result (but
distinction, see section 7 and (Cutis;es '90). see below).

"%This idea is also being inventgated by others; see
(Thrun, M61ler, and Linden '90). Jordan proposes instead a means of indirect inverse
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modeling, or forward modeling. The idea is to compose place that matches the current sensory data. This es-
the inverse (T - ') and forward (T) mappings,' 6 and timate, b, is used as a training output (via the error
learn an identity mapping across this composition. A term b - b) for T o T with the input b. Thus, the
desired state vector b and current state vector a is network's model, D o T is involved in the generation
input to T - ', which yields an action vector m. In the of the training output, but so is the actual world, in
cases that Jordan is considering the error T(a, rn) - b the form of S(pactuat).
is ignored; rather, the action m is executed and the
state vector b" is obtained directly from the world via
the senses. The error b* - b is back-propagated though 5 NAVIGATION
the ToT - 1 composition, but only the weights in T
are modified. The purpose of having an inverse model is that it can
In this manner, two of the above limitations of the assist the robot in navigating its environment. As
direct inverse approach have been addressed. By com- pointed out in the previous section, the inverse model
posing the T and T mappings, the inverse model is can only be expected to generate actions for relatively
forced to converge to a particular inverse solution, not close state transitions. In order to be of use, the in-
plagued by the one-to-many problem. Also, forward verse model must be given an appropriate sequence of
modeling is goal-directed in Jordan's sense, since the states from some other system. This section looks at a
input to the system is a desired state (but again, it few ways that such sequences could be generated and
is unclear whether this is an important constraint for used.
the CNM inverse model).

However, for the spatial map learning tasks relevant to 5.1 STATE-BASED NAVIGATION
the CNM, an unmodified forward modeling approach
remains susceptible to the third criticism mentioned State-based navigation takes as input an ordered se-
above: it is not directly connectee the world. There quence of N state vectors si and generates from them
is no immediate way to observe what the actual world an ordered sequence of moves mi such that after exe-
state is after making a move, so there is no b* available. cuting th( nth m, the robot will be in the world state
Thus, the network is forced to use its own prediction, R(s,,) (or at least guarantees that after the execution
b, as a training output, a method which Jordan warns of all of the mi, the agent will be in SN).
us against. Modifications need to be made if the CNM
is to use forward modeling to learn its inverse model. This type of navigation could be useful for following

previously encountered routes. While defining a route,
One idea is to apply forward modeling to the compo- the robot can periodically store the current state vec-
sition Do To T - 1. That is, the error that is back- tor, such that after reaching its destination, it will have
propagated is D(T(a, in)) - S(pa,, 01), with S being stored a sequence of state vectors. Then, if it ever finds
the sensory function from world states to sensations itself in one of those states later, and it wants to go to
and pactat being the current location, as defined be- another one of those states, it can input the current
fore in section 3.1. This allows the error to be calcu- and neighboring state into the inverse model, which
lated, but not at the expense of having the network will output an action to take it to that next state,
generate its own desired outputs: the world actually and the process can be iterated until the destination
provides the error signal. is reached.

Another way of addressing this problem is to use the Of course, things don't always go as planned. The
orienting system described in seci.1,n 3 to generate the action performed, m, will not al-...ys bring the robot
training outputs for the composition T o T-'. In this to the desired state, si. There are three basic strategies
case, b, a world-dependent estimate of b" (as opposed for dealing with this:
to the completely model-dependent estimate, b) is in-
directly inferred from the current sensations by run- . The robot can plan the next step as normal, ig-
ning the orienting process on the current sensations, noring that it is not where it should be (this might
S(pg.at_o) The pattern b is input to D as an initial be satisfactory for small errors).
guess for b. The e'rror D(b) - S(p0 guai) is calculated
and back-propagated to the input in order to make * The robot can use the orienting system to find the
changes to b that result in a better estimate of b. current state and then plan to the next desired

This process wil converge on a state vector that, ac- state, si+.
cording to the predictive map, represents the closest * Or the robot can be more conservative, and as-

16Although in some sense .he inverse mapping is not a sume that it must reach si before it can reach

formal inverse of the forwaid mapping T, it will be de- s.i~. Therefore, it uses the orienting system to
noted by T - here to emphasize the fact that To T' is find the current state, but plans to the same de-
an identity mapping. sired state as before, si.
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5.2 CONTENT ADDRESSABLE tance from walls at various angles, the error for the ith
PLANNING: DESIRED SENSATIONS output node could be defined as (D(a), - d,) + *,

since the reciprocal of D(a)i is an indication of how
The CNM can also be provided with a means of gen- close one would be to a wall if one were in the location
erating actions based on desired sensations, to result denoted by a. The constant a is used to scale the im-
in what is effectively a limited sensation-based inverse portance of the obstacle avoidance term: the higher a
model: when given the current state and desired sen- is, the further the robot will stay away from walls.
sation, an action is output that will lead to a (nearby) This procedure can be (loosely) called '-content-
world state that has those sensory properties. This addressable planning" since it generates a plan based
is done by using a (state-based) inverse model and upon a qualitative specification of a place, rather than
the orienting system again. The input to the D map- a conventional address, a coordinate, of the place. As
ping network is initialized to some guess b (obtained in state-based navigation, content-addressable plan-
by calculating T(a, m)), and back-propagating the er- ning can be used in conjunction with stored routes.
ror D(b) - d, where d is a sensation vector representing The robot, while determining a route, can store vari-
the desired sensations, through the network to change ous "scenes" or sensations along the way. At a later
b until it is a state vector that indicates the nearest time, this route can be followed by inputting these
place that has the desired sensory properties. At this stored sensations to the content-addressable planner,
point, T-l(a,b) should indicate a move that could be which will move the robot along the route. Depending
made to reach a place with the sensory signature d. on the nature of the robot's environment, this method

Another way to achieve a similar result is to use the might be more robust than state based route following.
orienting system in a novel way. Instead of finding the The absolute state vector values stored might change
current location, given the current sensory data and their meaning between storage and use, due to a var-
the initial guess b, the orienting procedure can be used able topology's compensation for a systematic change
to find a route in state space from the current location in the world, such as tread wear on the robot's wheels.
to a place that meets a sensory description. Given Since the CNM assumes that a given location's sensory
some desired sensations d, the state vector represent- input to the robot is more or less constant, it might
ing the current location, a0 , is input to the descriptive be best to remember a route based on these actual
mapping D, and the error D(a)-d is used to change a0 sensations, rather than coordinates in a varying topo-

in a gradient descent fashion to a new vector, al. The logical code. Of course, even with a sensation-based
two state vectors, a0 and al are then input into the route, errors will still creep in, but measures directly
inverse model to produce an action to effect the tran- analogous to the three mentioned at the end of section
sition. The process is then repeated, with a1 as the 5.1 can be taken to help ensure that the destination is
next input to D. If the scale factor (conventionally reached.
denoted by 17) used in the back-propagation is small
enough, T-(a,,a,+) will in general be meaningful 6 THEORETICAL MOT1VATION' 7

(i.e., it will denote a performable and correct move).

This process can be illustrated by re-interpreting fig- The primary theoretical motivation for constructing
ure 3. The sensations at A are desired. The current the CNM system is to understand how a robot can
locatior is B, and the current state vector denotes B. make the the transition from pre-conceptual to con-
The orienting process generates a sequence of states ceptual cepresentations of space. The underlying h-
(the trail of states shown in the diagram), which can pother., is that map construction and use ib a paradig-
be input to the inverse model in a pair-wise manner to matlc .se of concept formation, that the computa-
generate a s' luence of actions that will reach location tional means underlying spatial concept master% %ill
C_ Again, things will not always go as planned, so be of a type similar to the means used for concept
the robot might want to periodically use the orienting mastery in other domains. The preceding discissio.
system in its p-oper capacity to ensure that its current and simulations were a start at, an answer to the ques-
state vectov continues to be an accurate representation tioa. how might we use PDP to understand cogniti'e
of its location. map construction and use? Now it is time to address

As it stands, this procedure is unacceptable, since the question: what could understanding cognitive map
there is no guarantee that the orienting system will not construction and use tell us about representation and
produce a trajectory that runs through a wall or other the mind in general?
permanent obstacle. This can be addressed by adding A complete account of cognition, natural or artificial,
terms to the error function that will penalize state vec- will have to be based on a theory of representation.
tors that represent world states close to walls, even if
they are very similar to the desired perception. For ex- "Those readers of a less philosophical nature might want
ample, in the cases being considered here, where the to skip this section and procced directly to the conclu1sions
components of the sensation vectors indicate the dis- in section 7.
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Our theories will have to explicitly characterize the possession and acquisition. the trans'tion from non-
representations that play a role in cognitive systems as objective to objective ways of representing the world.
well as the content, or information, that is carried by This requirement imposes a constraint that restricts
these representations. Traditional (conceptual) ways the class of explanatory computational architectures,
of specifying content (such as in the ascription "The a constraint that suggests that a clear member of the
content of Leslie's belief is that this is a brown build- class would be a type of PDP network.
ing") do so in such a way that requires that the agent The reasoning behind this claim is as follows. Tra-
to which the ascription is being made (Leslie) have ditional, conceptual specifications of content are an
the concepts used in the specification (e.g., brown dttiopal, cnct ei conten t are an
and building). This means is inappropriate, then, attempt to characterize contents that are objective,
for ascribing contents to simple systems that do not term s tha that are perspective-independent,
possess (many) concepts, and for many of our repre- in that the abilities are appropriate in almost any
sentational contents (such as perceptual and indexical context. An example of such an ability is using a
ones) that are not conceptually mediated. We need convention eape ofuh an a t where
a means (a non-conceptual means) of specifying con- conventional, paper-in-hand map: no matter where
tents that does not imply that the agent in question one is, or where one's destination, such a map n di-
possess.es the concepts used in the ascription. We also cates, at least, roughly, in what direction one shoul
need a related account of the conditions under which it go. But as we have seen, there are many conte:sis pprprite o acrie aparicuar ontntso on- that aren't objective or context-independent. These
is appropriate to ascribe a particular content, so non- could be characterized in terms of abilities that are
conceptually specified, to a particular physical system. perspective-dependent, such as the ability to use a

Consider the domain of spatial navigation, the ability route-based map. Such an ability will only be of use
to find one's way in the world. A plausible idea is that if one is on the route in question, so unlike a conven-
the first need, the need for a non-conceptual specifi- tional road map, its utility will depend on where one
cation of the contents involved in navigation, can be actually is. If we can provide a computational archi-
answered b) specifing contents in terms of an organ- tecture that doesn't merely explain why a system has
ism's abilities. For example, one might characterize the abilities it does, but also explains why a system can
the content of a particular computational state of a move, via learning, from perspecte-dependent abili-
rat's brain in terms of the abilities it engenders, such ties (such as route-based navigation) to perspective-
as the ability to keep the end of the corridor in the cen- independent abilities (such as full-blooded map-based
ter of its visual array. This would be a non-conceptual navigation), then we can provide an explanation of
specification since, e.g., a rat doesn't need the con- how a non-conceptually characterized system can pos-
cepts corridor or visual array in order to possess sess concepts. Analyzing a system non-conceptually
this ability or the contents which are specified in terms allows us, unlike a purely conceptual analysis, to ex-
of it, and it would be a specification of content, since plain concept acquisition, since both the starting point
the rat certainly represents the world when it navi- (context-dependent contents) and ideal end (objective
gates. if the rat were exercising this ability in front contents) of that process, as well as the interesting area
of a life-size painting of a corridor, as opposed to an in between, can be so analyzed.
actual corridor, it would in some sense be wrong about We need, therefore, an architecture that renders x-
the way it is taking the world to be, and being wrong plicit the non-conceptual contents in a system. PDP
about something is a good ;ndication of the presence is a promising candidate for this because:
of representation.

Given this, one might think that the second need, 9 PDP representations are of varying context-
the need for content ascription condi-ions, could be sensitivity and perspec~ive-dependence,' 8 thus
provided by any computational architecture that ex- making them more ar,enable to non-conceptual
plained why a system possessed the abilities used in content specifications than are the representations
the content specifications. If, as in some -ases seems in logical or symbolic architet.tures, which encour-
likely, rats do not navigate by employ ing some concept age a conceptualist, strictly ubjective interpreta-
of absolute location, but rather merely memorize the tion.
sequence of turns necessary to get from one place to 9 Conversely, conceptual specifications of content
another, then an account of how those abilities can be seem inappropriate for PDP representations, since
provided by a particular computational system might it is typically difficult (hidden-unit analyses not
also provide the ascription conditions for the contents withstanding) to isolate an aspect a, a PDP net-
involved in rat navigation. But rats aren't the only an- work that corresponds to some objective feature
imals that represent the world; we do, and oftentimes of the task domain as registered by the theorist.
we do so conceptually, in terms of objective contents In fact (to paraphrase Cussins), it may be that
such as that carried by the concept location. Thus,
there is a further requiremert on our account of con- isSee, for example, Smolensky's "coffec" example in
tent, the requirement for an e."plaiation of concept (Smolensky "88) and the discussion of it in (Cuasins '90)
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Abstract Variability may also be due to context:

The purpose of the project described here is * different speaking rates result in different articu-

to find what segments a network can discover latory movements, that cause both temporal and

by itself, using only prediction as a teacher, spectral variations, as explained in [10];

A recurrent network was trained to do a pre- o a worse context variation is due to coarticulation,
diction task, using a speech spectrogram as where features of one phoneme may be spread over
both input and teacher signals. The error the previous and next phonemes.
vector and hidden unit activation transitions
were used to extract segments from the multi- These effects make speech segmentation, the dividing
speaker, continuous speech TIMIT database. of continuous speech into elementary units known .as

The network was analysed to see what speech segments, a hard task. Segmentation is an impor tuzt
segments it discovered. Many of the segments issue in many fields. In psycholinguistics and phonol-
the network found correspond to TIMIT ogy, researchers have done a great deal of work at,

phones and are very well segmented, but tempting to discover the speech units. This is of im-

some TIMIT phones are not extracted. portance in understanding the nature of language, and
to answer questions such as: how do infants acquire

We are examining the use of thee segments their lexicon, and how do adults do the lexical access.
to drive a second network to label speech. There is no real consensus on this issue but, as Mehler
Early results are enouraging because the ~ e al. note in [6], psycholinguists try to represent words
system gives the same error rate whether net- in terms of linguistic units, such as s'llables.
work segments or the segments provided with

the TIMIT database are used. In the field of Continuous Speech Recognizer Systems
(CSRS), the problem facing researchers is to develop
robust systems that translate a speech signal into its

As Klatt remks in [41, the recognition of a small phonetic or alphabetic equivalent. This task can be
set of words would not be difficult were it not for the done with very good accuracy when the number of
remarkable variability seen in the pronunciation of any speakers is limited, or when the vocabulary is re-
given word". When we deal with many speakers, this stricted to a few words, syllables or phonemes. But
variability is even more important. Variability may be error rates in the general case, that is with continuous
due to: speech in a multispeaker environment, are generally

* when dealing with one speaker, emotional state, poor (of the order of 60 to 70 % correct recognition).
whenpeaing te, accen s, emotioall havtat ce, Nevertheless, the number of applications of this typespeaking rate, accent, . ..all have a great influence o ytmi nros

on the speech spectrum and on the articulation of system is enormous.

between successive units. Generally, speech learning based recognizers have two

" when dealing with different speakers, anatomi- stages:

cal differences due to age, sex, ... result in many 1. first, the system is provided with a speech signal
acoustical differences for the same word or sen- and the corresponding desired output and tries
tence; to learn the correspondence between input and

*The first author can now be reached at: D.C.A.N., output;

Sons Direction Etudes, 83000 TOULON CEDEX, 2. then, the trained system should give the desired
FRANCE. output for any other input.
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A problem with this approach is that the subunits of A continuous, unsupezvised prediction task was used
speech used in the training stage are generally chosen a to train the network. A timeslice at time t from the
priori, considering the complexity of the speech signal, continuous speech spectrogram was input to the net-
better results might be obtained if the speec, subunits work with the timeslice at t+l as the teacher signal.
themselves could be learned. This is the natural task given the dynamical nature of

At the moment, the best techniques for CSRS use speech and corresponds to the human ability to guess

Hidden Markov Models [5]. Recently, the emerging the end of a segment from the beginning of the seg-
Paralel Disributed roesin aracy, h emer g ment. The architecture of the network used is shown
Parallel Distributed Processing approach [9] has also in Figure 1. A spectrogram was used as input because
achieved good results in speech recognition [3, 8]. But this is a low-level, continuous representation close to
both methods use a training period, where a priori what is perceived by the ear, and has no a priori seg-
information is given to the system. In this project, mentation imposed upon it. Using such a spectrogram
a form of unsupervised learning, prediction, was used we hoped the network would find low-level acousticalto automatically find speech segments. The hope was units, but did not expect it to discover temporally-

that the recurrent network used would be able to find ex t d d nt suc t it ords.

an appropriate set of speech segments in continuous, extended segments such as words.

multispeaker speech. Segmenting speech using predic- A r .. irrent network architecture was used because
tion is based on the supposition that prediction is pos- prediction requires memory. The algorithm used was
sible within speech segments but not possible across Back Propagation Through Time (BPTT), introduced
segment boundaries. This suggests the error will be by Rumelhart et al. in [9] and described precisely
low within a segment and high at the very beginning by Williams and Zipser in [11]. Figure 2 shows the
of a new segment. It also suggests that hidden unit schematic representation of the algorithm used.
activations will be stable within a segment but change
rapidly at segment boundaries. Both of these effects Time Input Unit Activities Targets
were observed, but hidden unit state change was found
to be the better way to identify speech segments. t c - -

t-2

INPUT UN ITS

Ti t-h C

Figure 1: Architecture of the network. An input unit
and an output unit is dedicated to each of the spec- Figure 2: Schematic representation of Backpropaga-
trogram channels. In this example, 2 additional hid- tion Through Time: this network consists of a stack of
den units are. shown. Each unit is connected to ev- h copies of a recurrent network. At time t, the network
ery other unit by a changeable weight. Sound input of time t-1 is copied and the oldest copy from time t-h
was generated from the TIMIT database which con- is thrown away; the input of time t is then propagated
tains speech digitalized at 16-kHz. An FFT over 16-ms through this new copy; the error is propagated through
frames, advancing 8-ms per frame was reformatted us- the stack and the weight changes due to every level are
ing logscale ranges to give the spectral magnitudes over accumulated in the new network.
16 frequency ranges. These spectral magniludes were
normalized using a 3-s window average and squashed In the results presented below, the network used had
using the logistic function f(x) - 1+ezp("z) Each 8 hidden units, and 5 copies of the recurrent network

time slice of this spectrogram was input to the network were kept, which seems to be about optimal.

as explained in the text. The network was started with Some preliminary studies were carried out to see if
random weights in the range [-1, 1]. - the error could be used for segmentation in a simpli-
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fled version of the task. The database used by Elman unit activations to detect a switch from one network
and Zipser in [1] was used. This database consists of state to another. Such a switch would indicate that
520 instances of the 9 different "consonant followed by the network had detected a new segment in the input.
vowel" (CV) tokens from the set of consonants /b d g/ For this purpose, the TIMIT database [2] was used.
and set of vowels /a i u/. All tokens were extracted TIMIT is a large multispeaker database, designed to
from real speech, trimmed to a uniform duration of train and evaluate speech re.cognizers. Each of 420
64-ms and appear in random order. The results ob- speakers says 10 sentences, 2 of which are the same
tained are described below and in Figure 3: for every speaker. The sentences have been segmented

and labeled by a human expert into 62 previously de-
* in the first part of the training, the error became fined TIMIT phones. In the work reported here, only

high when a new token arrived then relaxed rela- a part of TIMIT was used, taking a training set of
tively quickly. This can be seen in the top row of 84 speakers and a testing set of 27 different speakers.
Figure 3. The peaks of the error vector give the The 2 sentences common to all speakers were removed
position of the tokens in the spectrogram with from both sets to prevent bias in segment contexts.
very good accuracy. The network used had 8 hidden units. Figure 4 shows

* after a while, the network learned the length of an example run on a part of the TIMIT database. Note
the tokens and took the average value of the in- that the hidden unit activations show sudden swing,,
coming time slice when it expected a new token. in magnitude, often at segment boundaries.
This minimizes global error, as the algorithm is
intended to do, but means that the error vector ERROR SIGNAL

is much less segmented or much more noisy. This 8.8 1 :
can be seen in the bottom two rows of Figure 3. Wo so 700 750 8W

r~me sk e
HIDDEN UNIT ACTIVATIONS

Even when randomly shortening the tokens to their HIDDEN UNIT ACTIVATIONS

first n-ms, n being picked between 38- and 64-ms for ?
every token, the network computed the average length ?. "" .. - -
of the tokens. So after learning to recognize the dif- . ... ---
ferent tokens, the network continued to reduce global .
error by taking the expected value at the beginning .
of a new token, the beginning being known from the S -"

average length. This result means that error does not ?
appear to be a good way to detect segement bound-
aries. 0.

600 850 700 750 800

A Figure 4: Example of a run on a part of the sentence:i LLL "Some observers s/peculated that this might be h/is
revenge on his home town". The graph shows the 8
hidden unit activations versus ttme. The upper graph
is the error signal versus time. The dashed lines show
the position of TIMIT phones.

.*- To use these swings for segmentation, we define a tick
as a jump from one state to another in the hidden
unit activation space. These ticks delineate the speech
segments found by the network. Ticks are extracted
from the hidden unit activations using the following
transformation: let i(t) be the hidden unit activations

." vector at time t: K(t) = [hi(t), h2 (t), ... , h,,(t)], where
n is the number of hidden units, and t is the time step.

"" The first derivative, d(t), is computed using:

Figure 3: Error signal after 0, 900, 3600 time steps. d(t) = ht(t) - ht(t - 1)

The dashed lines show the position of the successive
tokens. We need to remove noise from d(t) (which corresponds

to successive positive and negative derivatives), and
Having found that the error vector is not rich enough also need to identify statc changes which occur slowly
to do segmentation, we looked at changes in hidden over time. Thus we sum d(t), with a small coefficient,
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over p time slices. So let's define:
CORRECT INSERTION DELETION

Typically, oe = 0.7 and p = 4. The maximas of the I .'I time
magnitude of the vector 9(t) give us the ticks extracted
from the hidden unit activations. 000

{ if ,,gt - 1), < 119(0),

tick(t)= 119(t)l 1 and 119(t + 1)11 < Ij (t)I0
0 otherwise

Figure 5 shows extracted ticks obtained using this
• 4000

EXTRACTED TICKS6.. .. 0 . .E.c.......corre.t t

650 700 750 800 2000
rime ske

HIDDEN UNIT ACTIVATIONS

10ODO2.00000 400000 :.00000
Tre.hold

.. Figure 6: The top part of the figure shows the pos-
F" -" -- - - -- sible configurations of extracted ticks with respect to

TIMIT phones. The vertical solid line indicates the
" position of a TIMIT phone, the triangle indicates the

------- extracted tick. In the bottom part of the figure, we
,- ... . .. "50" 70 plot the number of correct, insertion and deletion ticks800 650 700 750 8W0

ime . above threshold against threshold, as described in the
text. In this case, threshold would be set to 0.2.

Figure 5: Ticks extracted from the hidden unit activa-

tions. Note the correspondence between extracted ticks
and TIMIT phones. shows that threshold = 0.2 is the most appropriate

value.
transformation. After this transformation, any hidden A key point is that since we have used unsupervised
unit that swings from 0 to 1 over 1,2,...or p times- learning, we can't expect to compare the network's
lices will produce an extracted tick of the same mag- extracted ticks and TIMIT's phones directly:
nitude. By summing over p timeslices, the noisy units
do not contribute to the magnitude of the extracted 1. TIMIT segmentation was done by human experts
ticks. Note that applying the transformation to the bringing to bear all the theory and tools of classi-
input spectrogram itself does not give good results - cal segmentation. Note that human experts may

e sdisagree over segmentation, also that TIMIT may

The ticks extracted in this way were compared to those have its own error rate in segmentation;
of the TIMIT database. Figure 6 shows the possible 2. the network began with no a priori knowledge nor
configurations of extracted ticks with respect to the did it have an intelligent teacher, so it has learned
TIMIT segments. The tolerance of one time slice to autonomously the segmentation it performs;
the left and two time slices to the right is not sym-
metric because of the small time decay introduced by 3. there are systematic differences between TIMIT

the transformation. We define the categories correct and the network. For example the network never

where an extracted tick matches a TIMIT phone, in- segments /b/ and /a/ in ba, so it puts only one

sertion where an extracted tick occurs without any tick where TIMIT puts two.

TIMIT phone, and deletion where a TIMIT phone oc-
curs without an extracted tick. If we regard the mag- To analyse the composition of the extracted segments,
nitude of a tick as a measure of the likelihood of a new we have looked at all of the possible pairs of TIMIT

segment, we can define a threshold value below which phones appearing above a minimal frequency. The

ticks will be ignored and set the threshold to maximize probability with which the left and the right phone

the number of correct ticks and minimize the number of the pair is extracted was computed over all the in-

of insertions and deletions. Figure 6 plots the number stances of a'given pair of TIMIT phones. Six con-

of correct, insertion and deletion ticks above threshold figurations are possible as shown in the top part of

against the possible range of threshold values. This Figure 7. A square matrix was constructed
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Figure 7. The top part of the figure shows 5 of the 6 possille extracted tick configurations. the vertical lines
indicate the position of the TIMIT phones, and the triangles indicate the position of the extracted ticks. In case
b, both TIMIT phones are extracted, in case 1, only the left phone is extracted, in case m, either the left or the
right phones are extracted unpredictably. The sixth configuration happens when the number of instances of this
pair is too small :e. less than or equal to 8. The bottom part is the matrix of the phone pairs types. The empty
elements correspond to too small a number of instances of the given pair. Note the :olumns and rows filled with
the same type, which give interesting information about the corresponding phone.
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such that, for each pair /i/ and /j/ of TIMIT phones, jest phone for the network to extract is the consonant
the element m,., of this matrix represents the way the when preceded by a vowel. This means that the hidden
network segmented the pair of phones /i/ /i/. This unit activations swing more strongly when switching
matrix is siown in the bottom part of Figure 7. The from a vowel to a consonant, presumably due to the
first thing to note about this matrix is that the .ement lesser coarticulation effect in the VC case.
density of the array is proportional to the frequency We wanted to see if our extracted ticks could be used
of the corresponding pairs of phones: CV and VC syl- We ae to seetfor etraed cld beedlables are more frequent than CC and especially VV to label the spectrogram. We trained a classic feed-
sllables. rn the caeuf thn C and Vesyclla , to forward algorithm to attempt this. After training thesyllables. In the cas e of the C V and V C syllables, tw o re u en n t as d c ib d b o e n 88 p ak s, wtypes of consonants can be distinguished: recurrent net as described above on 88 speakers, we

tested it on 80 other speakers and used the extracted
1. Easily extracted consonants: the corresponding ticks obtained on this set to train our recognition sys-

column is filled with b's or r's and the correspond- tem. The recognition system was tested on another 20
ing row is filled with b's or l's. For example /s/, speakers.
/t/, /m/, /n/, /dx/, /k/, /v/. Within this cat- In order to reduce the problem to a reasonable size,
egory, some like /s/, /t/ and /k/ prevent their we limited ourselves to the 16 vowels used by Waibel
neighbor from being extracted while others "help" et al. in [3]. These vowels are listed in Table 2. Af-
their neighbor to be extracted. ter testing the segmentation network on the set of 80

2. Never extracted consonants. this is the case with speakers, each extracted tick corresponding to one of
/1/, /dh/, /b/, /d/, /p/, /q/. Their neighbor is the 16 TIMIT vowels of Table 2 gives one input pattern
generally extracted. This result was foreseeable for our database: this pattern corresponds to a win-
because the network was unable to segment the dow of the spectrogram extending a given width to
consonant sound in the set /b d g/ x /a u i/. the right and a given width to the left of our extracted

tick. Let w be the total width of the window and f
Note that the closures are always segmented when fol- the number of frequency channels, this means that our
lowing a vowel. The points made above are still true in input patterns are of dimension w*f. The output cor-
the case of the CC consonants. /n/, /s/,... are always responding to this pattern is distributed over 16 bits,
segmented whereas /b/, /g/, /p/, /f/ are hardly ever each representing one of our vowels. Either 4, 7, 10
extracted. The closures are always segmented. In [71, or 20 hidden units were used. The architecture of this
Ohala et al. insists on an asymmetry between CV and system is described in Figure 8.
VC syllables: the asymmetrical effects of coarticula-
tion in these syllables mean that the features of the
vowel are spread more into the preceding consonant Phone Example Phone Example
in a CV sequence than the features of the consonant /iy/ beat /eh/ bet
are spread into the preceding vowel in a VC sequence. /ix/ roses /ah/ butt
Given this asymmetry, we might expect our network /uh/ book /aa/ cot
to have different segmentation rates for the different /ay/ bite /aw/ about
cases. The segmentation done by our network for the /ih/ bit /ae/ bat
different sequences is shown in Table 1, which shows /ax/ the /uw/ boot

/ao/ bought /ey/ bait

C 70% /oy/ boy /ow/ boat

Cv 504 Table 2: List of the 16 vowels used in our recognition
- 750 task.
V 7%

VC 03% Because of the high variability in the length of the vow-
ot 637 els used (from 60- to 180-ms), the best results were ob-
C1 - 72% tained when training two different networks separately.

CC t2 75 0 For the first network, the total width of the window
o~t F17 0equaled 104-ms and only the 7 shortest syllables were

presented; for the second network, the window was
Table 1. Segmentation done by the network on the VC, 152-ms wide and the network was trained only on the 9
CV and CC syllables. the figures indicate the percent- remaining syllables. After training, the networks were
age of segmentation on the left, right and both phones tested on 20 other speakers. in this case, the recogni-
of the pair, for the pairs appearing with a frequency tion rates were 52% for the short vowels and 49% for
greater than 8. the long vowels. The goal of this part of the project

was to see to which extent our ticks could be used by
that there is some difference in segmenting CV and VC a labeling system to label the spectrogram. so we re-
pairs, as expected from O'Hara's observation. The eas- peated the above using the TIMIT segments instead
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og n ourtmus= 0 0. .[2] John S. Garofolo. Getting Started with the
o ( ,.c \!-") DARPA TIMIT CD-ROM: An Acoustic Phonetic

Continous Speech Database. Technical report,
0 National Institute of Standards and Technology

Ho M (NIST), Gaithersburgh, MD, 1988.
0 [3] Nobuo Hataoka and Alex H. Waibel. Speaker

Independent Phoneme Recognition on TIMIT
,Wn r TI= Database using Integrated Time-Delay Neural
I I , I INetworks. Technical Report CMU-CS-89-190,

School of Computer Science, Carnegie Mellon
Un., 1989.

Wl [4] K.H. Klatt. The Problem of Variability in Speech
Recognition and Models of Speech Recognition.

S*---- , In J.S. Perkell and D.H.Klatt, editors, Invariance
and Variability i" Speech Processes, pages 300-

Figure 8: Architecture of the labeling system. 324. New Jersey: Lawrence Erlbaum, 1986.
[5] K.F. Lee and H.W. Hon. Speaker Independant

Phone Recognition using Hidden Markov Models.
of our ticks. The results in this case were 54% for the Technical Report CMU-CS-88-121, Carnegie Mel-
short vowels and 51% for the long vowels. These re- lon Un., March 1988.
suits have to be compared with the 56 % achieved by [6] J. Mehler, E. Dupoux, and J. Segui. Acquisi-
Waibel et al. in [3], for the case of a single TDNN ar- tion Constraints on Speech Recognition Models.
chitecture. Moreover, the fact that the results are the In G. Altman, editor, Cognitive Models of Speech
same whether using our ticks or the TIMIT segments Processing (to appear). MIT Press, 1990.
is interesting because it implies that our system could
be used to do the preprocessing for a labeling system [7] John J. Ohala and Haruko Kawasaki. Prosodic
that needs presegmentation. Phonology and Phonetics. In Phonology Yearbook

1. University of Cambridge Press, 1984.
Our initial goal was to discover what types of speech

segments a recurrent network could find by itself. We [8] A.J. Robinson and F. Fallside. Phoneme Recog-nition from the TIMIT Database using Recurrent
have produced a set of segments that consist of phones E Ption etors Tecni Reprt

or of pairs of phones that could be used by a recogni- Error Propagation Networks. Technical Report

tion system. It is of some interest to see what the CUED/F-INFENG/TR.42, Cambridge Univer-

individual hidden units do in the network. Simple sity Engineering Department, Cambridge, Eng-

spectrograms were presented to the network and the land, 1990.

subsequent activity of the hidden units was analysed. [91 D.E. Rumelhart, G.E.Hinton, and R.J.Williams.
First, a dirac function was presented to the network on Learning representations by back-propagating er-
one of the frequency channels individually. For each rors. In D.E.Rumelhart and J.L.McClelland,
input line, there is at least one HtU that computes the editors, Parallel Distributed Processing. Explo-
first derivative of this input signal. This seems relevant rations in the Microstructure of Cognition., vol-
when trying to predict the next time slice. In addition ume 1. MIT Press, Cambridge, MA, 1986.
each of the input lines was activated one at a time, for [10] J. Vaissiere. Speech Recognition: a Tutorial.
150-ms, every 300-ms. Of the 8 hidden units, 3 were In Frank Fallside and William A. Woods, edi-
selectively sensitive to a given range of frequency. The tors, Computer Speech Processing, pages 191-242.
others compute different quantities, whose significance Prentice/Hall International, 1985.
is not known. [11] R.J. Williams and D. Zipser. Gradient-Based

Learning Algorithms for Recurrent Connection-
ist Networks. Technical Report NU-CCS-90-9,
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Abstract Hence, the desired property of a dimensionality re-
duction/feature extraction method is to loose as lit-

A novel unsupervised neural network for di- tle information as possible after the transformation
mensionality reduction which seeks directions from the high dimensional space to the low dimen-
emphasizing distinguishing features in the sional one. This motivation underlies methods such as
data is presented. A statistical framework principal components (PC), mutual information max-
for the parameter estimation problem asso- imization (Linsker, 1986), and self supervised form of
ciated with this neural network is given and back-propagation.
its connection to exploratory projection pur- At a first glance, it seems that a supervised feature ex-
suit methods is established. 'the network is traction method will always be superior to an unsuper-shown to minimize a loss function (projec- vised one, because if one has more information about
tion index) over a set of parameters, yielding the problem, it is natural to suppose that finding the
an optimal decision rule under some norm. solution is easier. However, unsupervised methods use
A specific projection index that favors direc- a local measure to optimally estimate single dimen-
tions possessing multimodality is presented. sional functions of projections instead of functions of
This leads to a similar form to the synap- the full dimensionality of the space, and therefore tend
tic modification equations governing learning to be less sensitive to the curse of dimensionality prob-
in Bienenstock, Cooper, and Munro (BCM) leni (Huber, 1985).
neurons (1982).
The importance of a dimensionality reduc- One way to reduce the curse of dimensionality is to
tion principal based, solely on distinguishing look foi lower dimensional structures (features) by us-
features, is demonstrated using a linguisti- ing a localized and smooth objective function that di-
cally motivated phoneme recognition exper- rectly measures the importance of the extracted fea-
iment, and compared with feature extrac- tures.
tion using principal components and back- A useful class of features to explore is defined by some
propagation network. linear projections of the high dimensional data. This

class is used in projection pursuit methods (PP) orig-

1 How to construct optimal inally introduced by Kru:,iAi (196C 1q72). Switzer
(1970, 1971), and later implement,". • iucd man and

unsupervised feature extraction Tukey (1974). These methods are ewed in Huber
(1985).

When a classification of high dimensional vectors is t ioch n i

sought, the curse of dimenstonality (Bellman, 1961) It is still difcult to charateriz( tohat interesting pie-
becomes the main factor affecting the classification jections are although, it is easy to point at projec-
performance. The curse of dimensionality problem is tions that are uninleregting. To motivate this discus-
due to the inherent sparsity of high dimensional spaces. sion, consider the following example in which two data

clusters lie in a two dimensional space. If we are inter-im plying that the am o unt of training d ata need ed to es d i n r uc g th d m n io a ty f t e d t , a d
get reasonably low variance estimators is ridiculously ested in reducing the dimensionality of the data, and
high. One approach to the problem is to assurme that still retaining an indication on the structure, it is best
important structure in the data actually lies in a much to project the data onto the y axis, even though thesmaler ime sion l s ace and the efo e tr to re- variance of the projection to the y axis is larger.smaller dimensional space, and therefore try to re-
duce the dimensionality before attempting the clas-
sification.

310
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Y whose minimization will find those projections having
. .a single dimensional projected distribution that is far

from Gaussian.

We first iniformally describe the statistical formulation
that leads to this objective function (the mathemati-

X cal details are left to the "ppendix). Based on statisti-
cal decision theory, a neuron is considered as capable
of making decisions. The most intuitive decision for
a neuron is whether to fire or not for a given input
and vector of synaptic weights. To aid the neuron
in making the decision, a loss function is attached to

Figure 1: In this dimensionality reduction each decision, namely a function that measures the loss
problem the interesting direction is not the from making each decision. The neurons task is then

to choose the decision that minimizes the loss. Sinceone that maximizes the variance: Two data
clusters which can be separated by projecting the loss function depends on the synaptic weights vec-lothers whic, can notbe separated by project. tor in addition to the input vector, it is natural to
to the y axis, can not be separated y project- seek a synaptic weight vector that will minimize the
ing to the y axis, although the variance in the sum of the losses associated with every input, or more
y axis is larger. precisely, the average loss (also called the risk). The

search for such vector, which yields an optimal synap-
Notice that in the above example, the projection onto tic weight vector under this formulation, can be viewed

the z axis will give a two hump distribution, while as learning or parameter estimation. In those cases
the projection onto the y axis will give a normal dis- where the risk is a smooth function, its minimization
tribution. It turns out that this is not a coincidence, can be done using gradient descent.
A statement that has recently been made precise by The ideas presented so far make no specific assump-
Diaconis and Freedman (1984) says that for most high- tions regarding the loss function, and it is clear that
dimensional clouds, most low-dimensional projections different loss functions will yield different learning pro-
are approximately normal. This finding suggests that cedures. For example, if the loss function is related to
the important information in the data is conveyed in the inverse of the projection variance (including some
those directions whose single dimensional projected normalization) then minimizing the risk will yield di-
distribution is far from Gaussian. Friedman (1987) rections that maximize the variance of the projections,
argues that the most computationally attractive men- i.e. will find the principal components.
sures for deviation from normality (projection indices)
are based on polynomial moments. For example, prin- Before presenting our version of the loss function, let
cipal components extraction uses a projection index us review some necessary notations and assumptions.
which is based on polynomials of the second moment Consider a neuron with input vector z (zX,. .. , ),

' of the projections (maximizing the projected variance), synaptic weights vector r" = (01,.. ., mN), both in
In some special cases where the data is known in ad- RN, and activity (in the linear region) c = z m. De-
vance to be bi-modal, it is relatively straightforward fine the threshold (, = E[(z.m)2], and the functions

* to define a good projection index (Hinton & Nowlan, 0(c, Om) = C- NCO,., 0(cO,) - C2 
-lcO,,. The

1990). -- function have been suggested as a biologically plau-
sible synaptic modification function to explain visualDespite their computational attractiveness, projection cortical plasticity (Bienenstock, Cooper and Munro,

indices based on polynomial moments are not directly 1982). The main features of BCM theory will be dis-
*: applicable, since they very heavily emphasize depar- cussed below. Gm is a dynamic threshold which will
*: ture from normality in the tails of the distribution (Hu- be shown later to have an affect on the sign of the
; ber, 1985). Friedman (1987) addresses this issue by synaptic modification. The input z, which is a stochas-
* introducing a nonlinear transformation that squashes tic process, is assumed to be of Type II mixing1 ,

the projected data from R to [-1, 11 using a normal bounded, and piecewise constant. These assumptionsS distribution function. We address the problem by ap- budd n icws osat hs supin
dpitributio dsqushing function.Wetaddrs the pro y - are plausible, since they represent the closest continu-
plying a sigmoidal squashing function to the projee- ous approximation to the usual training algorithms, in
tions, and then applying an objective function based which training patterns are presented at random. The
on polynomial moments. V mixing property allows for some time dependency in

the presentation of the training patterns. The assump-
2 Feature Extraction using ANN tion are needed for the approximation of the resulting

In this section, the intuitive idea presented above is 'The V mixing property specifies the dependency of the
used to form a statistically plausible objective function future of the process on its past.

"p
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deterministic gradient descent by a stochastic one (In- The graph of the loss function shows that for any
trator, 1990b). For this reason we use a learning rate fixed m and 0 m, the loss is small for a given input
A that has to decay in time so that this approxima- x, when either c = xm is close to zero, or when
tion is valid. Note that at this point c represents the x - m is larger than O,,,. Moreover, the loss function
linear projection of x onto in, and we seek an optimal remains negative for (x in) > 119, therefore any
projection ir some sense. kind of distribution at the right hand side of 1 0, is

Our projection index is aimed at finding directions possible, and the preferred ones are those which are
for which the projected distribution is far from Gaus- ccncentrated further from 'O,.

sian, more specifically, we are interested in finding It remains to show why it is not possible that a mini-
clusters in a high dimensional data. Since high di- mizer of the average loss will be such that all the mass
mensional clusters have a multimodal projected dis- of the distribution will be concentrated in one of the re-
tribution, our aim is to find a projection index (loss gions. Roughly speaking, this can not happen because
function) that emphasizes multimodality. For compu- the threshold Om is dynamic and depends on the pro-
tational efficiency, we would like to base the projec- jections in a nonlinear way, namely, 0,,, = E(x -rn) 2.
tion index on polynomial moments of cv degree. Us- This implies that 0,,, will always move itself to a po-
ing second degree polynomials, one can get measures sition such that the distribution will never be concen-
of the mean and variance of the distribution, which trated at only one of its sides. This yield that the part
do not give information on multimodality, therefore, of the distribution for c < 10,m has high loss, mak-
higher order polynomials are necessary. Furthermore, ing those distributions in which the distribution for
the projection index should exhibit the fact that bi- c < 10,n has its mode at zero, more plausible.
modal distribution is already interesting, and any ad-
ditional mode should make the distribution even more The fact that the distribution has part of its mass on
interesting, both sides of 10m makes it already a plausible projec-

tion index that seeks multi- modalities. However, this
With this in mind, consider the following family of loss projection index will be more general, if in addition,
functions which depend on the synaptic weight vector the loss will be insensitive to outliers, if we allow any
and on the input x (the derivation based on decision projected distribution to be shifted so that the part of
theory appears in the appendix). the distribution that satisfies c < 10,m will have its

mode at zero. These points will be discussed below.

Lm(x) = -1i fe (s,0 m)ds The risk (expected value of the loss) is given by:

= -{(X _ Mn)
3 

-Ex. f)(X r)}Rm = -- E{(x-?n)3 - E[(x - in)2 ](x in) 2}
-- )E(x - E2 [(x rn)2}

The motivation for this loss function can be seen in Since the risk is continuously differentiable, its min-
the following graph, which represents the function imization can be achieved via a gradient descent
and the associated loss function L,(x). For simplicity method with respect to m, namely:
the loss for a fixed threshold Gm and synaptic vector
rn can be written as Lm(c) = -Pc 2 (c - 0.), where din, [
c = (i.t). f am = E[(x

- i).4E[(.rn)]2 Ef(a, m)x,]}

= p E[O(Zinl, Om)xz].

The resulting differential equations suggest a modified
THE O)AND LOSS FUNCTIONS version of the law governing synaptic weight modifica-

tion in the BCM theory for learning and memory (Bi-
, .Ic)t  enenstock, Cooper and Munro, 1982). This theory was40 presented to account for various experimental results

m 0in visual cortical plasticity. According to this theory,
the synaptic efficacy of active inputs increases when

- the postsynaptic target is concurrently depolarized be-
0 2_. yond a modification threshold, 0,,,. However, when the

3 m 3M level of postsynaptic activity falls below 0r, then the
strength of active synapses decreases. An important

feature of this theory is that the value of the modifica-
tion threshold is not fixed, but instead varies as a non-

Figure 2: The function 0 and the loss func- linear function of the average output of the postsynap-
tions for a fixed in and 0 ,r. tic neuron. This feature provides the stability proper-

ties of the model, for positive or mean positive inputs,
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and is necessary in order to explain, for example, why
the low level of postsynaptic activity caused by binoc-
ular deprivation does not drive the strengths of all cor-
tical synapses to zero. Mean field theory for a network
based on these neurons is presented in (Scofield and
Cooper, 1985; Cooper and Scofield, 1988), statistical a, output ..,
analysis is given in Intrator (1990c) computer simula-
tions and biological relevance are discussed in (Soul et
al., 1986; Bear et al., 1987; Cooper et al., 1987; Bear
et al., 1S88; Clothioux, 1990). C "{hdd ' Lay¢r

Up to this point we have presented an unsupervised M
(exploratory) method for feature extraction that seeks
projections in which the single dimensional distribu-
tion is multi-modal, namely we have presented an ex-
ploratory projection pursuit method. This method 0 0 • Inpt Laer
uses polynomial moments as a projection index and X,

therefore suffers from over-sensitivity to outliers (Frei-
dman, 1987). We address this problem by considering
a nonlinear neuron in which the neuron's activity is de-
fined to be c = (- in), where a usually represents a Figure 3: The activity of a nonlinear neuron

smooth sigmoidal function. A more general definition j is given by c -o=(x - in;), the inhibited
that would allow symmetry breaking of the projected activity is given by c, = c. - ?kt, ck-

distributions, will provide solution to the second prob-
lem raised above, and is still consistent with the sta-
tistical formulation is c = o'(x.m-), for an arbitrary
threshold a which can be found by using gradient de- We omit the derivation of the synaptic modification
scent as well. For the nonlinear neuron 0 n is defined equations which is similar to the one for a single neu-
to be 1,n = E[o'2(x in)]. The loss function is given ron, and present only the resulting modification equa-
by: tions for a synaptic vector mk in a lateral inhibitionJ (Z' ~network of nonlinear neurons:

Lm m) .,k)
- I{u(X .M) -E[a

2 (X _ n)]r 2(X . ",)1 fl -1 E -'(x - (oA) .1 ,

The gradient of the risk becomes: j;k

-VmRm = {E[o2(Xm)uX'z] The full derivation can be found in Intrator (1990a).
4E~o,(x The lateral inhibition network performs a direct search

-3E~o."(x • r)]E['(a, m)o-x]} of k-dimensional projections together, which may find
Ei(u(x .m), 0,, o.]'x a richer structure that a stepwise approach may miss,

e.g. see example 14.1 Huber (1985).

where o' represents the derivative of o at the point
(z in). Note that the multiplication by ' reduces 3 Comparison with other feature
sensitivity to outliers of the differential equation since extraction methods
for outliers a' is close to zero.

Based on this formulation, a network of Q identical The problem of feature extraction for classification is
nodes, which receive the same input and inhibit each in some sense easier than that of feature extraction
other, may be constructed in order to extract several for density or function estimation. This is because the
features at once. A similar network has been studied only interesting features in such case are those that dis-
by Scofield and Cooper (1985). The activity of neuron tinguish between a finite set of classes. The common
k in the network is defined as cA: = x mk, where nk is features, namely those features that do not help in
the synaptic weight vector of neuron k. The inhibited making the distinction between classes are uninterest-
activity and threshold of the k'th neuron are given by ing, even though they may be very important for data

Fk r Cj,  6k = [ Ekj. compression, e.g. the self supervised back-propagation
= - 77 ,= J network in which the number of hidden units is smaller

j~dk than the number of input and output units (Elman &
Schematic structure of the network is given in Figure Zipser, 1989). The network presented in the previous
3. sections has been shown to seek multimodality in the
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projected distributions, which translates to clusters in all trained and tested on the same data. In back-
the original space, and therefore to find those direc- propagation, the only supervised method, the place of
tions that make a d'stinction between differe..( sets in articulation phonetic feature was used as a supervisor.
the training data.

In this section we explore the differences in clas-
sification performance between a network that per-
forms dimensionality reduction (before the classifica-
tion) based upon distinguishing features, and a net- .r

work that performs dimensionality reduction based
upon minimization of misclassification error. The per-
formance of the different methods will be compared
on a specific classification task: a phoneme classifi-
cation experiment whose linguistic motivation is de-
scribed below.

We looked at the six stop consonants [p,k,t,b,g,d] P
which have been a subject of recent research in eval- . .
uating neural networks for phoneme recognition (see
review in Lippmann, 1989). These stops posses several
common features, but only two distinguishing phonetic
features, place of articulation and voicing (table 1) (see
Blumstein & Lieberman for a review and related ref- , ...

erences on phonetic feature theory). 01 _

Place of Articulation

Vi Velar Alveolar Labial
Voiced gl d] [b

Unvoiced k J it] p.

Table 1: The two distinguishing phonetic fea-
tures between the six stop consonants.

Figure 4: The six stop consonants followed by
the vowel (a] for male speaker BSS. Their or-

The Linguistic information in the table suggests the der from bottom to top is [pa] [ka] [ta] [ba] [ga]

following experiment: A network is to be trained to [dal. Each token is represented by a 20 con-

reduce dimensionality from the unvoiced stops (p,k,t]. secutive time windows of 32msec with 30msec

In order to reduce variability in the dat, only a single overlap. In each time frame a set of 22 en-

speaker and a single vowel context is used. Therefore, ergy levels in Zwicker critical band filters are
the only distinguishing features in the training data computed. Notice the significant difference
are associated with place of articulation, since the fea- between the voiced and the unvoiced images.
tures that are speaker dependent, voicing dependent,
or context dependent belong to the set of common fea-
tures in the training data. A dimensionality reduc-
tion method that concentrates mainly on distinguish- The speech data consists of 20 consecutive time win-
ing features should find only the features associated dows of 32resec with 30mSec overlap, aligned to the
with place of articulation, and therefore become in- beginning of the burst. In each time window, a set
sensitive to voicing dependent and speaker dependent of 22 energy levels is computed. These energy levels
features, which are the common features in the train- correspond to Zwicker critical band filters (Zwicker,
ing data. This can easily be tested by evaluating the 1961).
performance on place of articulation classification of The consonant-vowel (CV) pairs were pronounced in
voiced stops and data from other speakers. isolation by native American speakers (two male BSS

For comparison, we have attempted to extract features and LTN, and one female JES.) Five tokens of each of
using three methods. principal components, back- the CV pairs used for training are presented in Fig-
propagation, and the above L.asupervised network, ure 4. Additional details on biological motivation for
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the preprocessing, and linguistic motivation related to carried out by several researchers (Rimey et al., 1986,
child language acquisition can be found in Seebach Reilly et al., 1987, 1988, Zemani et al., 1989), and
(1990), and Seebach and Intrator (1990). using the unsupervised charge clustering network by

Scofield (1988)

_______Five features/directions were extracted from the 440
dimensional preprocessed speech vectors. These fea-
tures were the activation of five neurons in the unsu-

: rpervised network, the five principal components in the
PC method, and the five hidden unit activations in

W : back-propagation. The extracted features were used
- to train a k-NN classifier (with k = 3) to classify place

..... of articulation. Although the three dimensionality re-
duction methods were trained only with the unvoiced

tokens of a single speaker, the five dimensional k-NN
classifier was trained on voiced and unvoiced data from
the other speakers as well.

Classification using Fecaturei i ,, Extraction Nctwork

tensapevised Fca"are

~~~Training :-

Figure 5: The six stop consonants followed
by the vowel [a] for female speaker JES. Their
order from bottom to top is [pa] [ka] [ta] [ba]
[ga] [da]. Pre-processing is the same as above. g ..........
Notice that the same burst that appear in [ta] 20

is clear in the [dal as well.
InTut Units

Figure 5 presents five tokens of each of the CV pairs
pronounced by the female speaker JES. The classifica- Figure 6: Low dimensional k-NN classifier is
tion results obtained using BCM network and princi- trained on the features extracted from the
pal components methods, were better on this speaker, high dimensional data. Training of the feature
than on those obtained when testing the performance
on the speaker that was used in the training. This is extraction network stops, when misclassifica-

due to the very 'clean' sound that corresponds closely tion rate drops below a predetermined thresh-

to the acou-'ic features that are known (Blumstein & old on either the same training data (cross val-

Lieberman, 1984) to exist in these sounds. For exam- idatory test) or on a different testing data.
pie, this was the only speaker out of several that we
tested, in which the high frequency burst (top left cor- The classification results are summarized in table
ner) is clear for the voiced stop as it is clear for the 2. Several observations can be made from the results;
unvoiced stops. First, the principal components dimensionality reduc-

The unsupervised feature extraction,'classification tion is clearly not sufficient in discovering structure
method is presented in Figure 6. Similar approach us- for this kind of data, suggesting that the structure is
ing the RCE and back-propagation network hae been highly non linear. Second, the back-propagation net-
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work is doing well in finding structure useful for clas- Regarding the speech experiment, the network and
sification of the trained data, but this structure does its training paradigm present a different approach to
not concentrates on distinctive features solely, it also speaker independent speech recognition. In this ap-
contains speaker dependent and voicing dependent fea- proach the speaker variability problem is addressed by
tures, and therefore has degraded classification perfor- training a network that concentrates mainly on the dis-
mance when tested on voiced data, or data from other tinguishing features, on a single speaker, as opposed
speakers. This can also be viewed as a generalization to training a network that concentrates on both the
problem, in which case one can say that the network distinguishing and common features, on multi-speaker
is overfitting to the training data. Third, classification data.
results using the BCM network for dimensionality re-
duction suggest that for this specific task, structure Acknowledgements
that is less sensitive to voicing features can be ex-
tracted, even though the network was trained on the I wish to thank Leon N Cooper for suggesting the prob-
unvoiced data only and voicing has significant effects lem and for providing many helpful hints and insights.
on the speech signal itself. Geoff Hinton made invaluable comments that made

this manuscript much more readable, The application
of BCM to speech is discussed in more detail in See-

Place of Articulation Classification bach (1990) and in a forthcoming article (Seebach and
P-C B-P BCM Intrator, 1990). The back-propagation experiments

BSS /p,k,t/ 66.0 100.0 98.6 were done by Charles M. Bachmann.
BSS /bgd/ 57.4 73.3 94.0 Research was supported by the Office of Naval Re-
LTN /p,k,t/ 60.0 95.8 98.9 search, the National Science Foundation, and tie
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Mathematical Appendix It follows from the definition of Lm and from the def-
inition of 6.. that

In this section we develop the statistical formulation (X.m)
that yields the loss function presented in section 2. Lm(Z, 6m) = (s, Em)ds

Let (fl.F, P) be a probability space on the space of
inputs fl with probability law P. Let A = {0, 1} be = -3{(m)E[( 21](x • M)2}.
a decision space, in the case of a single neuron a zero

decision means that the neuron does not fire. Let m We can write Lm(x) instead of Lm(x, 6m) when there
be a vector of parameters such as the one described is no confusion.
above, and assume that it lies in a compact space BM.
This parameter space defines a family of loss functions,
{Lm,}mnEBM, Lm f x A i-* R. Let D be the space Ro(6o) = -L{E[(x . m)3] - E2 [(x • m) 21}.
of all decision rules. The empirical risk (average loss)
Rm : V -4 R, is given by: Since the risk is continuously differentiable, its mini-

mization can be done via the gradient descent method
a with respect to m, namely:

Rm(6) = P(x(i))Lm((i),(x())) Omi a
i1 t -- Rq(6o) = 1 E[q(x. m, Or.)xi].

For a fixed m, the optimal decision 6m is chosen so
that: Notice that the resulting equation represents an av-

Rin(b6m) = min{Rn(b)} eraged deterministic equation of the stochastic BCM
6EV modification equations. It turns out that under suit-

Since this minimization takes place over a finite set, able conditions on the mixing of the input x and the

the minimizer exists. In particular, for a given x(i) the global inction p, this equation is a good approxima-

decision 6..(()) is chosen so that tion of its stochastic version (Intrator, 1990b), namely:
Or

Lm (P)', bm (P))) :5 Lm (x('), I - 6mn(P)')). a- ft O(X - m, m)xi.

At this point Rm(6m) is a risk function that depends
only on the vector of parameters m, and assuming Rm
is bounded, it is natural to seek a parameter irz that
minimizes Rm, namely,

Ra,(b,)= min {Rm(bm)}.
mEB

M

The minimum with respect to m exists since BM is
compact, and Rm is bounded. When m represents a
vector in RN, Rm can be viewed as a projection index.

Based on the above, let m, the synaptic weight vector,
be the parameter to be esimated, and consider the
following family of loss functions. The loss functions
depend on the cell's decision whether to fire or not, and
they represent the intuitive idea that the neuron will
fire when its activity is greater than some threshold,
and will not otherwise. We denote the firing of the

20
neuron by a = 1. Define K = -11 0 -(s, ,n)ds.
The loss function for a decision to fire is given by:{ fm) )(s, Om)ds, (x > m)
Lm(x, 1) AIK - p ,(m ( s, Om )ds, (x " m) < Om ,

and for the decision not to fire by:

m) L (s, Gm)ds, (x . m) < G.,
LKf(ZO) a - e Am SK - A f),,)ds, (x -m)> E),..
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and the complexity of signal variability, that has to be in
Abstract some way "filtered out" in the search for invariance. A

key problem is variability due to context: a phoneme isThe acoustic-phonetic decoding of speech is not realized in the signal independantly of the neighbour
particularly difficult because of the signal phonemes, and the contextual effects - coarticulation in
variability with phonetic context (coarticulation general - can expend on quite long durations.
mechanisms, linked with economy principles This is of course linked to the fact that the speech
which rule the functioning of the speech motor acoustic sgnal is a temporal signal, which means that
system). We try here to apply the basic principles time is crucial in speech processing: hence the success of
introduced by Jordan - driving motor systems statistical models where time relationships are taken into
with excess degrees of freedom by sequential account, such as HMMs or, more recently, the MLP-
networks - in modeling coarticulation. We use an based Time-Delayed Neural Networs.
articulatory model - the "forward model" -
elaborated by Maeda, allowing the passage from More deeply, the problem is th, t_.z creech signal is a
five articulatory parameters (jaw, lips, tongue biological signal, produced by a s .A1,. acting with its
body, tongue dorsum, tongue tip) to formants own rules, one major rule being the resp .; of econom,
(acoustic resonances) in the speech signal. Our principles (smoothness of gestures, whatever the contei.
work proposes an analytic progressive of this concept).
implementation of Jordan's concepts: we attempt In this respect, Michael Jordan's work on sequential
to isolate in the sequential network various networks and their use to pilot motor systems with
functionalities, and to see in each case what is excess degrees of freedom thanks to constraints specifiednecessary, and what is problematic. Finally, we in very general terms is quite influential. The basic aimshow that such a structure is indeed able to predict of the present work is to apply these principles to

modeling of coarticulation phenomena in speech. More
1 INTRODUCTION generally, it will be able to introduce general constraints

within the framework of a onnectionist control system
Acoustic-phonetic decoding belongs to the classical set driving an articulatory model, in order to produce
of problems where a bridge has to be designed between increasingly complex speech sequences.
the physical world and the mental world - or between
signals and symbols, or retween continuous and discrete 2 GENERAL PRINCIPLES
objects. However, the passage of this gap is particularly The general framework of our present research direction
difficult in the case of speech, because of the specificity

319
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is depicted in Fig.1. Through the solide lines in this We assume, in a first approximation, that this feedback
figure, we have the flow of commands and signals during through hearing is too slow to be used in the control of
speech production. The Mental Targets are some kind of ongoing utterances. However, the auditory information
abstract representation of the utterance (or parts of it). will be helpful for the latter learning of the Motor
They specificy the phonological task for the Motor Planning. Indeed, once the Forward Model achieves
Planning feedfoiward controller which, in turn, is learning, the essential characteristics of the physical
responsible for the generation of the complex spatio- system are modelled. This has the additional advantage
temporal pattern of muscle activation. These commands that it is possible to infer the correction of errors in the
will ultimately produce an acoustical signal. Motor Planning based on the knowledge of how far the
The dotted paths in Fig.1 stand for the flow of actual output (speech signal) is from the specifications
information during the learning phase. We hypothesize (Mental Targets). This is essentially the backpropagation
the existence of a Forward Model somewhere in the paradigm.
Central Nervous System. This Forward Model is an The problem of learning the Motor Planning is ill-
internal mapping between the articulator activations and posed, due to the many-to-one mapping accomplished by
the final acoustical results, taking into account both the Forward Model. It can be regularized by the
kinematics and dynamics of the physical system. The introduction of constraints which enable the selection of
learning of this mental representation is done through one solution. The constraints precisely consist of
babbling, thanks to the auditory feedback. economy costs which orientate the learning of Motor

Planning towards smooth trajectories.
Although proprioceptive feedback appears to play an
important role in articulatory compensation during
external perturbation, we do not take it into account in
this paper. Our prime interest is just the study of

MENTAL [coordinative structures invoked in the realization ofMphonological segments. These coordinative structures areTARGETS pre-stored stereotype- of complex spatio-temporal
muscle activities in the vocal apparatus. In the actiontask theory, these two kinds of movement control, namely
pre-programmed trajectories and afferent feedback
control, are concurrently used to explain how animals

MdOTOR produce motion.

Three well-known connectionist principles induce the
' commands choice of the system architecture and the learning

procedures to be used. First of all, the paradigm of
learning-by-examples is useful to train the Forward
Model and the Motor Planning. Second, the principle of
error back-propagation allows the computation of inverse
kinematics and inverse mechanics, needed for solving the

proprioception shape indeterminate excess degrees of freedom problem. Hence
we use a class of back-propagation neural networks as

FORAR Vthe basic architecture. The total error function will
M TRACT involve both configurational terms and additional

economy terms for selection of smooth trajectories.
Finally, recurrent neural network architectures will be
helpful to obtain the proper treatment of time in the

"mental" acoustical acoustical sequence generation and in generalization.
signal signal The basic principles of this approach for solving motor

control problems have bcen introduced by Jordan (1988,
-.. 1989, 1990). The present work intends to apply these

nervous system physical system principles to speech production. Nonetheless, we
propose a slightly different methodological program,
somewhat more analytical. We shall try to break down
the whole problem in a number of more tractable ones.

Figure 1: General Framework Besides the straightforward advantages of this approach,
we will be able to test the limits and potentialities of
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each basic assumption of our work. In the following by an input-output function, but by solving complex
sections we deal with each of these sub-problems systems of non-linear equations. Instead of using a code-
separately: book as complete as possible to describe the transform
* In Section 3, we quickly present the model of the extensively, as Larar et al. do in their simulations, it is
vocal tract that we use in this study and its somewhat more straightforward to use an analytic

approximation by neural networks for realizing the interpolation as can be learnt by classic MLPs (the
typical association problem). This is the forward modelForward Model, and we show how smooth gestures can introduced in Section 2.

be learnt on this model, by optimizing cost functions on
trajectories of articulatory parameters with a back- The input-output pairs used to train the forward model
propagation algorithm; come from a two-step procedure. First, vocal-tract shapes

* In Section 4, we show how time could be controlled in are computed by a realistic model developed by Maeda

the system, by describing an original experiment on (1979). This model was designed from a knowledge-

learning and generalization of oscillators at controlled driven principal-component analysis of X-ray sagittal

frequencies; cuts of a given speaker. It realizes the passage from five
articulatory parameters (jaw, tongue body, tongue

• In Section 5, we show how a simple non-recurrent dorsum, tongue tip, lips closure/protrusion) to the whole
MLP can learn to transform a stereotypic oscillation sagittal cut. The second step consists in the
trajectory into a set of complex articulatory and acoustic computation, by means of an electrical-line analogy, of
gestures - conversion of simple into complex the acoustic transfer function of a multi-tube model
movements - depending on an input coding the whose area function is computed from the sagittal cut
sequence; (Perrier et al., 1990). The first three resonance
* Finally, we show in Section 6 how a complete frequencies (formants) of the transfer function are then
sequential network driving the articulatory model can estimated through all-pole modeling. Hence, the
indeed learn to produce vowel-to-vowel sequences and articulatory-to-acoustic transform to be learned associates
exhibit plausible coarticulation effects, five articulatory parameters (commands of Maeda's

model) to three acoustic formants.
3 FROM ACOUSTIC SIGNAL TO With this whole model, we prepared a 1500-large

ARTICULATORY GESTURES: THE training database covering all the eleven French vowels
ROLE OF CONSTRAINTS and their neighbourhood in the three-formant space, and

Like in robotics, the inversion in speech (i.e. recovery of we attempted to design a neural-like forward model
the articulatory gesture that generated a given acoustic fitting these data. Previous work (Bailly et al., 1990a)
trajectory) is an ill-posed problem. Indeed, Atal et al. showed that a polynomial approximation can yield quite
(1978) showed the many-to-one property of the a good fitting, and a second-order polynomial represents
articulatory-to-acoustic transformation, through the the best trade-off between simplicity, stability and
concept of "articulatory fiber", a path in the space of accuracy. The forward model we used in this study
vocal tract configurations along which the acoustic result contains three output units directly receiving signals
(formants) is constant. Notice however that some key from the five input units, the net input of these output
characteristics of all vocal tract shapes within a fiber can units being a linear combination of the first and second-
be more or less invariant, namely position and area of order terms of the input signals ("quadratic units"). This
the main constriction, and lip area (Bod & Perrier, is a special case of the sigma-pi units introduced by
1988). Larar et al. (1988) used dynamic programming Rumelhart et al. (1986).
techniques to solve the inversion problem. They added
costs to transitions in the articulatory space, allowing 3.2. TECHNICAL IMPLEMENTATION OF
the selection of an "optimal" path in this space. In this CONSTRAINTS
section we describe an error back-propagation approach First of all, it is important to note that the forward
to the inversion task and we show how general temporal model we use is purely geometrical and that the concept
constraints can be introduced in the formalism of neural of force appears nowhere. Therefore, we are at the present
network training, state unable to apply constraints related to the dynamics

of the speech articulators, restricing ourselves to a class
3.1 FORWARD MODEL of kinematic constraints. They can be either spatial
One way to back-propagate errors in the speech inversion (targets in distal coordinates, rest position attractors), or
task is to find an analytic description of the aruculatory- temporal (minimal kinetic energy, minimal jerk, among
to-acoustic transform, in order to calculate derivatives. It others).
is however impossible to do it directly, because the A connectionist model suitable for optimizing
second step of this transform (see below) is not defined articulatory trajectories is shown in Fig.2. The trained
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forward model is included in the top of the network and
its weights do not change during optimization. To
simulate an articulatory trajectory of length N, we frequency
connect each articulatory unit to an input layer with N (bark)
units which are sequentially activated, taking the value
one when active, and zero otherwise (for sake of clarity,
we display the connections for only one articulatory unit / F3
in Fig.2). Each unit performs a linear combination of its
inputs. Hence, the weights of connections, which are
optimized by back-propagation, represent the articulatory F2
trajectory itself. - MEF
The first class of error terms to be back-propagated WM0Fl
concerns the configurational task to be accomplished at
the output of the forward model. An example of acoustic time
specification through time in the three-formant space is /i time
depicted on Fig.3. The horizontal straight lines stand for Figure 3: Configurational Specifications
precise target value specification, representing steady Phonological sequence/a u I a/
portions of the vowels. Filled rectangles appear at each
vowel transition and represent intervals, inside which
error is zero and outside which error grows in a quadratic
way. Due to excess degrees of freedom in the forward

transformation, optimization carried out with only
configurational specifications can yield an infinity of
solutions. Temporal constraints help us find a "good"
one. The optimizing criterion is the minimization of
some physical quantities over the trajectories in the
articulatory space, like kinetic energy - integral of the
squar.d velocity over the whole trajectory - or jerk -
idem, replacing velocity by time derivative of the

F1 F2 F3 smoothness jerk acceleration. The ultimate result of the optimization
process will be "smooth" articulatory trajectories
producing an acoustic result fitting the configurational
specifications.

90D ] The way we can deal with temporal constraints in the
Maeda's model mapping d back-propagation formalism is also depicted in Fig.2. In

(forward model) d order to obtain the time derivative of an articulatorS - ddisplacement we simply connect a fixed linear unit to the

1000 0 'd corresponding articulator unit, the first one computing
articulators the difference between two consecutive values of the

second. Higher-order time derivatives can also be
obtained by means of the repetition of this procedure.
These units are considered as outputs and errors are back-
propagated through them. For instance, minimization of

100 the jerk is realized by specifying a target value equal to
I zero to the jerk units. Temporal constraints are

Sindistinguishable from configurational ones, in the point
of view of the back-propagation technique.

00 rThe two kinds of constraints, namely configurational and
-- L_ temporal, are inherently contradictory, as noticed by

Jordan (1990). Because the temporal constraints must
time not prevent the accomplishment of the configurational

task, we must weaken the influence of the smoothness
costs as learning progtsses. One way to do this is to

Figure 2: Network for Optimization of multiply each smoothness cost by a coefficient
Articulatory Trajectories proportional to the configurational cost. The total cost is
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a weighted sum of several costs and, as the During the production of the vowel /u/, characterized by
configurational cost vanishes, the total error goes down a strong closure/protrusion of the lips, the tongue
to zero. Fig.4 shows the evolution of these different anticipates - as much as allowed by /u/ - the following
costs during learning. Notice the long and slow training vowel, either /a/ or /i/, but the acoustic configuration
phase, after which the total error suddenly goes to zero reached for /u/ is the same in both cases. This shows
and smoothness is set to a final, possibly optimal, that general temporal constraints can be useful to explain
value. coarticulation, at least in our limited geometrical

framework.

In conclusion, it is worth saying that although this
.tote network can produce only a single sequence, it provides a

con sur°ione cost valuable way to test some hypotheses about constraints
. jerk cost and coarticulated articulatory trajectories. On the other

hand, we feel that direct approaches to optimize and store
S*...~ .*-'- ---- trajectories at the same time in connectionist, networks

- * c' (as is done in Sections 5 and 6) do not completely clarify, .........
the effects of smoothness constraints. Indeed, the

architecture of the network used to store learned
trajectories is itself a constraint to the set of possible
solutions we can find. This final remark validates the

..... .e. .. analytic approach we are pursuing.
... .. .. .

Figure 4: "Typical Cost Evolution
During Learning

/ og t ip

3.3 TEMPORAL CONSTRAINTS AND tCOARTICULATED TRAJECTORIES .. -
,' 0 "

All the simulations presented in this paper concern
I onue body

acoustic trajectories going from a neutral configuration j ----. _.- ___

corresponding to the vowel /a/ (schwa), towards the back .. ,

high rounded/u/, then either the front high unrounded --- .... 3rd forn..

or the low /a/, and back to the schwa. SAGTTAL cu -s- foren,
2nd forbent

Using a temporal constraint based on kinetic energy only .
generally leads to trajectories made of portions of (a)
movement with a constant speed from one target to the
next, and sudden changes of direction between these
portions. This is quite understandable, since it is easy to
demonstrate that the trajectory connecting two points and 1 1 ps
minimizing the kinetic energy is indeed a constant-speed
one. However, our complete trajectories are then tongue tip

characterized by infinite accelerations when a target is _ ongue dorsue
reached, in order to travel to the next one, and this is of

course not acceptable. ongue boj

Hence, we used a blend of jerk and kinetic energy E __ -_ ___°I

temporal constraints. This led to the results presented in 7- .

Fig.5. On the left half of Figs. 5a and 5b, vocal tract "-.. 3rd for nt

shapes are displayed. The upper solid line of the sagittal SAGITIAL CUT 2nd or. ...
cut represents the motionless upper boundary of the,, 

.....- '?..

vocal tract. The two lower lines (solid and dotted) stand
for the lower boundary of the vocal tract sampled at two (b)
different instants. These sample instants are showed with
corresponding line types on the right half of Figs. 5a and
5b where the evolution of the articulatory (top) and Figure 5: Simulated
acoustic (bottom) parameters are depicted. Articulatory/Acoustic Trajectories

(a) Sequence/a uea/ - (b) Sequence/aul 9/
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4 GENERATION OF CONTROLLED The chosen architecture precludes the use of simplified
OSCILLATORS BY SEQUENTIAL learning procedures like teacher-forcing since the desired
NETWORKS activation values of the hidden units are not a priori

known. We used a version of the back-propagation
4.1 THE NEED FOR OSCILLATORS through time (BPTT) algorithm to train this network
A key problem in Jordan's sequential networks lies in (Rumelhart et al., 1986; Williams & Zipser, 1990).
the control of time. Indeed, Jordan's single proposal in The simulation results are shown in Fig.7. The network
this respect is just an over- or under- sampling of a was trained to produce three different frequencies of
learned trajectory. This is of course not at all satisfying, oscillation during the 12 initial time steps following the
the more so since modifications of the time-scale of a application of the input. The actual output is plotted
given gesture in speech production lead to non-linear with solid lines in Fig.7. The periods of these training
modifications of the articulatory-acoustic trajectory oscillations were 2,4 and 6 time steps.
because of mechanical constraints (see the so-called The first nice property of our network is its capability to"non-reached targets" as first described by Lindblom, maintain relatively stable oscillations beyond time step
1963) and even to non-linear reorganizations of the 12 (see the dashed lines in the 1st, 3rd and 5th frames in
planning itself, in order to achieve perceptual targets Fig.7). The most astounding result regards the
(Abry et al., 1990). generalization ability. For instance, with an input value
Without addressing this problem in general, we propose corresponding to the middle between periods 2 and 4, we
that a first step lies in the possibility to explicitely have an oscillation with a period of exactly 3 time steps.
control time during learning, and that oscillators
controlled in frequency could provide a good basis for so
doing. This strategy may be confirmed on physiological
grounds by the ability of neurons in the inferior olive
and the thalamus to oscillate solely or through inter-
neuron coupling at a frequency which may be controlled output unit
by transmitters (Llinas, 1989; Adams & Benson, 1989).

4.2 THE VCO EXPERIMENT
In this section, we show how to train a recurrent neural
network to behave like a Voltage Controlled Oscillator r 000 hidden layers
(VCO). Basically, a VCO is a system that can oscillate
at different frequencies tuned by an input signal. This
input signal is assumed to be held constant during the
oscillations. The aim here is to test the capabilities of 0 input layer
this kind of network to learn and generalize complex
temporal behaviors. Figure 6: Network for VCO Generation
The structure of our network is depicted in Fig.6. The
hidden layers each possess three sigmoidal units. The
arrows in the figure represent full-connectivity among . ,,, , I
units in different layers. There are no connections •
between two units belonging to the same layer. The •.. i
links going from the righthand hidden layer to the other . .. ..
one pass through a delay, set to one time step. This i
architecture allows the mapping between states of the ___.......................___
running network (taken by definition as the activations IJ : ...... .on the lefthand hidden layer) to be equivalent to the " " ::;i. :::........;

mapping of a two-layer perceptron. 11 FA__..___,____.__":

The five units on the input layer are clamped with a. .
coarse-coded value representing the frequency at which " .. .: . -.
the network must oscillate. The smearing function is .f' .... * ""
triangular. The output layer is made of only one unit ".. .. :
which is also a sigmoidal cell with saturation values at . -
-1 and +1. Notice the two-layer passage from the input
units and state units to the output unit. Figure 7: VCO Simulations

Targets in solid lines, generalization in dotted lines
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During the simulations, the smooth interpolation model, so that the excitation trajectory in the state units
behavior appeared to be a rule, but the exact linear can be very complicated, v hich generally leads to long
relationship between the input value and the period of and difficult learning phases.
oscillation did not. Experimentations with a greater This led us test a simplified strv.ture in which an
number of units in the hidden layers showed that explicit 2D-oscillator - the "motor" - was introduced in
learning is speeded up at the expense of a degraded the system (see Fig.8). This oscillator provides the
generalization capability. In all cases the number of internal representation of time, just as the forward model
iterations to convergence remains quite high, typically provides an internal representation of space. It could of
around a thousand, due to the complete gradient course be generated by the model presented in the
calculation. previous section, but it simply consists here of two cells
5NON-LINEAR TRANSFORMATION which respectively deliver a cosine x(t) and a sine y(t)OF A SIMPLE OSCILLATOR function, so that the point M(x,y) which represents the

TRAJECTORY INTO COMPLEX motor moves along a fixed circle in the (x,y) plane.

GESTURES The corresponding simulation is based on the
An oscillator was in fact already introduced in the first assumption that producing vocalic gestures is seen as a
version of Jordan's sequential network (Jordan, 1988). highly non-linear transformation of the motor signalsvnder hisi o k ordn e tioal networ (Jod, 1 .a delivered by the simple oscillator, the frequency of which
Indeed, his work on realization by an arm model of a controls the speech rate. This approach is consistenttrajectory linking the four comners of a rectangle shows with Fowler's model of overlapping gestures (Fowler,

that learning is much easier when the network involves
two state units connected between each other to produce 1980) and the hypothesis of a relative invariance of the

a resonant second-order filter, hence an oscillator. vocalic gestures to consonantal perturbations as put

However, this filter is fed with the output of the forward forward by Ohman (1966).
In this model, the control layer consists of three inputs,
two for the oscillator and one that codes an entire vocalic
gesture. The model appears to be able to learn two
vocalic gestures (/ua! and /ui/ with the same structure

F1 F2 F3 and two different input codes. However, it is at the
l rmnt present state of our work relatively hard to observeformants coarticulation phenomena like those discussed in Section

3. The network tends to find the same articulatory
FORWARD realizations for/u/in the two different vowel contexts in

MODEL spite of the additional smoothness constraints. This is
(Maeda's model) due to the explicit time representation both in the motor

and in the configurational task, and we are currently
investigating how to train this network in a suitable

articulators way.
However, we think that this approach is very promising,

(j.iw,tongue do nd lip, because the rate of convergence is largely higher than
tongue dorsum and lips) that obtained with the complete model described in the

next section. Notice finally that such a structure could
provide a basis for a kind of "modular central pattern

IO0 O©OOOO0 1 hidden layer generator" (see Grillner, 1985; Grillner et at., 1989),
able to produce patterns of increasing complexity from
simple ones.

[IM1 6 COMPLETE MODEL
Having separately tested all the main components of the

mal system (the forward model, the use of generalized cost
task functions for production of smooth gestures and hence

[ /ua/ coarticulation, the concept of motor oscillator, the
0 =loaf possibility to convert a simple pattern into a complex

one), we finally tested a complete - and classical -
sequential network connected to Maeda's articulatory

Figure 8: Network for Conversion of Simple Motor model, for generation of ,owel-to-vowel sequences. The
Cycles into Complex Trajectories structure of the model is like the structure of the VCO
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net presented in Section 4. An important point is that 7 CONCLUSION
the recurrent connections to the state units are fed with This work only constitutes the preliminary phase of
the output of cells of the first hidden layer, and not the long-term research into modeling speech dynamics with
articulators themselves: this has the interest, between reliable models of the vocal tract, general principles
others, to create an internal state representation inspired by theories of motor control and technical tools
independent of the distal coordinates. This is useful in available in the field of connectionism. In its present
the case where several trajectories share a common piece state, it contains three main achievements: (i) show the
of trajectory and the identification of the trajectory being feasibility of the approach in the field of speech
produced cannot be obtained from the piece of trajectory production, and the possibility to produce coarticulation
alone, phenomena by driving Maeda's model with a sequential

The final results are presented on Fig.9 (same network trained with BP algorithms; (ii) show the
presentation as in Fig.5). We observe that it was potential interest of explicit concepts that were only
possible to generate two sequences with the same implicit in the original structure, such as those of
structure and two different inl uts, and that this model oscillators, motors and movement conversion; (iii) give
does generate coarticulated gestures (compare the shape the possibility to separately ,-st the role of tenporal
of the vocal tract for/u/in the first and the second case). constraints and the choice of architectures in simulation
This constitutes the major achievement of this work: it of coarticulation.
appears that the sequential model structure is indeed able There are now a number of perspectives for continuation
to drive an articulatory model for speech production, and of this work. First we have to think more about the
to exhibit coarticulation phenomena compat.,be with the coding of time in this kind of architecture. Second, we
classical experimental data in this field. shall try to introduce mechanical constraints, such as

inertia, forces, losses, (see Perrier et al., 1988) to
produce other kinds of coarticulation effects (non-reached
targets for example). Third, we must more clearly define

lips the phonological entities at the input, and estimate theIstorage and generalization abilities of the network.
Fourth, we shall extend our results on vowel-to-vowel

-'..t n.. - do, gesture to more difficult cases such as superposition of
i o0gue€ b+U vocalic and consonantal gestures (Ohman, 1966).

Finally, we want to introduce proprioceptive and
possibly auditory feedback for on-line control and

... ....... readjustments in reaction to perturbations (see Bailly et
3d for no t al., 1990b, for a first try).
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Extracting features from faces using compression networks:
Face, identity, emotion, and gender recognition using holons

Garrison W. Cottrell
Computer Science & Engineering Dept.

University of California, San Diego
La Jolla, CA 92093

the nonlinearities of the hidden units to produce a com-
pact code even when the PCA solution is degenerate. An

Abstract example is the original version of the encoder problem

We summarize a series of experiments using (Rumelhart, Hinton & Williams, 1986), where all input
simple autoencoder networks to extract vectors are orthogonal.
features from 64x64 face images. For our The recognition of each other as individuals is probably
data sets, these networks are capable of ex- one of the most complex tasks that we perform, and one
tracting features that are linearly separable that is still poorly understood. While our ability to recog-
with respect to several classification tasks. nize friends seems effortless, as we leave the ground of
We demonstrate the ability of these networks highly familiar, frequently observed faces, we find a pro-
to extract information relevant to the cess that is prone to error and highly context-dependent.
identification of faces from non-faces, identi- Neurophysiological studies on monkeys (Desimone et al.,
ty of the faces, sex and feigned emotional 1984). have found cells that are probably involved in this
state. Also, we show how such networks can task in the Superior Temporal Sulcus. The findings sup-
be used to form a basis for association of port the notion of specialized "face cells", that respond
codes from different modalities, forming the best to faces presented frontally, and respond well to hu-
basis for meaning representation in terms of man and monkey faces, faces lacking color, and faces
association between mental imagery and with the eyes blanked out. They do not respond to just
linguistic codes. Finally, while the mechan- the outline of the face, or the face outline filled with
isms and architecture are only distantly relat- scrambled features or monkey hair. The response of
ed to cortical mechanisms, they show how a these cells drops gradually as the face is rotated away
representational element could be a "distri- from the frontal view. The question is, are these the pro-
buted grandmother cell", i.e., how a distribut- verbial grandmother cells? Counting arguments suggest
ed representation may appear localist when that they could not be, or they would not be discovered so
only one cell is examined at a time. easily. Hence they must be part of some distributed

representation.
I INTRODUCTION The work presented here describes a model that suggests

In this paper we review results from several experiments a resolution of this dilemma by describing how a neural
that share the feature of using an encoder network - a net- representation could have face-ike receptive fields, while
work that does an identity mapping through a narrow still being distributed across a population of cells. Since
channel of hidden units - to extract features from images the model is not faithful to the architecture of the visual
of human faces. The features are thus extracted in an un- system, no claims are made that this is how it is actually
supervised manner, since the "teacher" for the network is done by the brain - it is simply a demonstration of how a
the input itself. This shows how much can be done by a distributed representation may appear localist when only
network that simply tries to preserve as much information one cell is examined at a time.
(in the mean squared error sense) as possible in a narrow
channel. Such networks have been shown empirically to 2 COMPRESSION NETWORKS
span the principal subspace of the images (Cottrell &
Munro, 1988; cf. Sanger, 1989) when the hidden units Cottrell, Munro & Zipser (1987) showed that a back pro-
stay in their linear range, but differ from Principal Coin- pagation network could be used for image compression.
ponents Analysis (PCA) in that they are capable of using The network is trained to simply reproduce its input, and

328
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so can be seen as a non-linear version of Kohonen's 3.1 EXPERIMENT 1: FACENESS, GENDER AND
(1977) auto-associator. The input must be reproduced IDENTITY
through a narrow channel of hidden units, so the network
learning algorithm must extract regularities from the i 3.1.1 Data Set
put vectors. Empirical analysis of the trained compres-
sion network shows that the hidden units span the princi- In the initial experiment, performed with Michael Flem-
pal subspace of the image vectors, with some noise on ing (Cotrell & Fleming, I90; Fleming & Cottrell,
the first principal component due to network nonlinearity 1990), we obtained 5-20 images each of 17 people, and
(Cottrell & Munro, 1988). When linear networks a 1e99)ve obtaie images each ofa17spee anused pefec spanin ofthe ubsaceis ahieedseveral non-face images. The face images were taken
used, perfect spanning of the subspace is achieved, such that brightness, position of the eyes, and size of the

Although the network uses error-correction learning, no face were held roughly constant. This was done by ask-
teacher other than the input is provided, so the learning ing subjects to maintain a position such that their eyes
can be regarded as unsupervised. Cottrell et al. suggested and noses lined up with markers on the monitor, and ad-
that this network could be used for automatic feature ex- justing the camera so that their chins were approximately
traction in a pattern recognition system. This is the ap- at the bottom of the screen. Subjects were asked to make
proach taken in the experiments reviewed here. different expressions, and if they wore glasses, images

were taken with glasses on and off. If they had long hair,
3 FACE RECOGNITION USING images were taken with this pulled back and let down.

COMPRESSION NETWORKS This resulted in a set of 204 face images. 27 non-face
images were obtained by taking random shots around the

The model is shown in Figure 1. lab. Some examples are shown in Figure 2.

Figure 1: Basic model. The compression network (left)
is 64x64. Hidden unit outputs are given as
input to single layer classification network,
(right).

The image compression network extracts the features,
and then the hidden unit representation so developed is
given as input to a single layer network which is trained
to extract the desired classification depending on the ex-
periment. If it can achieve this, then the representation
developed by the compression network must necessarily
be linearly separable with respect to the classification
desired. We start with a 512x512 pixel image, using 256
gray levels, and reduce via averaging to a 64x64 pixel
image. Unlike the original image compression network,
the whole image is input at once to our network, so the
input layer is 64x64. (For mundane reasons, the inputs in
the first experiment described below were actually
61x63.) Depending on the experiment, various training
sets, learning rates, and numbers of hidden units were Figure 2: Some elements of the training set for Experi-
used. ment 1.
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A set of 11 people were chosen to be the "familiar" set, tion, except at the top of the image, where a 29% error
with 6 subjects reserved for a "novel" set. For the train- rate on identity was obtained, suggesting that the network
ing set, half of the images of the familiars were selected is using the forehead of the subject as a discriminator in
randomly (64 in all), along with 13 of the non-face im- many cases. Subjects differed considerably here with
ages, resulting in a training set of 77 images. No pre- respect to how much of their forehead was obscured by
normalization other than the initial capture procedure was their hair, whether the boundary of .te hair was smooth
used on the images. The compression network used [0,1] or ragged, and and whether their hair was straight or cur-
sigmoidal units at the hidden and output levels, and the ly.
256 gray scales of the original images were linearly The compression network may be tested as a memory
scaled into the [.2,.8] range. and representation network for faces by giving it novel

3.1.2 Training faces and observing how well it represents them by look-
ing at the output of the network. This ability is highly

In the experiment reported here, we used 80 hidden units. dependent in this experiment on the training set, because
Thu there erent reoted here, wma u hidden unit ns, the number of subjects is small. We show an example inThus there were about as many hidden units as patterns, Figure 3. The space spanned by the hidden units does not

and the network could have formed a localist representa- capure uj T A e we. W x th at a nt
don.Thenetork wee taine intwostaes.The capture subject TA very well. We expect that a network

tion. The networks were trained in two stages. The with many more hidden units and a more diverse trainingcompression network was trained for approximately 200 set would be able to represent a much larger set than the

passes through the entire training set. Then the weights strning subjects.

in this network were given tenure (Fahlman's term), i.e.,

no more learning occurred. At this point the error aver-
aged 225 squared gray levels. The classification network
used [-1,1] units, and was trained to classify the hidden
unit representations of these images from the compres-
sion network into face/non-face, male/female, and identi-
ty, using localist output units for each feature.

3.1.3 Results

The model may now be tested in several ways. The im-
portant first test is whether the compression network can
form linearly separable classes with respect to the dif-
ferent classifications attempted. This is important with Figure 3: Example of the reproduction of a novel face.
respect to the training set, since the features so derived
were not derived for classification purposes, but simply
to extract as much information as possible with respect to
mean square error in the output. Our criteria here is that
if a classification unit is over 0 in activation, it is on, oth-
erwise it is off (these units were [-1,1] units). For the
training set, the network achieved 100% performance by
this criteria.

The second test is whether the network can recognize
novel images of familiar faces. The network achieved
over 98% performance on 65 familiar (but never trained)
faces in both name and gender classification using The
network misclassified one female face's name and
gender. A second generalization test is whether the net-
work can recognize completely novel faces as faces, and Figure 4: An example of redintegrative memory: Re-
classify them according to gender. There were no errors covering the whole from a partial input.
with respect to faceness, but 26 out of 70 female images
were classified incorrectly as male. The network may also be tested as a redintegrative

Finally, the classification network can be tested for its memory by distorting familiar patterns (using the gray
ability to recognize faces with bars through them and oth- bars as above) and observing how well it recovers the
er kinds of distortions. Using the untrained-on familiar originals. It should do well at this task, given the recog-

set, and the same criterion as before, we obscured one nition rates for such images, and it does. An example is
fifth of the image with a gray bar at five locations, one for given in Figure 4. Again, this is an image that was not
each fifth of the face. This had little effect on recogni- trained on, although other images of this subject were. It
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is completing the pattern based on the stored information tion prevents having holons for a "room", simply because
about this person's face. we can not get a room to fill but not extend beyond our

sensory surface at once. Given this meaning for the term,
3.1.4 Internal Representation the units of area 17 are not holons, but the units in Supe-

rior Temporal Sulcus (STS) are. The main motivation for
What is the hidden unit representation? First, the hidden this definition is to give an alternative notion to the
unit activation patterns are essentially binary: A histo- grandmother cell one for face cells in STS (Desimone et
gram of the hidden unit representations shows that almost al., 1984).
all are either above 0.75 or below 0.25 for all presenta- In any event, the hidden unit representations developed
tions (i fact most are within .1 of full off or on).Second, even though a localist representation would by our network are full-face features, yet, they are not
suffice, the representation is distributed. Histograms of person-specific. The network does a kind of distributed
the hidden unit activations for individual subjects show template matching process. We can test the specificity of
that roghyi h unitations for indfor most faces the representation by driving the recognition netwok
that roughly half of the units are on fwith each hidden unit, or holon, separately. For example,
We can convert the receptive fields of the hidden units to holon 75, when used to drive the recognition network,
gray scale (with multiplicative enhancement) for viewing generates a response that is about equally divided
purposes. Figure 5 shows several of the hidden unit re- between two subjects, one male and the other female,
ceptive fields. As can be clearly seen from this figure, who have similar facial characteristics. Also, holon 70
the "features" discovered by this network are not simple most resembles Mike Fleming, yet when this unit is used
discrete features such as ratios of distances. Nor are they to drive the recognition layer, the strongest response is
simply templates of a single person's face. Thus the term from a female's name unit.
holon (suggested by Janet Metcalfe) seems appropriate.
As a first attempt at definition, we will call any represen- 3.2 EXPERIMENT 2: EXTRACTING FEIGNED
tational element a holon if its receptive field subtends the EMOTIONAL STATE
whole object whose representation it is participating in.
A preferable additional constraint is that the information
in a set of holons in the ideal case be maximally distribut- 3.2.1 Data Set
ed: I.e., the entropy of any unit is maximized across the In this experiment, performed with Janet Metcalfe (Cot-
training set, although we have not demonstrated that here. troll & Metcalfe, forthcoming) a network as above %-as
The latter restriction eliminates grandmother cells, en- trained using 160 64x64 images of 20 undergraduate sub-
sures that the representation is noise resistant, and also jects who where asked to display (i randomized ore)
distributes the processing load evenly. A weak point of facial expressions corresponding to th, adjectives Hap-
our definition is the difficulty of defining precisely the fai tins pesednsleepy, angry, cnet
notion of a"whole object', py, sad, astonished, plesed, sleepy, angry, content,

bored. In this experimen4 the images were normalized to
have equal average brightness and variance. The net-
work had 40 hidden units, and used sigmoids in the [-I,1]
range. The gray levels were linearly scaled to the range[0..8].

3.2.2 Training

The compression network was trained for 50 epochs.
The speed-up was attained by using a very low learning
rate on the hidden units, .0001 vs .1 on the output units.
This prevented early "cell-death" resulting from changes
to the 4096 input weights forcing the hiddens into the.- flat
areas of the sigmoid, where learning is extremely slow.

3.2.3 Results and Discussion

Figure 5: Holons from experiment 1. Part of the training set and its reproduction by the net-
work is shown in Figure 6. The columns correspond to

This definition applies to many distributed representa- three of the eight different feigned emotional expres-
tional schemes, but does not apply to articulated ones sions. It is clear from this figure that even humans cannot
such as the Wickelfeatures used by Rumelhart and reliably distinguish between some of the feigned emo-
McClelland (1987) in their past tense model as these only tions displayed. The classification network can't either
represent portions of the verb. The whole object assump- (discussed below), but it can distinguish some of the po-
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sitive ones, and treats as similar nearby emotions in an tributed system, in order of importance (decreasing
emotional space defined by Russell (1980), based on mul- eigenvalues).
tidimensional scaling of subjects ratings of the adjectives
we used.

_ ,

I " L

L

S....... F,,re 7: Total response of 8 output u'its over all

faces for three positive feigned emotions.
Figure 6: Part of the training set and its reproduction Each graph is centered on correct response.

by the network.

The network learned to discriminate 94% of the training
set for identity. One woman was taken for another. Sex
discrimination was perfect. However, the observation
during data acquisition that negative emotions are poorly
portrayed was confirmed by the network's performance.
It could not reliably distinguish the four negative emu-
dons. The network was much better at detecting .esitive
states than negative ones (Figure 7). Further, for these
emotions, the network tended to blend two states that
were neaiby one another in Russell's emotion space.
This is evidenced by the shoulders in these graphs.
It is interesting that the compression network obtains a
very different representation in this study compared to
the previous one. First the units operate in the linear
range of the squashing function, so the first network is
basically extracting the principal subspace of the image Figure 8: Six holons from experiment 2.
vectors (Ce.trell & Munro, 1988; Sanger, 1989). View-
ing the hidden unit receptive fields as before results in
white noise. The representational elements may be con- 3.3 GRANDMOTHER CELLS V-R DISTRIBUT-
verted into a more interesting form by taking the princi- ED REPRESENTATION?
!al components of the hidden unit activations treated as
160 vectors, and running these through the decompies- The difference in the representation obtained in experi-
sion half of the network for viewing. The final images ments 1 and 2 is interesting. In the first experiment,
are normalized for brightness and variance in the same where the learning rate was much higher, the representa-
wiy as the training set. The first 6 are displayed in Fig- tion was basically binary, and the hidden unit receptive
ure 8. These are the underlying features used by this dis-



Extracting Features From Faces Using Compression Networks 333

fields were "face-like". In the second network, the hid- In this experiment, we show that a network can be
den units were basically linear, and because of that an presented with inputs representing names and faces of a
uninterpretable (to the human eye, without analysis) series of 10 subjects, and can internally generate
linear transform of the principal components was ob- representations that can be used to associate the two in-
tained. A single cell recording of one ot these units puts. This corresponds, in our view, to the learning of a
would va-r, smoothly across the range for different faces. grounded predicate sth as Name(OBJ-33, "Fred"), but
For the nonlinear representation of the first experiment, it has the added advantage of being abl- to generalize to
the cell would either fire or not for a given face. new instances of Fred (e.g., OBJ-43" .d forms a pro-

This suggests that the cells of the STS represent faces in totype of what Fred "looks like".

a manner similar to the representation obtained in the first 4.1 ARCHITECTURE
experiment, rather than the second. I.e., in Feldman and
Ballard's (1982) terms, they will be more like value units The associative network consists of four sub-networks as
than variable units. However the values represented are detailed in Figure 9.
not those of an individual face, but a blend of many
faces. That is, they are coarse-coded.

4 GROUNDING MEANING IN PERCEP-
TION Oct i,

In this experiment, conducted with the help of Chris FN

Haupt, we explored the ability of networks to classify in-
puts without an external teacher, in a variation of the ex-
periment suggested in (Cottrell, 1987), and similar to ,ac .. ou. ,
Chauvin (1988). The idea here is to explore the possibili-
ty of networks to form associations between differing
modalities, in an effort to provide a computational basis Figure 9. The associative network. On the left, the face
for grounding meaning in perception. compression net. It has 4096 inputs and 40

The basic idea of our model is that the learner is process- hidden units. On the right, the name
ing input from several modalities, extracting regularities compression net. It has 130 inputs and 10

from each modality, and forming associations between hidden units. In between, the hidden units of

elements in different modalities that co-occur often in the subnetworks that learn the mappings

time. We will assume that one of the modalities is audi- between the hidden units of the compression
tory, and that linguistically sensitive processes have al- networks. They use 5 hidden units each.
ready segmented the speech signal into tokens which we
will represent simply as strings of letters for convenience. Each sub-network is trained using the back-propagation
Self-supervised connectionist models have been algorithm. The face network, on the left of Figure 9,
developed that can segment streams of letters into words learns a compact encoding of the faces as in previous ex-
(Elman, 1990); similar results can be obtained for speech periments. The name network, on the right of Figure 9, is
(Doutriaux & Zipser, this volume), also a compression network, and can conceptually be

The other modality will be visual, and we will use the treated as learning the names in parallel with the face net-

compression network as our model of the visual input. A work learning the faces. The face-to-name network

more realistic network would do preprocessing on these (FN-net) consists of the hidden units from the face net-
images in the manner that the visual system does it, but wo-k, an internal set of hidden units, and the hidden units
for now, it ematters little what the actual inputs to our net- from the name network. It is trained to map hidden unit

foranowaitonattershlittle whatothetactualeinputs totourtnet-
works are - whether their inputs are preprocessed or not, activations of the face network to hidden unit activations
the point of this exercise is to demonstrate the idea that of the name network. The name-to-face network (NF-
automatically extracted internal representations from dif- net) works in a similar fashion. The NF and the FN net-
ferent modalities can be trained to evoke one another, works comprise the associative memory of this model.
becoming "prototype" attractors that can be considered
the basis of "meaning". However, the actual internal 4.2 DATA SET
representations formed, the speed of learning, etc., would The faces used for this experiment were eight faces of ten
change with a different input encoding. These are details individuals drawn from experiment 2 above. Half of the
that are not of import to the current simple demonstra- faces (a total of 40) for each individual were used for
tiof5. training, and the other half for testing. A name consisting

of five letters was assigned to each individual. Twenty-
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six prccessing units (one for each letter of the alphabet) For the cyclic training, the network was trained until the

were eniployed for each letter of the name. A localist en- total sum squared error at each stage of the cycle dropped
coding was used which consisted of turning on the unit to at least the level of the network with only unidirection-
correspi)nding to the letter in that position, and turning al training. An in depth study of the optimal epochs and
off all of the other units. There were a total of 10 names learning rates was not performed. In these experiments a
correslnding to the 10 individuals whose faces appeared learning rate of 0.01 was used for both the name-to-face
in the images, and the face-to-name networks. One thousand epochs

were found to be sufficient when training with 1, 2, or 5
4.3 TRAINING cycles per face-name pair. Five times as many epochs

were needed for 10 and 20 training cycles.
The tnining process was as follows: First the name and
face compression networks were trained separately. The 4.4 TESTING

-. face compression network was trained with a learning
rate of 0.01 for 1000 epochs which resulted in an average The trained network is tested by presenting a face or a
root mean square pixel intensity error less than 13 gray name to the appropriate side of the network and cycling

. scale levels (the original images are 255 gray level im- the activation. At any point during this process, the actu-
ages). The name network was trained in a similar al face or name represented can be "read out" from the
fashion. decompression network. The name that is closest in Eu-

After the face and name networks were trained they were clidean distance to that produced by the network is con-
given tenure. Then the FN and NF networks were sidered to be the name chosen by the network. If this isginen. Tchfen he tthe name associated with the face, then it is considered a
trainedcorrect choice by the network. Similarly, the closest face
activatios of the face network are obtained, and the tar- in Euclidean distance to that produced by the network is

get for this learning trial is the hidden unit activations of considered to be the fac chosen by the network. (This
the corresponding name in the name network. For the
name to face mapping, on each trial, for a particular may either be a test face or a training face). If this is one
name, one of the four faces of that person is randomly of the faces associated with the input name then it is con-

chosen and its compressed representation in the face net- sidered a correct choice by the network.
work is used as the target. As this is a one to many map- 4.5 PERFORMANCE
ping (one name to four faces for that name) the network
learns to produce the average of the faces in the training First we tested the trained network by presenting faces to
set for the named individual, the face net and cycling for 0 or more times. Table 1

We developed two training methods. In the first, we sim- shows the results of this test for unidirectionally and bi-
ply trained pairs of name and face representations in one directionally trained associative networks. The table en-
pass from one net to the other using back propagation. tries are the number of correctly chosen names (out of 40
We termed this "unidirectional training. In the second, trials). The name is the result of presenting a face and
the activations were cycled back and forth 1 or more cycling back through the face net the specified number of
times, using the original compressed representation on times before reading the output.
each side as the target, and changing weights on each for- For the unidirectional version, when the activation is pro-
ward pass from one side to the other. The first method pagated directly to the output of the name network
can be seen as a special case of the second, using 0 cy- without any cycling, the network chooses the correct
cles (or half cycles, if you prefer). The learning rate was nameu100y oflthe te A s the o rrscy

* decreased during the cycling process. This is in response through the network, however, the accuracy degrades un-* to the fact that as the networks cycle back and forth, be- throeventualnytstabilizesvat,60% after5cycles Thi
fore the pairs have been adequately learned, the error in t at ntall the ai of aces an names formi!the outputs gets progressively worse. These outputs are means that not all of the pairs of faces and names form

theoututsget prgresivly ors. Teseoututsare attractors when treated dynamically. This behavior is
the inputs for the next cycle. Thus, the network would be mimickon he test f aces.: mimicked on the test faces.
learning improper input-target associations if the weights
were changed with the same rate at later stages as they Networks with bidirectional training perform substantial-
are in earlier stages when the inputs are closer to the tar- ly better after several cycles than the networktrained uni-
get values, directionally. A bidirectionally trained network with 10
Using the half cycle method, the face-to-name network cycles of training maintained perfect recall of the ap-

achieved a total sum squared error of 0.27 after being propriate name for each face even after 50 cycles. Hence
trained for 500 epochs with a learning rate of 0.2. The ach pair is near a stable attractor. On unseen faces of

individuals in the training set the bidirectionally trained
name-to-face network stabilized at a total sum squared networks again exceeded the performance of the uni-
error of around 65 (an average error of 0.04) after 9000
iterations with a learning rate of 0.05. directionally trained network.



Extracting Features From Faces Using Compression Networks 335

Table 1: Table 1. Face to name association. A. Train- Table 2: Table 2. Name to face association. A. Train-
ing faces. B. Test faces. ing faces. B. Test faces.

- cycles in testing 0 :vcles in testing
0 2 5 so 0 2 5 so

0 40 33 28 24 0 10 9 8 6
I 40 40 33 29 1 10 10 8 75" 2 40 40 33 28 2 10 9 8 -

5 40 40 35 .9 q 5 10 9 9 7

0 40 40 40 40 a ,0 10 10 t0 ,0

20 40 40 40 40 20 10 10 10

(a) Training faces (a) Training races

I cycles in testing - cycles in testing

0 2 5 50 0 2 5 50

S0 37 30 25 22 0 10 9 7 6
1 37 35 z0 27 1 10 10 8 7

2 37 36 31 26 6 2 10 9 8 7

5 37 36 32 26 : 5 10 9 9 7

0 38 36 35 35 a o 10 10 10 10
20 37 36 36 36 20 10 10 10 10

(b) Testing faces (D) Testing faces

The second test of the associative network presents The reason the bidirectionally trained network performs
names to the name network, activating the face network better than the unidirectional version is that given a
hidden units through the name-to-face network. As in the name, the network produces the average of the
previous test this activation is circulated back and forth compressed representation of the training faces for the in-
for any number of cycles after which the resulting face is dividual with that name. The bidirectionally-trained net-
read out from the output layer of the face network. This work has been trained not only with face/name pairs, but
output is compared via Euclidean distance to the training with average-face/name pairs as well. Since the uni-
faces or the testing faces. Table 2 shows the results of directional network was never trained with the average
this test for unidirectional and bidirectional training of face it produces more errors in the name network when
the associative networks. The table entries are the mapping from the average face. This "slightly off"
number of correctly chosen faces (out of 10 trials). The representation has not been trained to produce the aver-
face is the result of presenting a name and cycling back age face, and the system does not form an attractor.
through the name network the specified number of times Figure 10 shows an example of the unidirectional net-
before reading the output. work producing the incorrect face/name after several cy-

As in the first test, the network trained unidirectionally des through the associative network. This is the readout
achieves 100% correctness on the training faces after 0 from the face compression network as the hidden units
cycles through the associative networks. This degrades cycle starting with the name JANEL. It eventually shifts
to 60% after 50 cycles. The network also achieves 100% to JAMES. (Note the similarity of these strings). Initial-
correctness on the untrained familiar faces after 0 cycles ly an appropriate face was produced by the network as
which then again degrades to 60 % after 50 cycles. As in was the correct name JANEL. Each cycle through the
the first test, the accuracy of the network when the activa- network resulted in a face that looked less like JANEL
tion is cycled through the associative networks improves and more like JAMES. Eventually the network produced
when it is trained bidirectionally. the average face for JAMES and also produced JAMES'
For both the training and test faces a bidirectionally name in the name network. All subsequent cycles contin-
F bttrainednetworkwing a est fccles ahrbidhteoy ued to produce JAMES. The bidirectional network pro-
trained network with at least 10 cycles through the asso- duced the average face for JANEL, and the name
ciative nets o each training pass produced an appropri- JANEL, on every cycle through the associative network.
atesfae efor every name, even after 50 cycles through the This behavior was typical for all of the face/name pairs
associative networks. presented that lost track. This is very interesting because
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it is indicative of how chains of association can occur. Cottrell, G. (1987) Toward connectionist semantics. In-
JANEL has "reminded" the network of JAMES. Our set vited paper in Theoretical Issues in Natural Language
of examples was small enough that the network can be Processing-3: Position Papers, Las Cruces, New Mexi-
trained to hold onto the faces, but in a realistically sized co. Reprinted by LEA (1989).
network, and with noise in the system, we can expect net-
works like this to "free-associate". Cottrell, G.W. & Fleming, M.K. (1990) Face recognition

using unsupervised feature extraction (1990) In Proceed-
ings of the International Neural Network Conference.

Cottrell, G. & J. Metcalfe (to appear) EMPATI: Face,
emotion & gender recognition using holons. In Advances
in Neural Information Processing, D. Touretzky, (Ed.),
San Mateo: Morgan Kaufmann.

Figure 10: Losing track of a face. Cottrell, G.W. and Munro, P. (1988) Principal com-
ponents analysis of images via back propagation. Invited
paper in Proceedings of the Society of Photo-Optical In-

5 CONCLUSIONS strumentation Engineers, Cambridge, MA.

We summarized a set of recent experiments that use Cottrell, G., Munro, P. and Zipser D. (1987) Learning
compression networks to extract features from environ- internal representations from gray-scale images: An ex-
mental stimuli. These networks were shown to often pro- ample of extensional programming. in Proceedings of
duce representations that were linearly separable with the Ninth Annual Cognitive Science Society Conference,
respect to various classification tasks. What remains to Seattle, Wa.
be done is a crucial control experiment: It may be the
case that the inputs themselves are linearly separable for Desimone, Robert, Albright, Thomas, Gross, Charles,
the classifications attempted in the first place. However, and Bruce, Charles. (1984) Stimulus-selective properties
there are two reasons for continuing interest in these of inferior temporal neurons in the Macaque. J. Neuros-
models should that test prove successful. First, they pro- cience, 4, 2051-2062.
duce a compressed representation which is useful for
many tasks, and practical applications need smaller input Doutriaux, A., & Zipser, D. (1990) Unsupervised
sets for fast learning and smaller VC dimension in the discovery of speech segments using recurrent networks.
classifying network. Second, as the last experiment In Touretzky, D., Elman, J., Sejnowski, T. and Hinton
shows, these networks can providc the basis for con- G.E. (Eds.) Proceedings of :he 1990 Connectionist
structing automatically internal representations that may Models Summer School. San Matco: Morgan Kaufman.
then be used as inputs or targets for other networks, al-
lowing associations between differing modalities to Elman, J. (1990) Finding structure in time. Cognitive Sci-
operate on smaller codes. ence, 14.

One interesting insight provided by these tests has been Feldman, Jerome A. and Dana Ballard (1982) Connec-
that representations must be considered as a whole before tionist models and their properties. Cognitive Science, 6,
one can determine whether they are distributed or local- 205-254.
ist. A scientist considering only the receptive field pro-
perties of one or a small number of the hidden units in the Fleming, M.K. & Cottrell, G.W. (1990) Categorization of
first experiment may conclude that there is a localist faces using unsupervised feature extraction. In Proceed-
representation, since the receptive field is similar to ings of the International Joint Conference on Neural Net-
whole faces. However, inspection of the network as a works, San Diego, CA, June, 1990.
whole reveals that the representation is distributed - each

cell participates in many face representations, and each Kohonen, T. Lehtio, P., Oja, E., Kortekangas, A., &
face is represented by many cells. Makisara, K. (1977) Demonstration of pattern processing

properties of the optimal associative mappings. In Proc
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under abnormal conditions, and thus shed light on the
mechanisms involved. Some of the experiments that

Abstract have been performed on frogs and goldfish include
The experimental evidence regarding the rotating, removing or transplanting fragments of retina or
development of topography and ocular tectum (for review see Udin and Fawcett (1988)),dominance in the visual system is reviewed, silencing electrical activity using chemicals such as
doinan c nevi isua systosemds arei , Tetrodotoxin (e.g. Schmidt and Edwards, 1983; Meyer,
and previously proposed models addressing 1983) and changing the properties of the visual
one or both phenomena are discussed. Two environment (Schmidt and Eisele, 1985; Cook and
new models, each addressing both problems Rankin, 1986).
simultaneously, are then introduced, and their
strengths and weaknesses compared. A particularly interesting case of a retinotopic mapping is

the pattern of ocular dominance stripes seen in
1 INTRODUCTION mammalian striate cortex. Fibres from the 2 eyes cross at

the optic chiasm and separate so that the left visual field
(fibres from the right half of each eye) maps to the right

1.1 THE BIOLOGICAL MODELING PROBLEM half of the brain, and conversely for the left visual field.
The problem of modeling the nervous system can be After synapsing at the lateral geniculate nucleus (LGN),
divided into two separate but related parts. The first is to where fibres from the two eyes are kept completely
understand how the complex but extremely regular separate in different layers, the fibres terminate in the
patterns of connections between neural structures come striate cortex, mostly contacting cells in layer IVc (for
about. The second is to understand how the resulting more details see Lund (1988)). In this layer, connections
neural hardware supports the computations underlying are laid out topographically, but in a pattern of
learning, memory and higher-level cognitive functions. interdigitating stripes. In monkeys, cortical cells are
This research addresses the first problem. almost entirely monocular in this layer, so that an

electrode traversing this region would be driven by one
One very prominent feature of many mappings in the eye and then the other in an alternating fashion
brain is that they are topographic (i.e. neighbourhood (e.g. Hubel and Wiesel, 1977; LeVay et al, 1985).
preserving): this applies to mappings from high Information from the two eyes is thus kept separate at this
dimensional spaces (e.g. space and orientation) to the 2-D stage, and is only brought together at later stages of
cortex as well as to mappings from 2-D spaces (e.g. one processing. Many other examples can be found where
retina) to the cortex. It is clear that there is not enough fibres from related sensory structures map to the same
genetic information to specify each connection explicitly part of brain in a segregated pattern, usually either stripes
as an entry in a weight matrix, therefore the brain must be or blobs.
using more general mechanisms. The task is thus to
understand what guiding principles the brain could be Amphibians and fish do not naturally possess a region of
using to set up these regular patterns. brain innervated by both eyes. However, experiments can

be performed which lead to fibres from one retina
One of the best studied examples of a topographic invading the space normally occupied solely by fibres
mapping in the brain is the refnotopic projection from from the other retina, and in these cases stripes can be
retina to cortex (higher vertebrates) or optic tectum formed. Such experiments include deflection of the optic
(lower vertebrates). Many experimental manipulations are nerve (Cronly-Dillon and Glaizner, 1974), implant of a
possible that allow sturly of the formation of this map third eye (Constantiie-Patoa and Law, 1978), tectal
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ablation (Law at.1 Constantine-Paton, 1980), and the - Binocular suture. Here both eyes are sewn shut.
formation of compound eyes (Fawcett and Willshaw, Surprisingly, stripes appear to form roughly as normal
1982). (e.g. LeVay, Wiesel and Hubel, 1980). 2

There is evidence that both chemical markers and • Reverse suture. Here one eye is shut for a time, then
electrical activity in nerve fibres play a role in the opened agai, and the other eye is shut. If this reversal
development of topographic mappings. Even though takes place during the critical period, the
crude topography between sheets of nerve cells can be set impoverished o.ular dominance stripes from the eye
up in the absence of electrical activity, a refined map will first deprived are able to expand and eventually (given
not form if activity is blocked (e.g. Archer, Dubin and sufficient time within the critical period) end up wider
Stark, 1982; Schmidt and Edwards, 1983). Blocking than the stripes from the eye that was initially open
activity also prevents segregation into dominance stripes (e.g. LeVay, Wiesel and Hubel, 1980).
(Meyer, 1982; Boss and Schmidt, 1984; Reh and Impulse blockade. Even if an eye is shut, there is
Constantine-Paton, 1985; Stryker and Harris, 1986). For still some spontaneous activity in retinal ganglion
reviews of the role of activity see Fawcett and O'Leary cells. Stryker and Harris (1986) investigated the effect
(1985), Udin and Fawcett (1988), and Constantine-Paton, on the pattern of stripes by blocking activity totally
Cline and Debski (1990). with Tetrodotoxin (TIX). When both eyes were thus
The fact that stripes form in the unnaturally produced treated, stripes failed to form.
cases mentioned above suggests that ocular dominance Artificial strabismus. Here the correlational
may be a side-effect of the application of more general
rules of cortical plasticity. It is argued that ocular structure of the inputs from the two eyes is disrupteddominance thus provides a key test for models of by making each eye view different parts of the world
development, in particular those concerning topography (Hubel and Wiesel, 1965). In this case, stripes formand orientation selectivity, that are sharper than normal: virtually no cells in thecortex can be binocularly driven. However, these

1.2 DEPRIVATION EXPERIMENTS changes occur more slowly than the changes
following monocular deprivation (Freeman, Sclar and

One property of ocular dominance columns that makes Ohzawa, 1982).
them especially useful for constraining models of
development is that in cats and monkeys their structure 2 COMPUTATIONAL MODELS
can be changed by altering the visual experience of the
animal. This provides a powerful tool for investigating These models fall into three classes: those attempting to
the role of experience in cortical development. The basic explain topography, those attempting to describe ocular
experiment is to change the visual input to one or both dominance, and those attempting to describe both
eyes for a period of time and then observe the effect of processes simultanusly. They will be discussed in this
this on both the pattern of stripes in the cortex and the order. It should be noted that another way of categorizing
effectiveness with which layer IV cortical cells can be the models is in terms of whether they refer to chemical
driven by each eye. It should be noted that in all the mechanisms, electrical mechanisms, or both, and this
experiments, effects in the cortex can only be seen when division is orthogonal to the above categorization. In
the deprivation occurs during the so-called critical addition, although understanding topography and ocular
period. This period is between about 3 and 6 weeks after dominance is related to both the development of
birth in kittens, and the first 6 weeks in monkeys (Hubel, orientation selectivity (e.g. Barrow, 1987) and the pattern
Wiesel and LeVay, 1977).' A sample of the procedures of orientation columns across the cortex (e.g. Durbin and
used and their effects are as follows. Mitchison, 1990), for simplicity orientation will not beconsidered in this paper.

Monocular suture. Here one eye is occluded or

sewn shut during the critical period. After a few 2.1 TOPOGRAPHIC MAPPINGS
weeks it is found that substantially more of the cells
in layer IV can be driven by the normal eye as "Chemoaffinity", the idea that chemical specificities can
compared to the deprived eye, and the ocular be used to guide axons growing from one sheet of nerve
dominance stripes are now of different thicknesses. cells to their correct topographic sites of termination on
The stripes representing input from the normal eye another sheet of nerve cells, was first proposed by Sperry
expand at the expense of the stripes from the deprived (1963), and has been the subject of much experimental
eye (e.g. Hubel, Wiesel and LeVay, 1977, Shatz and investigation. Mathematical models using such affinities
Stryker, 1978). were first investigated by Prestige and Wilishaw (1975),

who showed that a topographic map could be formed by

However, there is evidence that the critical period can be delayed
almost indefinitely in the absence of any visual expencnce. For 2 Some controvers5 AiStS regarding whether this is true in cats see
discussion see Munro (1986). for example Swindale (1981).
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matching gradients of chemical substance existing (Arnett, 1978, Mastronade, 1989), and this may provide a
separately in the retina and tectum, without requiring means of giving the post-synaptic sheet information
each retinal axon to be specific for only one site in the about the topography of the pre-synaptic sheet. A model
tectum. Various models have subsequently been of retinotopic map formation based on this idea was
investigated using the idea of gradients (for example proposed by Willshaw and von der Malsburg (1976). the
Fraser (1980)). The basic proposal is that there exist at so-called neural activity model. At each time step, a pre-
least 2 (one for each spatial dimension) chemical markers synaptic cell fires along with its neighbours, exciting cells
in the pre-synaptic sheet and at least 2 markers in the in a post-synaptic sheet (which also have fixed lateral
post-synaptic sheet, distributed so that there are smooth connections of a centre-surround form). Changes in
gradients of marker in each direction in both retina and synaptic efficacy are calculated according to a Hebb rule,
tectum. It is assumed that an axon arriving from the pre- and Willshaw and von dcr Malsburg show ed that such a
synaptic sheet has an affinity for post-synaptic sites that is mechanism is capable of forming retinotopic maps.
proportional to both the amount of chemical marker at its However, evidence from the blocking experiments
point of origin in the pre-synaptic sheet and the amount Hever evien rom the bockin experitsof chemical marker at its post-synaptic site of described earlier shows that both chemical and activity-
termination. The added assumption of a normalization based processes must play a role in map formation. So fartermnaton. he ddedassmpton o a ormaizaion the only serious attempt to integrate these two factors has
rule on synaptic strengths provides enough machinery for then seiu am owin these wo fos as
a topographic map to form (Prestige and Willshaw, been Whitelaw and Cowan (1981), who proposed an
1975). Direct evidence for the existence of gradients of activity mechanism similar to the neural activity model,
marker chemicals in retina and tectum comes from cell with the assumption that there are chemical gradients in
adhesion studies (for review see Gottlieb and Glaser both retina and tectum which define an intrinsic
(1981)). Although able to account for some experimental specificity between pairs of retinal and tectal cells

results, there are other experiments which such theories (similar to Fraser (1980)), and that this specificity acts as
have difficulty explaining (for some examples see a scaling factor for the magnitude of the synaptic

Willshaw and von der Malsburg (1979)) modification induced by correlated activity. However,
there is no direct evidence for this assumption. This

A modification of this idea that has wider explanatory model has recently been updated (Cowan and Friedman,
power is the Tea Trade model (von der Malsburg and 1989) to include the effects of fibre-fibre interactions
Willshaw, 1977; Willshaw and von der Malsburg, 1979). between retinal axons. Such interactions will be discussed
Here there is just one set of markers, in the pre-synaptic in more detail later.
sheet, and these are induced into the post-synaptic sheet
where they diffuse, so setting up a distribution of 2.2 OCULAR DOMINANCE
chemicals in the post-synaptic sheet. Willshaw and von All the models described in this section do not address
der Malsburg used a molecular version of the Hebb rule topographic map formation: they assume a pre-existing
to modify synaptic strengths between pre- and post- retinotopy. The neural activity model described above
synaptic cells. They showed that simultaneously was adapted to the ocular dominance case by von der
maximizing chemical similarities between both pre- wasbadapted to th ar d o se by the
synaptic axons and their post-synaptic site of termination, Malsburg and Willshaw (1976), who showed that the
andassumption of correlated activity within each eye, but
topographic bojrin 3 Expeinmental results supporting with no correlation between the two eyes, was sufficienttoporapic rojctins.Exprimnta reult suporing to cause monocular cells to form. The centre-surround
the idea that there may not be intrinsic markers in the excitati on on in the cortex then ensures that these
tectum include Jacobson and Levine (1975), who showed mio n in he cort in ern of these

that an ordered map can form when frog retinal monocular cells are laid out in a pattern of stripes.
poetosare forced to regenerate to an ectopic piece of Swindale (1980) proposed a theory of the formation ofprojections aefretorgnrttoaetpipecof ocular dominance stripes in terms of the effect exerted by

tectum. The results of Schmidt (1978) provide positive
evidence for the induction of pre-synaptic markers into synapses on the growth of other synapses. He assumed
the post-synaptic sheet. Here, goldfish tectum exhibited a mutually reinforcing interactions of a circularly
"memory" for a previously created distorted map when symmetric form, between synapses from the same eye,eo r e uas y fo coregrate dtordmap. and similar inhibitory interactions between synapses from
the optic nerve was forced to regenerate normally. different eyes. Computer simulations of the development

Models of retinotopic map formation based on activity- of this system showed that a wide ,arict) of condition.
dependent processes have also been proposed. It is clear incorporating these assumptions leads to the foimation uf
that, when presented with patterned input, there will be striped projections.
correlations in the activity of neighbouring ganglion cells.
There is also evidence that the purely spontaneous firing An attempt to provide a more general frameworkof nighourng gnglon ellsis emprall corelted expressed in terms of biologically plausible parameters
of neighbouring ganglion cells is temporally correlated that subsumes both these approaches was made by Miller,

Keller and Stryker (1989); hereafter MKS. They proposed
SNote thc similarity between this procedur and the later scf- a model based on spatial correlations of activity within

organizing algorithm due to Kohonen (1982).
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each eye, along with an effective cortical interaction Constntinc-Paton (1983) discusses a model of both
(local excitation with inhibition at longer range, as in the topography and stripe formation using a "biphasic"
neural activity model). Rather than presenting patterns of process. It is assumed that there are two competing
activity to the retina as in the neural activity model, in interai.tions at work. Firstly, a weak graded affinity
MKS correlations between the activities of retinal cells between retinal cells and tectal cells, perhaps
are given explicitly in terms of a function that decreases implemented by shallow chemical gadients, serves to set
with distance in the retina. Simulations and theoretical up an initial crude order to the map. The second process
analysis showed the formation of ocular dominance is a fibre-fibre interaction between axons from
stripes closely resembling those seen biologically. neighbouring retinal cells that attempts to keep these

fibres together. This causes the later refinement of the
2.3 TOPOGRAPHY AND OCULAR initial map. In the binocular case, it is supposed that

DOMINANCE stripes arise in this model as a compromise between both

Constantine-Paton (1983) argues that the experimental retinae attempting to map in a continuous fashion across

evidence described earlier supports the notion that the the whole tectum (retino-tectal affinities), and each retina

mechanisms that normally produce retinotopic maps can tring to maximize the degree to which its fibres

also produce striped projections under certain conditions. terminate next to other fibres from the same eye (fibre-

However, others disagree: Udin and Fawcett (1988) state fibre affinities). The source of fibre-fibre interactions may

that "A single unifying mechanism cannot explain both come directly from chemical adhesion, but it could also

topographic mapping and ocular dominance stripe be caused indirectly by activity-based processes. Since

formation". From a modeling point of view, the question neighbouring retinal cells have strongly correlated

is whether an account of topography f be tee to activities, their synapses in the tectum stand most chance
simultaneously explain ocular d, of being reinforced when fibres from both cells terminate
reqiimultadonal elainocul.dominance, without in the same position (assuming a Hebbian updating rule).requiring additional machinery. So far this goal 1has This has the effect of tending to cause fibres from
remained elusive. The problem appears to be how to Thsastefecofenigocuefbrsrm
rmined elusri. tohe prlem ap s to bye o ton neighbouring cells to terminate together. However, if

provide information to the cortex about the eye of origin there is at least some degree of binocular convergence,
of each fibre. there will also be correlations in the activity of cells in

One obvious possibility is that of a global chemical corresponding positions in the two retinae. We will return
difference between the two eyes. von der Malsburg to this point later.
(1979) investigated this in an extension to the Tea Trtle A model of the "balancing" type described above has
model, by assuming an extra chemical marker present in been investigated by Fraser (1985), in an extension to
one eye but not the other. Although stripes were formed Fraser (1980). This is expressed in terms of parameters
in this case, there is evidence against the existence of representing the strengths of the various interactions
such global markers. Firstly, in the three-eyed frog involved. Simultaneous topography and ocular
experiments (Constantine-Paton and Law, 1978), stripes dominance stripes were obtained by assuming a
formed equally well from two equivalent eyes as from "Hebbian" attraction between fibres from neighbouring
one right and one left eye. Secondly, in the isogenic eye tectal cells. However, the nature of the correlated activity
experiments of Ide, Fraser and Meyer (1983), stripes were was not examined explicitly: its effect was simply
formed between two equivalent half eyes grown from a
single eye fragment. However, it should be noted that modeled rs a decrease in the parameter representing the

these results rule out only genetic global chemical strength of competition between axons for post-synaptic

differences: the possibility still remains of such sites.

differences arising during development (G. Hinton, Two new approaches to the topugraphy/ocular dominance
personal communication). problem will now be discussed, and their strengths and

Local chemical differences could also provide the weaknesses compared. These are an extension to the

information necessary for stripe formation. Such an idea neural activity model (Wilshaw and von der Malsburg,
has been investigated by me in an extension to the Tea 1976), and the elastic net approach (Goodhill and

Trade model, where the same markers are present in both

eyes, but with sources at slightly different locations in the
two eyes. The idea was that fibres from the two eyes 3 THE BINOCULAR NEURAL
would then be "interleaved" in marker space, and that this ACTIVITY MODEL
pattern would be reflected in the cortex in the form of I have investigated an extension of the neural activity
ocular dominance stripes. However, as yet I have not model to the case of two eyes mapping to the same part
succeeded in producing stripes with this model, of cortex, without assuming a pre-existing retinotopy as

in von der Malsburg and Willshaw (1976). It is assumed
that a local unstructured pattern of activity appears briefly
in one retina or the other, but not both simultaneously.
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(a) C

(b)
Figure 1. Results of the binocular neural activity
model. (a) Topography of connections to left eye.
(b) Topography of connections to right eye. (c) Pat-
tern of stripes. Note that these simulations did not
use annealing.

Such a regime is plausible before eye-opening, when only topography and ocular dominance stripes can form in
spontaneous activity is present (M. Stryker, personal response to input across the whole retina and in both eyes
communication). Here information about eye of origin is simultaneously. What is lacking is a general framework
being supplied by activity, which is correlated within an for expressing the amount of correlation between
eye but not between eyes. Initial simulations show that corresponding cells in the two eyes, as compared to the
this model can produce both stripes and a topographic amount of correlation between neighbouring cells in the
map simultaneously (figure 1). same eye. Such a framework is present in the MKSmodel of ocular dominance, in the form of a function
I recently discovered that a similar model is being model o o w doinane, tin r fa on

investigated on a larger scale and in more detal. C'" expressing how correlation within a retina falls off
iea itteo argera and (1990) iscussre vesin with distance, and a function C 'O' expressing howObermayer, Ritter and Schulten (1990) discuss a version correlation between corresponding cells in the two retinaeof the Kohonen algorithm (Kohonen, 1982), or a falls off with distance. However, this mcdel does not
"principle of continuous mapping", that is quite similar to consider the origin of retinotopy, and results ae only
the generalization of the neural activity model. In cosdrterinofeioopadeulsrenypresented for the "strabismatic" case of zero or a slight
addition, they consider the simultaneous development of negative correlation between the two eyes.4 The only
orientation columns, and present impressive results model to date which simultaneously addresses both
showing final patterns of orientation, topography and topography and ocular dominance and which has been
ocular dominance bearing close similarity to those seen shown to work in the case of positive correlationsbiologically. However, an important difference between between the two eyes is the elastic net approach proposed
the two models is that Obermayer et at "anneal": that is, by Goodhill and Wilishaw (1990); hereafter GW. This
they gradually reduce the range of the intracortical ill now be described, and results presented which
interaction from an initially high value, whereas in the extend the original work to the case of monocular
binocular neural activity model the intracortical etn forigina relate alg o fm
interaction is a constant (low) value throughout a deprivation for this and a related algorithm.
simulation. There is no doubt that annealing improves the
quality of the results: however, it is difficult to interpret
annealing biologically (see Discussion). 4 However, the fact tha the MKS model uses additive, rather than

The main limitation of such models as discussed is that multiplicauve, normalization constraints means that positve
they only consider presentation of a single local pattern of correlations should not hinder stripe development (K. Miller,
activity at each time, whereas in the biological case pCrsoul commucaton).
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4 THE ELASTIC NET APPROACH where

4.1 THE ELASTIC NET ALGjRITHM ((Ixi-yjI ,k) = exp( IXO-yj12

The elastic net algorithm is a recently-proposed technique Note that the influence between each cell and each bead is
for the approximate solution of the Travelling Salesman modulated by an "annealing" parameter k, which starts at
Problem (TSP) and other combinatorial optimization a high value and is gradually reduced over the course of a
problems that have a geometric interpretation (Durbin simulation. This corresponds to systematically shrinking
and Willshaw, 1987; Durbin, Szeliski and Yuille, 1989). the size of the receptive field for each cortical cell until
This has been shown to be related to the Hopfield and finally each has a strong connection with only one retinal
Tank (1985) approach to optimization (Simic, 1990; cell, and simultaneously reducing the lateral interaction
Yuille, 1990). It was inspired by the equations of the Tea between neighbouring points in the cortex. These
Trade model described earlier. In Goodhill and Willshaw equations can be integrated to produce an "energy
(1990) it was applied to the topography/ocular dominance function":
problem and shown to be capable of solving both E=-akylogy,4(Ixi-yjl,k) + lyj,,_yji 2
simultaneously.

The arrangement used is as shown in figure 2. This It can be shown (Durbin, Szeliski and Yuille, 1989) that
abstract geometrical layout of cells represents the the first term is a maximum likelihood estimate of how
correlational structure of retinal activity. The parameter d well the model (y .'s) fits the data (x,'s). The second term
(see figure 2) measures the correlation between cells is a "regularization" term that imposes prior assumptions
within a retina, while I measures the correlation between on the model: in this case that in visiting all the cells the
corresponding cells in the two retinae. The elastic "rope" rope length is kept short.
moving in the plane of the cells is a representation of the
cortex (output space) mapped onto the retinae (input This analogy with the TSP was used in Goodhill and
space). In the limit the rope is continuous, but here is Willshaw (1990) to calculate the stripe width n in terms
represented as a string of "beads". Each cortical cell of the parameters l and d that minimizes the total distance
(bead) yj is assumed to have a gaussian receptive field: along the rope for a striped retinotopic 1-D map. This
distances between retinal cells xi and beads represent was found to be
connection strengths. Beads obey the following 12

equations of motion: n = I+ d

Ayl = a wi (xi - Yj) + Ok (Yj+i -2yj + Yj-i) It should be noted however that the algorithm actually
minimizes the sum of squares of the distances between

where xi is the position of cell i, and a and P3 are scaling points (for discussion see Simic (1990)). Using this
constants for the contributions from retinal cells and from objective a similar analysis produces an optimum of
neighbouring beads respectively. wi, represents the 21
normalized force of cell i on bead j: d

=o (Ix 1 -y ,k) In the sum-of-squares case n increases more slowly
, = (Ix-yp l ,k) with I / d, which is more in keeping with simulation
P results.

" 2 d-0-13 E3 [ 0] [ [ [ E3 E3

-10 21

El 13 13 13 [ 13 [ n3 13 13

Figure 2. The arrangement of cells in the I-D elastic net model. The two retinae are represented by two
rows of squares (retinal cells) with a horizontal separation of 2d. The retinae are separated by a vertical dis-
tance of 21. The rope represents the mapping to the cortex. the position of each point on the rope is related
to the strength of its connection with each retinal cell.
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4.2 RELATED ALGORITHMS The space parameters used for all simulations described
Ile arrangement of cells in figure 2 as a way of here were d=0.02 and 1=0.05. The cortical sheetTderadnghen crelltinl fuure 2f as y of t contained 50x50 beads. There were 25x25 cells in eachunderstanding the correlational structure of activity in the retina, as used in MKS.5 For the GW case, the

two retinae is independent of whether the elastic net or a values of a , 3 and the initial value of k were as in
similar algorithm is actually used to produce a mapping. Dubin and s h initial conditions t
Recently, the self-organizing algorithm of Kohonen Durbin and Willshaw (1987). Initial conditions of the
Recen, the2) seoraniing arthmnspas of d nent sheet were random z position between the two retinae,(Kohonen, 1982) for mapping between spaces of different and the x and y components random within a wide band,

dimensionalities has been applied to the TSP (Angeniol et which biases the sheet to a particular orientation. The
al, 1988; Fort 1988). In these algorithms, each retinal cell wich biases th e set to alf taiof Ile

attracts only those points on the rope closest to it, rather width of this band was here set to half the width of the
than all the points as in the elastic net. These algorithms array of cells. Periodic boundary conditions on the z
are appealing for application to the case of ocular component of the sheet were imposed for the GW case.
dominance stripes because they are generally The factor by which k is reduced at each step was set to
compuaionallrper following slightly modified 0.95 in both the GW and BG cases. The version of theversion of the algorithm of (Angeniol et a, 1988) elastic net algorithm used was that recently derived by

Richard Durbin (personal communication). This is much
developed by this author in conjunction with Harry faster than the version described above since it employs
Barrow, was used in the current work. For the purposes techniques from the EM algorithm (Dempster, Laird and
of this paper I will refer to this as the BG (Barrow- Rubin, 1976).
Goodhill) algorithm.

Ayj = a w51 (xi - yj) 4.3.1 Normal Development

Ocular dominance pictures for the normal case are shown
where in figures 3(a) and 3(d). Since in both the GW and BG

0 (I j -J*i I , k) cases each retinal cell can capture at most one point, and
wi= , D (I j - j*q I , k) there are twice as many points in the cortical sheet as

q there are cells in both retinae, approximately halt th-e
points do not eventually lie atop a retinal cell. However,

where j*, is the point on the rope that is closest to x,, and it was observed that when stripes form all points move a
(( I j - j*i I , k) is given by substantial distance away from the mid-plane towards one

D j= I j-J* 1)2 , retina or the other, and thus the pictures in figure 3 were
(Ij-* Ik) = ex 2k obtained by thresholding at half the separation between

the two retinae. I will refer to the black stripes as those
Note that in this algorithm normalization of weights is coming from the right eye.
over pre-synaptic cells, whereas in the elastic net it is
over post-synaptic cells. Thus in BG the amount to which 4.3.2 Deprivation
a cortical cell is adapted towards a retinal cell is
modulated by the amount that cortical cell is being pulled As in MKS, monocular deprivation was modeled as a
towards other retinal cells, whereas in GW the decrease in strength of one eye relative to the other
modulation is determined by the amount that retinal cell (Chapman et a!, 1986). This was achieved in both cases
is attracting other cortical cells. by defining two c parameters a1L and cxR, one for each

eye. Results are shown in figure 3. As in the biological
4.3 RESULTS situation, there is a marked shift towards the open (in this

case left) eye: a greater number of cortical cells can be
Results are presented for the 2-D case, which is a driven by the left eye than the right eye.
straightforward generalization of the 1-D case shown in
figure 2. The elastic rope becomes an elastic sheet lying There is also some biological evidence that disrupting the
between two sheets of retinal cells. As described in correlational structure of one eye can produce results
Goodhill and Willshaw (1990), initially the cortical sheet similar to monocular deprivation. This could be
flattens between the two retinae. With no deprivation, this simulated in the model being discussed here by
equilibrium position is halfway between the two retina, increasing d for one retina relative to the other. Trial
corresponding to points in the cortex receiving equal simulations of this case suggest that this indeed leads to
innervation from the two eyes. As k is reduced the sheet stripes of different thicknesses for the two eyes.
expands until it is a square the same size as a retina. At a
certain critical value of k stripes form (see Goodhill and
Willshaw (1990) for analysis). 5 it should however be noted that the rcsults presented in MKS show

a grid of 40x40 cells. with 15 cells repeated in each dimension. This
was to demonstrate that the periodic boundary conditions they
employed do indeed lead to continuity across the borders.
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Figure 3. Normal and monocular deprivation results for the GW and BG models. (a) GW, normal
development, ac = 0.2. (b) GW, slight deprivation, cIL = 1.2 aE, a,? = 0.8 a.- (c) GW, severe deprivation,

cL= 1.4 a , af = 0.6 a. (d) BG, normal development, a = 0.2. (e) BG, slight deprivation. aCL 1.2 a ,
aft = 0.8 at. (0 BG, severe deprivation, a,. 1.4 a , aR 0.6 a. For discussion see text.
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It is interesting to compare results from the two radically different predictions regarding which parameters
algorithms (see figure 3). In the case of normal determine the width of the stripes. In MKS, it is the peak
development, BG produces a pattern more closely of the Fourier transform of the cortical interaction
resembling that seen biologically. GW appears more function, i.e. a property only of the cortex (not, as
geometrical, which may be because it produces a better incorrectly stated in Goodhill and Willshaw (1990), a
solution to the optimization problem than BG. This raises function of the retinal correlations). However in GW, -1
the issue of whether the biological problem ca be is the correlational structure of retinal activity i.
understood purely as an abstract optimization without determines stripe width. Two intuitive arguments can L_
also considering the algorithm actually used to perform given regarding the latter view, one in agreement and one
that optimization. For the deprivation results, note that in in contradiction.
GW the stripes from the deprived eye become more Firstly, although the stripe width is uniform in the cortex,
patchy while not decreasing appreciably in width. In BG, when this pattern is mapped onto the retina the width
the stripes do become thinner and remain fairly becomes highly non-uniform (for a picture of this see
continuous. However, much larger scale simulations are LeVay et al, 1985). The stripes are narrow in the fovea
required before firm conclusions can be drawn about the and wide at the periphery, with a smooth variation of
qualitative differences between GW, BG, and the widths in between. Since in general an animal's gaze is
biological case. In addition, it should be noted that both focussed at the fovea in both eyes, this is where there will
GW and BG are discrete versions of continuous cases. be most correlation between the two sets of retinal cells.
With the very geometrical layout of cells used in these In GW terms this means 1 is small, predicting thin stripes
experiments such discretization may be causing unwanted as seen biologically. At the periphery, the 2 images will
effects. be less in registration, i.e. I is large and GW predicts wide

stripes as seen biologically. Cre must be taken with this
5 DISCUSSION argument, since the density of receptors in the retina is
A difference between the GW/BG approach and the highly non-uniform.
binocular neural activity model is that the former is an However, the argument against this view comes from the
abstract optimization model and is hard to compare artificial strabismus experiments. Decorrelating the 2
direcdy with biological reality. Although the parameters images in GW terms corresponds to making I very large,
of the binocular neural activity model have ,nore hence GW predicts very wide stripes. However, in the
biological relevance, this model has as yet only been biological case the width of the stripes is unaffected.
shown to work in a highly specialised case. However, it
has the advantage of not requiring annealing. It is worth mentioning that there is some evidence that in

reality in cats and monkeys, the development of a
A problem encountered by GW and any model involving retinotopic map, orientation columns and ocular
annealing (as in Obermayer, Ritter and Schulten (1990)) dominance stripes is a 3-stage process (M. Stryker,
is in explaining the reve-se suturing experiments personal communication, C. von der Malsburg, personal
described earlier. Biologically, it is in fact possible to communication). A crude topographic map forms very
change which set of stripes is thicker several times during early, before birth, followed by rough orientation
the critical period, by appropriate opening and closing of columns. Ocular dominance does not form until much
each eye. In addition, due to different modes of growth later, during which time the map and orientation columns
of retina and tectum in amphibians and fish connections sharpen and become more precise. However, not enough
are being continually shifted during development, is known of the detailed time course of these
However, in aniealing-based models a pattern of stripes developments (due largely to the difficulty of performing
only forms at the end of the process, and this pattern is experiments in utero) to assess the implications for the
not then susceptible to fuirther change. Thus there are type of unified model being advocated in this paper.
problems in naively interpeting the annealing period as
corresponding to the critical period. Annealing certainly 6 CONCLUSIONS
improves the quality of the solution found to the
optimization problem, but it may be the case that the The problem of the simultaneous development of
brain employs other "good enough" techniques that do topography and ocular dominance stripes has not been
not use annealing (G. Hinton, personal communication). entirely solved. Although the models discussed in this

It prvides useful insights into the GW approach to paper appear promising, they all have limitations that I

compare it with the MKS model (even though this model have attempted to outline. More work needs to be done
does not address the development of topography). on the mathematical relationship between the different
Although a &1ailed mathematical companson has not yet approaches, and on how the parameters of each relate to
been perormed, some general comments can be made biological parameters. Finally, more biological data needs
(see also Goodhill and Willshaw (1990)). The most to be obtained in order to further constrain computational
important thing to note is that the two models make models. Useful domains for such experimental
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investigations include the form of lateral interactions in Cowan, JD and Friedman, AE (1990). 'Development and
the cortex, and the actual correlations in nerve firing in regeneration of eye-brain maps: A computational model'.
normal illumination. In D.S. Touretzky, ed, Advances in Neural Information

Processing Systems II, 92-99.
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with experience. The primary aim, thus far, has been to
model various pre and postprocessing mechanisms

Abstract designed to guide and facilitate this matching process. But
I will begin by both briefly defending the plausibility of

This paper outlines several intertwined modeling the foregoing central assumption and by explaining how I
projects concerning various aspects of higher level have thus far been implementing the matching process.
vision. A model of visual priming is presented, This will also help to specify the precise psychological
followed by an account of "top down" visual capacity that is being modeled. Following this, I discuss
expectation or hypothesis testing as a kind of a model of visual priming. It is then shown how "top
self-priming, closely associated with the calling down" visual expectation or hypothesis testing can be
up of visual imagery. Several preprocessing modeled as a kind of self-priming, closely associated with
mechanisms are then introduced that might the calling up of visual imagery. Next, several
account for the relative ease with which we can preprocessing mechanisms are introduced that might
identify objects and patterns independently of account for the relative (though by no means uniform)
viewpoint, ease with which we can identify objects and patterns

which are at differing locations in our visual field, which
The following is a sketch of several ongoing, intertwined have different orientations, and which project different-
modeling projects concerning various aspects of higher sized retinal images. Finally, I close with a brief remark
level vision. All of the work referred to must be on the problem of image segmentation, suggesting that a
considered preliminary, and I only provide general useful lesson might be drawn from the discussion of the
characterizations of the results obtained thus far. But the foregoing higher-level preprocessing mechanisms.
basic, qualitative behavior of the nets described seems
both psychologically interesting and-as the simple 1. BACKGROUND VIEWS AND
consequence of simple architectures-quite robust. And
there may as well be an advantage in here taking the long ASSUMPTIONS
view of several complimentary projects, for this will It appears that first, fast, visually prompted contact with
allow me to outline, illustrate, and begin to argue for an memory generally occurs at a level of categorization that
approach to modeling higher-level vision, and to cognitive is, by a number of different measures, psychologically
modeling in general, that is different in important respects "basic". Thub, basic level categorization is said to
from the approach taken in most contemporary modeling constitute the "entry point" (Jolicocur, Gluck, and
(one exception is James Anderson, whose modeling work Kosslyn, 1984) or "first access" (Biederman, 1987) to
and theoretical musings have exerted a great deal of memory. (The details here are complex and the literature
influence over what follows), enormous; in addition to the foregoing, see Rosch et al.,

1976; Smith and Medin, 1981; Murphy and Brownell,
The modeling reported assumes that fast, spontaneous, 1985, Lakoff, 1987.) Such categories are psychologically
"basic level" recognition is mediated by a global, direct- closely associated with the characteristic outline or shape
matching process, where the input is compared to a of the object when seen from a preferred or "canonical"
viewer-centered representation that is continually colving point of icv,. And it appears that initial identification is
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shape-based (in addition to the previously cited works, see
Palmer et al., 1981, Biederman and Ju, 1988). The Keeping in mind the refined nature of the information
number of basic level categories is unclear, but after available for higher level matching is important in
considering various estimates and their rationale, evaluating some of the standard, textbook examples
Biederman (1987) settles on 1600 as a rough estimate. alleged to show the hopelessness of the current approach.

Thus, e.g., while the letters "0" and a "Q" don't differ
A widely held view is that the image of the object is first much in appearance, their deep neural coding is
parsed into its parts in the course of forming a dramatically different (with all of the corners and end-stops
representation in object centered coordinates (Biederman, in the latter). Conversely, Nakayama et al. (1989) argue
1987; Hoffman and Richards, 1984; Marr, 1982). But that some apparently quite severe occlusions of objects
there is evidence that human subjects do not proceed in need not be especially disruptive of the deep neural coding
this way. Edelman and Bidlthoff (1990) examined how available for later temrlate matching because of the action
subjects who were exposed, in a carefully controlled way, of long-range filling-which is largely data driven and
to different views of novel items (shaded wire figures) spontaneous, the result of the operation of fairly
generalized to new presentations. They found that peripheral neural mechanisms in which the reliable coding
subjects appeared to compare the input to viewer-centered, of depth is crucial. More generally, it appears that, in
largely 2-D representations which evolved in a way that segregating candidate, meaningful objects from the
closely corresponded to the history of their expenences. background clutter, the organism uses a complex bag of
In closely related work with similar stimuli, Edelman, tricks that operate on fairly refined information about the
B7ilthoff, and Weinshall (1989) found that while subjects disposition of the local surfaces and contours (see
began with certain preferred or canonical views-as reflected Nakayama et al., 1989, as well as the passage from
in both subjective judgments and reaction times--this Livingston and Hubel, 1988, presented in section 5
effect diminished with experience in a way that suggested below). I will, in any case, assume that the recognition
a decreasing reliance on preprocessing mechanisms which system receives segregated "neural images"-though
serve to align the image with a memory representation, possibly displaced, rotated, distorted, and of different
and which are at least closely akin to mechanisms sizes-corresponding to distinct objects. I'll return briefly
underlying mental imagery (see also Tarr and Pinker, to the problem of image segmentation in closing.
1989).

It must be conceded that the foregoi ip constitutes less an
The idea of first access should be stressed. It is, argument than an outline of a view z nd a brief sketch of
typically, perhaps less recognition, than the fast how it might be defended. But if the general conclusions
generation of an initial hypothesis-a hypothesis which is turn out to be correct, then the task facing the recognition
associated with certain background knowledge and search module is, while still difficult, more manageable than it
routines which drive further exploration, and perhaps the may at first have appeared: there are a restricted number of
subsequent application of more fine grained templates categories to consider, the image is already segmented, and
associated with the perceptually salient and functionally only 2-D representations must be stored and compared.
important parts or features of objects (compare Nakayama,
1987). It also can't be emphasized too strongly that In what follows I will work through the construction of a
humans use a variety of perceptual strategies depending recognition module by, first, starting with a simple
upon the task at hand, and the route to memory that I matching mechanism, and then adding various pre and
describe is, while preferred when the conditions permit, postprocessing mechanisms-each corresponding to various
still only one of several (for a discussion of some of the capacities revealed in the experimental literature, and each
strategies used, see Ullman, 1986). adding to the power of the system as a whole. (A

schematic diagram of the essentials of the whole
Finally, the system described in the following sections is architecture is presented at the end of the paper.) For a
to be considered to take deep, cortical input, carrying matching mechanism, the simplest of associative nets has
fairly refined shape and surface information. This, of been used. the linear associator, or slight variants, with
course, assumes that an independent account can be given hebbian learning (error correction, in the form of the delta
of how to get to the required point, and there are many rule, was only used, occasionally, for purposes of
active research programs engaged in Narious aspects of the comparison). As indicated earlier, I am not presently
problem (sometimes unabashed buck-passing is the mainly concerned with the issue of how to implement the
rational thing to do). The work .ited earlier suggests that matching process. (And, indeed, various alternatives will
it is edge and contour information which is of primary soon be added and explored.) But it may well be that the
importance in the first pass through the recognition reports of the inadequacy of such simple associative nets
system. But it is pointed out in the next paragraph that ha,e-at least for some taskb-been premature, or at least
there is reason to think that depth and motion information inflated (for a discussion see Anderson et al., 1990).
is used in coming to represent and select edges and Such nets have, in any case, certain virtues that other
contours for purposes of higher level matching. candidates are fruitfully measured against. Thus, in
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addition to the obvious appeal of their simplicity and (at pair the label with the image in a single vector which is
least compared with many other nets currently in service) then autoassociated.)
biological plausibility1, they also scale fairly well, and
support one-trial learning. And humans do exhibit one- The first assumption is that tlie priming effects result
trial learning, and they do have very, very big brains (a from well-known transient and long-term changes in
fact often alluded to, but rarely taken seriously in actual synaptic efficacy. (For reviews, see Brown et al., 1989;
modeling of cognitive function). Moreover the behavior Sejnowski et. al., 1989.) In the simulations, the nets were
of such simple nets is largely shaped by input coding-the trained, the weights were normalized, the prime was
richer, more fine-grained, and appropriate the input presented, and the connections were strengthened by an
representations, the finer and more psychologically amount proportional to pre-and-post synaptic activity. A
realistic the computations performed (Anderson et al., priming constant, which could vary, controlled the
1990). In this vein, it is worth noting that the matching amount of change. This constitutes only a fairly coarse
process, as here conceived, is set very deep and fed by a approximation to the biology; the modest aim, here and in
number of simple but (at least collectively) powerful the next section, was simply to illustrate the possible
preprocessing mechanisms, which serve to sharpen, refine, connection betveen certain basic features of our mental
and prepare the input coding--both those discussed life and certain general assumptions about high-level,
explicitly in sections 2-4, as well as more peripheral biological properties.
mechanisms only briefly alluded to in passing.

The second assumption is that the output of the two-layer
associative net is fed into an auto-associative net (in the

2. PERCEPTUAL PRIMING simulations I used Anderson's BSB auto-associative net,
or slight variants; cf., Anderson et al., 1977). During

It is well known that prior exposure to an object or oraiight v a rn c orrson t th. symbol i g
pattern can lead to faster and more accurate identification training, the pattern corresponding to the symbolic tag or
of the same, or similar, object or pattern at a later time. label is impressed upon both the output units of the two-

Seveal eneal onclsios cn b dran fom he any layer net-and so directly associated with the input pattern-Several general conclusions can be drawn from the many as well as autoassociated. The idea is that this would
studies of such perceptual priming (cf. Bartram, 1974; typically correspond to an episode of ostensive learning,
Biederman and Cooper, 1990; for a comprehensive review, but it might also result from the "internal" generation of a
see Schacter et al., 1990). To begin, some priming is label applied to help provide later access, in the way
nonverbal-it results from the action of the visual described in section 3 below, by higher level control
stimulus, and not simply from the elicitation of the name

structures to the visual characteristics of an object or kindof th e objec t, covertly or otherw ise. H ow ever, it does of bj c . Th n la e , ft r h e e r i g or r i i g
appear that, at least if the object has a name and the of object.2 Then, later, after the learning or training
subject is encouraged to apply it, some of the effects of period has ended, the output of the two-layer net is fed
priming are, in the foregoing sense, verbal. Further, directly to the autoassociative net. Why might such an
though this is more controversial, it appears that it is arrangement have evolved? In part, to help clean-up,
possible to produce priming effects by simply providing clarify, and standardize the often imperfect output of the
the name of an object prior to its visual presentation. feedforward net (an effect easily demonstrated inFinally, the strength of the priming effect is primarily simulations). Perhaps even more important, adding the
determined by two factors. First, the more similar the test autoassociator allows the system to hold on to the
to the prime, the greater the effect. Second, the shorter output-here, in order to continue to feed activation into
the delay, the stronger the prime-at least up to a point, semantic memory. Our thoughts do not disappear with
when the entire effect seems to be the result of long term the withdrawal of the stimulus.
learning.

These central effects can be accounted for if we change and
add to our core, linear-associator in accordance with the 21 think that it may be possible to expand this latter
following three assumptions-which will also play a role suggestion into a scheme that allows for periods of
in the modeling of further effects discussed in the next unsupervised learning (not just in the trivial sense of
section. (The model presented here is indebted to involving the self-generation of a symbolic tag, but also
McClelland and Rumelhart, 1986, though it differs form in allowing for the capacity to categorize to decelop in the
their account of priming in important respects-e.g., they absence of a tutor, partly driven by the strutture of the

input). Or one could change the matching mechanism.
1For ease of exposition, I will sometimes blur the The general point is that there are a number of moves that
distinction between model and reality by using terms like might be made here to allow for some unsupervised"synapse" to refer to both real wetware as well to elements learning, all of which appear tu be rclatiel) independent
of the models presented. But difficult conceptual and of the discussion of pre and postprocssing medl inisms to
philosophical problems lurk here and need to be addressed follow.
(Bennett, 1990).
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The final assumption is that a natural interpretation of world about one, and to maximize the attainment of
reaction times in systems that realize dynamical systems sought-after objects and events.") These effects can be
is the number of iterations for an input vector to migrate modeled by making the core, associative net bidirectional
into a point attractor (for a fuller discussion and somewhat by simply addiag a second, reversed, linear-associator
different examples, see Anderson, to appear 1991). In which, during training, pairs the label as input with the
addition to giving a simple measure, looking to the time incoming image as output. The label-vector can then be
to settle provides an explanation of what intervening used to "call up" the image vector, which can be fed
process takes the time and why. through the front end of the second associative net,

thereby priming the system in the way discussed above.1

The central, qualitative features of visual priming noted
above fall out of the foregoing scheme, and have been It is true that the foregoing scheme does not, as it stands,
illustrated in a number of simulations. Thus, there are provide a close fit to the details of the human data on
two sets of synapses, with changes in synaptic strength mental imagery (cf. Kosslyn et al., 1984; for evidence
on the first corresponding to visually driven priming, supporting the assumption that mental imagery exploits
while activity on the second leads to the separate priming the same biological machinery as is employed during
of the tag or label (which can be manipulated regular visual perception, see Kosslyn, 1987). However,
independently-giving an account of how the presentation first, it should be pointed out that an account of the
of the name alone might lead to faster response times). flexible manipulation of images will be offered in section
Manipulating the amount of change in the weights leads 4, where the manipulaions are held to be carried out on
to differences in the time to settle-corresponding, perhaps, the same preprocessing mechanisms that perform image
to the changes in reaction time exhibited by human alignment during recognition. And there may as well be a
subjects as the time between the prime and the test way of expanding the present system of storing and
stimulus increases. And, as in the experiments with generating images to make it more psychologically
human subjects, if different input vectors are associated realistic. The basic idea would be to model all of the
with the same name vector, the degree to which the more fine-grained icons-which detail parts and the like and
presentation of one primes the second is determined by which are associatively linked to both the basic level
their similarity. There is, further, an interesting representation as well as to each other-with bidirectional
suppression in the respo.se to other, unprimed categories. associative nets of the sort discussed above. We might
And when multiple categories are primed there is an then construct a hybrid system, with the basic principles
attenuation of the effects of the priming on responses to governing the retrieval, construction, and manipulation of
exemplars of specific categories. images embodied in rules that access the images by their

labels. But I have not yet attempted to implement this
scheme.

3. EXPECTATION AS IMAGINATIVE
SELF-PRIMING In any case, the central results of such imaginative self-

priming, as well as their qualitative similarity to Bruner's
The foregoing pertains to facilitation that results from characterization of the effects of expectation, are obvious
external stimulation. But it is a small step from these from the previous discussion of the simulations of visual
observations to an account of top-down visual expectation
or hypothesis testing in terms of a kind of imaginative
self-priming-a step that only requires making a simple, 1Here and elsewhere it wa necessary to both normalize
further addition to our modest network. the weights and , often, to scale the output, so that the

different modules could "communicate" properly. A
Though the details are both controversial and differ from biologically more realistic way to achieve the same ends
case to case, it is well known that background knowledge would be by using, in the two-layer associators, some sort
can influence perceptual judgment. Bruner (1957), in a of nonlinear activation function that incorporated a kind of
famous article, surveys a mass of experimental data and automatic gain control. The relative sizes of the nets as
summarizes the basic phenomena that we would like to well as the density of the connections could also be
see mirrored and explained by a model of perceptual manipulated. The resulting nets would be non-linear, but
expectation: "To put it in ...ordinary language. apples presumably their general, qualitative behavior would
[i.e., the expected object] will be more swiftly and easily mirror that of the current nets in the relevant respects, at
recognized, a wider range of things will be identified or least while thcj were operating in the (roughly) linear
misidentified as apples, and in consequence the correct or range.
best fitting identity of these other inputs will be masked." Further, all of the detailed _*... latns of self-priming
(And he later adds that "perceptual readiness or have, thus far, used random vectors for "images".
accessibility serves two functions. to minimize the However, the programs are written so that the simple, but
surprise value of the environment by [flexibly] matching coherent and recognizable images used in the image-
category accessibility to the probabilities of events in the normalization simulations discussed in section 4 could be

used here as well.
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priming and won't be belabored. However, it is worth hand, is chiefly the concern of the central, matching
pointing out a couple of especially interesting features of mechanism, and I will have little to say about it here.
the self-priming simulations. First, the enhancement and
suppression of reaction times noted previously show up Recall the work mentioned in section 1 which uncovered
as well in measures of the accuracy of the response. Most what appeared to be a trade-off between image-alignment
interesting, for present purposes, is the increase in the preprocessing mechanisms and the storage of
kind of over-generalization described by Bruner that representations corresponding to multiple points of view.
accompanies stronger self-priming: that is, if the category This suggests that the organism employs at least two
structure is kept constant (i.e., the exemplars are formed strategies which mesh in a complex way that we will
by the same kind and degree of distortion around a central want to capture in our model. The first strategy is simply
prototype), and the strength of expectation/priming is the dumb, brute force one of using the enormous memory
increased, then there is an increasing tendency for capacity of the brain to store a variety of representations
members of other categories to be sucked into the corresponding to different points of view. But this clearly
attractor associated with the expected category-while at the won't do as a complete account, especially of how we
same time reaction time goes down. This illustrates that respond to relatively unfamiliar items. Further, the way
there are costs as well as benefits of relying upon in which the need for preprocessing mechanisms is often
expectation. Further, the generation of the image-vector put suggests paradox, as typically pointed out in the
exhibits a prototype effect: under certain conditions (see textbooks: it would appear that the only way in which a
Knapp and Anderson, 1984 for a relevant general mechanism could "correct" for orientation is by first
discussion), the image-vector that is "called up" is closer recognizing the object and then righting it based upon
to an unseen protoype than to the exemplars that the what is known about its correct orientation. But this is
system was trained on (which were formed by distorting the w.ong way to look at matters: what we want is to add
the prototype). And it might be conjectured that a mechanism that serves to make the over-all system
something like this process underlies the impression that respond as if the input was normalized. And a key to
our mental images of often encountered, familiar kinds of seeing how this might be done, without requiring prior
things don't seem to correspond to any particular thing-- classification of the type of object present, is provided by
while still having the right, general "look" and "feel". the following observation.

It is important to appreciate that as long as the input is Suppose that the system described above is fed either an
well-behaved and the memory demands are modest, the image that is very different from any it has been trained
present system will work fine standing alone, without the on, or a familiar image at an unfamiliar orientation. Then
benefit of priming or of higher level expectation. And, the system can be set up so that the output almost
indeed, it may well be a general principle of the invariably either comes to rest in a spurious attractor or is
architecture of the mind that there are a number of otherwise frozen in a state very different from anything it
specialized, peripheral mechanisms that work fine without has been trained on.1 From the point of view of the
intervention, but which are periodically "taken over" by
higher level control centers by adapting the same 11 don't have an analysis of exactly how and when this can
mechanisms to the special needs of the moment. If so, be assured. But it appears from simulations that the
then our models should specify precisely where, how, and scheme I outine here can be made to work. In addition to
with what effect such intervention might take place. In
the foregoing simulations, the intervention serves to bias taking advantage of the spurious attractors that arise with
the recognition process. But such imaginative self- normal training, one can manipulate both the number of
priming might also be held to reach back to influence the iterations allowed, as well as manipulating where activity

formation of the perceptual representation itself (perhaps is clipped as it cycles through the BSB net. (Thus, in
exploiting well known feedback connections found most of the simulations, I stopped execution after a fairly

throughout the visual system). small number of iterations, usually 31. on the assumption
that there was some sort of impatient neural mechanism
which had the same effect-at least in the absence of

4. THE IMAGE NORMALIZATION higher-level feedback.) One can also do some thresholding
PROBLEM of the output of the 2-layer net to shut the door on what

would otherwise be especially weak ouput provoked by
Projected images of objects and so, their refined, neural unfamiliar or tilted images. These manipulations will
representations -can be distorted, displaced, rotated, or of affect the reconstructive capacity of BSB, but, though the
different sizes. I will speak first, and in the most detail, matter needs more careful study, it appears that values can
about a preprocessing mechanism to help correct for be found for the foregoing parameters that leave the
differences in orientation. But I will also add a fe, reconstructive properties of BSB largely intact for vectors
remarks about related schemes to handle spatial that the system knows about, while still helping to freeze
displacement and changes of size. Distortion, on the other vectors corresponding to mis-oriented or otherwise

unfamiliar input in meaningless states.
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organism, such resulting states are just inert, meaningless
noise, if we view the regular, trained outputs of the net as The foregoing net just dumbly rotates every image in the
constituents in a physical symbol system-signaling cats, same direction, but humans clearly do not take this
dogs, and the like-then we might say that the states strategy (Neisser 1966; Ullman 1986; Tarr and Pinker
associated with, say, spurious attractors are just not in the 1989). A slight modification is to, in effect, layer two
organism's symbolic repertoire-there are just no physical such nets on top of each other, each constructed to rotate
processes to detect them and, say, drive motor responses. input in opposite directions. To rotate in one direction,
This suggests that we devise a mechanism that one set of synapses is opened and the other closed.
systematically tries out different possible orientations of Neurally implemented, this could be accomplished either
the input image very fast, for it won't matter if a number through regular inhibition or excitation, or perhaps
of the trials are wrong so long as the procedure ensures through the use of global neuromodulators, much as such
that a manageable orientation will oe fed in within a modulators are used to change the topology of invertebrate
reasonable period of time. If only 2-D rotations need be nervous systems on the fly (Selverston and Mazzoni
tried, and each candidate can be matched in parallel against 1989; Marder 1987). The idea would be to add
all of the categories and some range of associated pre- mechanisms-that one hopes would be fairly simple-to
stored viewpoints (from which the net, of course, detect certain very general features of the object, like the
generalizes), then the search is feasible and can be axis of elongation, and then use this information to
accomplished by adding the following 2-layer recurrent choose the direction of rotation (notice that, on the present
net (essentially a recurrent version of the "phase space scheme, this is all that is necessary-one doesn't need to
sandwiches," proposed for somewhat different purposes, determine when to arrest the rotation). This issue is
by the Churchlands, see Churchland 1986). currently under investigation. Finally, it must be

conceded that-even if they need not do so in most,
It is possible to construct a 2-layer net in which the ordinary perceptual situations-subjects clearly are both
projection of one layer to the next realizes a rotation by capable of rotations in depth of 3-D forms and they do this
some angle, say, 20 degrees. If the activity on the second spontaneously under certain circumstances (see Shephard
layer is then fed back through the first layer, the image and Meizer, 1971, and the discussion in Tar and Pinker,
will be spun about by (here) 20 degree jumps. Output at 1989). Yet the model in its present form cannot account
each pass can then be sampled and fed into the pattern- for this.
matching system. Simulations reveal a trade-off that
roughly mirrors that found in the experimental literature. It is also possible to build similar two-layer recurrent nets
as more, distinct rotations of the same image are paired to either shrink or expand images--together constituting a
with the same label (or as the rotations are spread out), the kind of neural "zoom lens". Presumably, the image is
amount of rotation needed to find an input orientation that either expanded or shrunk to a roughly standard size, thus,
the system reslx.nds to quickly and accurately decreases. e.g., when an expanding image hits an "edge," an
This was checked, for various training regimens, by inhibitory gate-acting on units into which the output, at
starting the input images at the same far leftward opening each cycle, is fed-might be swung open. It would also be
orientation and then rotatin, them rightward by small possible to allow for some sampling at different sizes,
int.rements, and recording the response of both the BSB perhaps triggered when enough of the "mass" of an image
net (accuracy and response time) as well as the 2-1a)er nct neared an edge. And it would as well be interesting to
(length and accurac))--where it was important to look at explore the possibility of allowing for more flexible
the latter as well, since this gave a deeper insight into the deformations of the image at this stage, this would
sort of stored representation that was driving the over-all amount to "spreading" the capacity to handle object
response of the system. The behavior of the system 15, of distortion throughout much of the system-much as the
course, sensitive to such things as the relative number of capacity to hand!e differences in orientation is, in the
exemplars paired with each name, the degree of distortion manner explained abo,,e, distributed across several,
by rotation or otherise-of the different exemplars, and interacting modules. I have only run a few, simplified
the similarity of the different categories, some care was, simulations of an "expander" net. Here, too, refinements
however, taken to try to isolate for the effects of will no doubt have to be added if the model is to be
differences in orientation. Finally, since relatively small
(13 x 13) input fields were used, only two coherent,
recognizable images were learned, though the system was
trained on anywhere from 5-13 additional associations involves choosing a sampling size that corresponds to
consisting entirely of random vectors. 1  assuming that the present object is of a kind that the

organism has a fair amount of experience with--and then
.sampling more finely if this strategy fails? Moreover, if,

1There are some subtle but important problems that as briefly alluded to below, more flexible deformations of
remain to be studied. Exactly how finely do we sample? the input need to be added to the system, then the structure
Can the s)tem be arranged so that this can be changed and feasibility of the search becomes correspondingly less
flexibly? Is there perhaps some relatively safe strategy that clear.
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brought into close agreement with experimental iesults matching meLhanibm one favors to the sort of simple pre
(cf., Larsen and Bundesen, 1978). and post-processing mechanisms discussed here.

Finally, I have run some simulations of a net that
implements a parallel center of mass computation. This 5. IMAGE SEGMENTATION AGAIN
net is somewhat different from the preceding two, and I Finally, as promised, a closing note on the problem of
won't go through it in detail. Put roughly, it works by image segmentation. I must say, to begin, that I have no
repeatedly adding up activity over the whole of a map andthe opnin orfacliatig apaternofconectons agin precise and concrete proposals to offer regarding this
then opening or facilitating a pattern of connections, again difficult problem. But we may be in a position to view
over the whole map, which results in the pattern being the issue in a useful light. Livingston and Hubel (1988)
"slid" into place; as the net is currently configured, summarize certain features and strategies, first noted by
vertical and horizontal center of mass computations are the gestalt psychologists, used in order to segregateactually computed separately, one after the other. It is objects from each other and from thc background

true that this sort of center of mass computation is a bit (Livinsto a he associat the u ctiow t
mess an imrecie, ut t ma sfll emai usfuland (Livingston and Hubel associate these functions with themessy and imprecise, but it may still remain useful and older and more primitive magnocellular system):

effective when combined with the other mechanisms
described above. For it is not the performance of the
simple, constituent mechanisms taken by themselves that ..common movement (objects move against a
is important. What matters is the performance of the common stationary background; contours
system as a whole. Anti an obvious next step is to moving in the same direction and velocity are
systematically explore the interactive effects of the likely to belong to the same object, even if they
different modules and processes that have been discussed. are different in orientation or not contiguous);

common depth (contours at different distances
I would propose that spatial displacement and size are dealt from the observer are unlikely to belong to the
with first and in that order, and that the neural image is same object); collinearity (if a straight or
passed through the orientation net only optionally- continuously curved contour is interrupted by
perhaps when the subject encounters special difficulty in being occluded by another object, it is still seen
recognizing an object, or has information that it is likely as a single object); and common color or
to be misoriented (see the discussion in Tarr and Pinker, lightness...[though experiments suggest] that
1989, on this). I'm not aware of experimental evidence only luminance contrast, and not color
that bears on the order of such processes. However, in differences, is used to link parts together.
line with the Kosslyn-inspired story of mental imagery
endorsed above, these perceptual preprocessing
mechanisms would also be the same mechanisms used to And other features and strategies can be added. Thus,
manipulate mental images (accessed and fed backward in e.g., in a recent lecture at Brown, Dana Ballard suggested
the way discussed earlier). And it is, first, interesting to that with the eye/camera attached to a body/robot, a
note that, introspectively, it feels much more natural to useful strategy is to fixate a point on a surface, move
perform the operations of translating, rotating, and back in forth, and then use the blur information to peel
expanding images separately. In keeping with this out a candidate coherent, significant object.
impression, the effects of irrelevant differences of size and
orientation on the time needed to decide whether or not The term "candidate" may be especially appropriate here.two visually presented forms are the same, are additive The problem of segmenting an image may seem
(Sekular and Nash, 1972). especially daunting if the task is seen to require applyinga procedure that will draw out a significant object for

further processing without fail, or at least with high
Psychological data aside, how does the present scheme reliability. But our earlier discussion suggests that this
compare with other models of object recognition in may be the wrong way to look at things: there is no
practical terms? Without attempting a systematic review, harm in using a strategy that frequently fails to isolate a
I tentatively suggest the following. It is true that the part of the environment that elicits a meaningful
model in its current form-with a small, simple, coarsely response--so long as the broader strategy employed
coded associative net at its core-cannot compete with insures that a meaningful candidate will be tried out
other contemporary accounts in the ability to handle within a reasonable period of time. Thus, while no one
object distortions. But the relative ease with which it can strategy may be especially foolproof or even reliable, the
handle extreme variations in displacement, size, and rapid, repeated, experimental, and perhaps somewhat
orientation-without special, extra training-does, I think,compre avorblywiththeperormace f may oher messy application of them all may prove quite sufficient.compare favorably with the performance of many other
contemporary models. It may, in short, prove
computationally practical and efficient to harness whatever
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Figure 1: Main flow of activity and information through the system.
This oversimplifies the discussion in the text and should thus be viewed

with some caution.
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Abstract the posterior parietal cortex in monkeys.

Area 7a of primate cortex is thought to transform vi-
Area 7a of primate cortex is thought to trans- sual stimuli from retinotopic coordinates into a head-
form visual stimuli from retinotopic coordi- centered coordinate system by combining retinal stim-
nates into a head-centered coordinate system uli with proprioceptive feedback of eye position (An-
by combining retinal stimuli with proprio- dersen, 1989). In recordings from area 7a, Andersen
ceptive feedback of eye position (Andersen, and Zipser found neurons whose responses depend on
1989). Two previous neural network mod- both the retinal location of visual stimuli and the po-
els of area 7a (Zipser and Andersen, 1988; sition of the eyes in the orbits. Their experiments sug-
Andersen and Zipser, 1988; Mazzoni, Ander- gest that locations in craniotopic space are encoded
sen and Jordan, 1990), trained using back- in two stages. First an eye-position-dependent coding
propagation and a variant of the associative is formed by cells that respond over limited ranges of
reward-penalty (AR...p) learning rule, have eye positions. The outputs of groups of such cells are
been shown to replicate the overall function used in the second stage to produce an eye-position-
as well as the unique response properties of independent encoding of the stimulus in craniotopic
neurons in area 7a. Validity of neural net-
work models of area 7a remains question-
able, however, on the grounds of biological Lecordings from individual neurons also showed that
plausibility of the learning mechanisms em- neurons in area 7a have unique response properties
ployed, o± because of computational limita- which are called spatial gain fields and visual receptive
tions of the network units used in these mod- fields. Spatial gain field is a term for the modulat-
els. This paper presents a neural network ing effect of the eye position on a neuron's response
with stochastic real-valued (SRV) units and to a fixed retinal stimulus. The visual receptive field
with architecture similar to that of the pre- of a neuron determines the magnitude of its response
vious models, trained on the same coordi- to stimuli at different retinal locations when the e)e
nate transformation task. It is shown that position is held fixed. Andersen and Zipser (Ander-
while capturing the performance features of sen and Zipser, 1988; Zipser and Andersen, 1988) pro-
the previous models, this network is also free posed a neural network model of this coordinate trans-
from their limitations. This reaffirms the va- formation system that was trained using the back-
lidity of the basic neural network model of the propagation algorithm (Rumelhart et al., 1986). Units
coordinate transformation circuitry of area of the trained network were shown to have spatial and
7a proposed by Andersen and Zipser. eye position dependent response properties that were

qualitatively similar to those observed in area 7a neu-
rons of monkeys.

I INTRODUCTION Although the Andersen and Zipser model gives good
qualitative results, doubts regarding the biological

Neural netwo:ks are so called because their architec- plausibility of the back-propagation algorithm used for
ture and learning mechanisms are often inspired by training the network hinder the acceptance of their
those observed in the neural circuits of th- brain. It model as a valid model of area 7a. For this reason,
therefore seems natural to use such networks to model Mazzoni, Andersen, and Jordain (1990) decided to ex-
subsystems in the brain. Andersen and Zipser (An- amine the necessity of back-propagation for develop-
dersen and Zipser, 1988, Zipser and Andersen, 1988) ing appropriate response properties in the units of the
proposed one such neural network model of area 7a of

363
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network. Using a modified version of a more biologi- Heax Nd y

cally plausible learning algorithm called the associative
reward-penalty (AR-p) algorithm (Barto and Anan-
dan, 1985), they were able to show that essentially Logistc
identical response topographies were learned by unils Units
in networks using the AR.P algorithm. Thus, the neu-
ral network architecture and learning principles of the
Andersen-Zipser model of area 7a appear to be physi-
ologically viable. SiV

Units
Unfortunately, the A.-p units used by Mazzoni et al.
have the drawback of being binary units, which neces-

Eyesitates interpreting their outputs as spikes of neuronal Retina Poition
activity over time. Since the measure of activity of R - Psn
interest in this task is the spiking rate of the neurons,
these units do not appear to be wbll suited to the task -. -;-

requirements. In fact, Mazzoni et al. point out the de- - .
sirability of replacing the AR-P units by continuous- - - -l

valued units that can learn using algorithms similar to - -

the Az-p algorithm. My previous work led to the de- -

velopment of one such unit, called the stochastic real- - -

valued (SRV) unit (Gullapalli, 1990). In this paper, I
present the performance of a network with SRV units
trained on the coordinate transformation task postu- Figure 1: Architecture of the Network Used.
lated for area 7a neurons. The architecture of the net-
work is similar to that of Andersen and Zipser's model,
and I compare the results of my network with their re- the output of the network was the craniotopic loca-
suits as well as those of Mazzoni et al. This work tion of the retinal stimulus, the representation used to
demonstrates once again the validity of the general encode this location determined the structure of the
neural network architecture and learning principles of output layer of the network. Possible encodings in-
the Andersen-Zipser model. It also serves to verify lude a Gaussian coarse-coding array like the retinal
the prediction in Mazzoni et al.'s paper that the use input, a distributed representation using linear units
of continuous-valued units that learn using reinforce- like the eye position input, or a scalar encoding of the
ment feedback should not drastically change the type x and y coordinates of the craniotopic location. In our
of solution found by these networks. experiments, we used the first and the third types of

encodings, but all the simulations reported in this pa-
2 NETWORK STRUCTURE AND per used only the third type of encoding. Hence the

network had two output units, which are logistic units
TRAINING producing outputs between 0 and 1. These were scaled

to the appropriate ranges for the x and y coordinates
The network used for the simulations had a three layer, of the craniotopic locations.
fully connected, feed-forward architecture, and is most The training data consisted of eight training patterns,
similar to the "Mixed Ar-p" network of Mazzoni et or stimulus-response pairs, that were chosen randomly.
al. (1990). The architecture is depicted in Figure 1. Training the network involved repeated execution of aInputs to the network were split into two groups con- fixed sequence of operations. Each repetition is called
sisting of the retinal inputs and the eye position inputs, a trial and a set of eight consecutive trials, one for each
both of which were modeled according to the known tring an is cled nec . E ach
characteristics of the corresponding neuron groups in training pattern, is called an epoch. Each attempt to
area 7a (e.g., Andersen and Zipser, 1988). Retinal in- train the network, called a training run, invol ed the

puts were encoded as an 8 x 8 array of units with execution of a fixed large number of epochs. A trial

Gaussian receptive fields, while the eye position was consists of the following operations. Each trial begins
with the presentation of the stimulus vector of a train-represented by 32 units with linear activation func- ing pattern as input to the network. The hidden units

tions, half of which were used to encode the x position compute their stochastic outputs based on these in-
of the eye, and the other half to encode the y position. puts, following which the output units compute their

Hidden units in the network were SRV units produc- activations to form the network's output vector. This
ing a random output between 0 and 1. Networks with output vector is compared with the desired response
between two and eight hidden units were tried in the vector corresponding to the training pattern, yielding
simulations, although all the results reported in this an error vector used by the network in two ways. First,
paper are for networks with three hidden units. Since the error vector is used directly by the units in the out-
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put layer to update their weights using the standard In the simulations reported in this paper, the logistic
back-propagation rule.1 Second, the magnitude of the function
error vector is computed and used to generate a rein- f(z) 1 (7)
forcement or reward signal that is broadcast to all the I + e-1
units in the hidden layer. These units use the SRV unit was used as the output function of the unit.
learning algorithm (Gullapalli, 1990) to update their Equations (1)-(7) describe how the SRV unit uses its
weights so as to increase the probability of higher re-
ward in the future. The updating of the weights is the inputs to compute its output at a given time step. Ilast operation performed in each trial, now give the equations describing how the unit up-

dates its weights. The environment provides these
The equations for compating the outputs and the units with a reinforcement signal r(t) at time t, which
learning rules used for updating the weights of units is a function of the output error e(t):
in the hidden and output layers are summarized be- r(t) = 1.0 - e(t), (8)
low. Let x denote the vector of inputs to a unit in
the network. SRV units compute their stochastic out- where
puts by first computing the mean, ja, and the standard 1
deviation, a, of the standard normal distribution, us- e(t) = Id (t) -xi(t)l (9)
ing these parameters to generate a random activation, 2io
and then computing the output as a function of the Here 0 is the index set of the output units and d is
activation. the desired output of the ith output unit.

Two weight vectors, w and v, are used for computing The weights, w, determining A are updated at each
the two parameters ja and a. The mean is computed time step as follows:
as n wi(t + 1) = wi(t) + aAw(t)X(t), (10)

1.(t) = ZWi(t)Xi(t) + Wthre(t). (1) Wthrea(t + 1) = Wthres W)+ oAW W, 01)
i=1 i=1 where ot is the learning rate parameter and

The standard deviation a is computed in two stages.
First, an expected reinforcement, f , is computed using Aw(t) = (r(t) - f (t)) a_(-(t) (12)
the weight vector v as WJ- - a~t) )

S( For updating of the weights, A, determining the ex-
(t) = ZviD (t)Xi(t) + thres(t). (2) pected reinforcement, the LMS rule of Widrow and

i=i Hoff (1960) is used, as shown in the following equa-
This expected reinforcement is then used to compute tions:
the standard deviation as vi(t + 1) = vi(t) + 3AvW(t)Xi(t), (13)

Vthre(t + 1) = thrca,(t) + /Av(t), (14)
or(t) = s( (t)), (3) where 8 is the learning rate parameter and

where s(.) is a monotonically decreasing, nonnegative AV(t) = r(t) - f (t). (15)
function of f(t). Moreover, s(1.0) = 0.0, so that when
the maximum reinforcement is expected, the standard Typical values for the learning rates used in the simu-
deviation is zero. In the simulations reported in this lations were 0.2 for a and 0.02 for )3.
paper, s(.) was defined as The logistic units in the output layer of the network

(t) use the following equations to compute their outputs
s(f(t)) = max ,0.0) (4) and to update their weights. Each output is computed

as a function of the weighted sum

Based on j(t) and o(t), the unit computes its acti- s(t
vation, a(t), which is a normally distrib- .' .andom st (t)Xi(t) + Wth 7 e,(W (16)
variable: j=1

a(t) - N(j(t), a(t)). (5) as y(t) = fis(t)), (17)
Finally, the activation a(t) is transformed into the out- where f(.) is the logistic function given by Equa-
put of the unit y(t) using the output function f(.), so tion (7). The weights are adjusted using the back-that to 7.Tewihsaeajse sn h ak

y(t) = f(a(t)). (6) propagation or delta rule

'Since the back-propagation rule is being used only in w,(t+)=wi(t)+ (d(t)-y(t))f'(s(t))xi(t), (18)

the output layer, doabts about the biological plausibil- where f'(.) is the derivative of the logistic function, e
ity of the retrograde propagation of error signals through is the learning rate parameter, and d(t) is the desired
synapses are irrelevant here. (See Discussion). response for the unit.
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Figure 2: Learning Curves For 3 Training Runs On The Coordinate Transformation Task.

3 SIMULATION RESULTS 3.2 RESPONSE PROPERTIES

3.1 LEARNING Using the methodology of Andersen and Zipser, I an-
alyzed the response properties acquired by the hidden
units during training. Both the spatial gain fields and

Statistics of the learning performance of the network the visual receptive fields of the hidden layers were
were collected over twenty training runs. The network
learned to perform the coordinate transformation task cons n copa re and those srved (rn-

reasonably quickly. After an average of about 1200 rons in area 7a. Andersen and Zipser showed (An-
epocs, utpt acurcy quialet t th reoluion dersen and Zipser, 1988; Zipser and Andersen, 1988)epochs, output accuracy equivalent to the resolution that the majority of spatial gain fields of area 7a neu-

of the visual input was achieved, with continued re- rons are roughly planar. Moreover, both the visualduction in error, though at a lower rate, with further and the eye position components of the gain field can

training. Local minima were not a serious problem for ad thelteosit he f the gain opposite

the network, because the use of stochastic units en- vary simultaneously, either in the same, or in opposite

abled the eventual escape from such minima. So the directions, and to different degrees with eye position.

main effect of local minima on training was to increase Figure 3 shows the spatial gain fields of the hidden
the number of epochs to convergence on some of the units of the network for different retinal stimuli. Each
training runs. set of nine circles comprises a single gain field obtained
Sample learning curves for 3 training runs are pre- for a fixed retinal input by setting the eye position tosampe lein curv.Thes fror 3lottd tain earc e one of nine fixed locations and measuring the output
sented in Figure 2. The error plotted at each time step of the hidden unit with and without the retinal in-
in the figure is the average of output error e(t) (Equa- put. The difference between these two measurements
tion 9) over the preceeding 200 time steps. It must is taken to be the contribution due to the retinal input
noted here that when compared to a back-propagation and is shown as filled circles in the figure. The outer
network of the same architecture, the network with circles represent the magnitude of the output with the
SRV units takes about 5 times as many epochs to at- retinal inputs present, whereas the annulus between
tain accuracy equivalent to the resolution of the visual the outer circle and the filled circle represents the con-
input. This can be attributed to the stochastic na- trebuterncircle aye itin epes.

ture of the SRV units and to the non-specificity of the tribution of the eye position inputs.

training signal used by them. Different hidden units and different retinal inputs pro-
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duce a wide variation in the gain fields, as can be seen and the latter two is that back-propagation computes
in Figure 3. The planar nature of the gain fields is the exact value of the sample gradient for each train-
easily seen, as are examples in which the the contribu- ing pattern, whereas the latter two rely on an estimate
tion of one input component is fairly constant whereas of the gradient obtained by a stochastic search in the
that due to the other vaiies roughly linearly in each output space. The computation of the exact sample
direction. Also shown is a case in which the two corn- gradient by back-propagation, however, would require
ponents increase or decrease together with changes in the retrograde propagation of error signals through
the eye position. These spatial gain fields are very sim- synapses, which many have pointed out to be biologi-
ilar to those observed by Andersen and Zipser (1988) cally implausible. This was seen as a limitation of the
in recordings from monkeys and to those developed by original neural network model of area 7a proposed by
hidden units of the previous models of Andersen and Andersen and Zipser (1988), which led Mazzoni et al.
Zips-r (1988), and Mazzoni et al. (1990). (1990) to present an alternative model based on AR-p

units.

S1Mazzoni et al. (1990) present detailed reasons for re-
garding the learning mechanisms used by AR-p units

_as more biologically plausible than back-propagation.
Chief among these are the use of a diffuse scalar re-

-- -[ inforcement signal that gets broadcast to all the units
S( ( in the network, the use of only information local to a

I L 1synapse for adjusting the strength of that synapse, and
the stochastic nature of the outputs of the units. Due
to the co ,on underlying framework on which the

01 1 two algorithms are based, the SRV unit algorithm also
- has the same desirable characteristics as the An-p al-l-[ gorithm. Furthermore, SRV units have the advantage'0 41 of being able to produce real-valed outputs which can
Sbe directly interpreted as the firing rates of neurons.

* OThus the network presented in this paper does not have
-+ 0 the computational limitations of the networks used by

Mazzoni et al.

Figure 3: Examples Of Spatial Gain Fields Of The Neural network models of area 7a trained using each
Hidden Units. of these three learning algorithms show similar per-

formance characteristics. Each network can learn the
Andersen and Zipser's studies of the area 7a neurons in coordinate transformation task and each network de-
monkeys included measurement of the visual receptive velops hidden units with response properties similar to
field of a neuron to determine the magnitude of its re- those of area 7a neurons. Computational performance,
sponse to stimuli at different retinal locations when the therefore, does not appear to depend very strongly on
eye position is held fixed. A similar study of the recep- the choice of the learning procedure. These results
tive fields of the hidden units of the network with SRV provide support for the basic neural network model of
units yielded the fields shown in Figure 4. Each field area 7a proposed by Andersen and Zipser. Further-
was obtained by recording the response of the hidden more, comparisons between the networks with Antp
unit to retinal stimuli at each of seventeen locations units and SRV units indicate that switching from bi-
with the eye position input held constant, and fitting nary to continuous-valued reinforcement learning units
a fourth order quadratic surface to the data. These does not drastically alter the type of solutions found
receptive fields are again qualitatively very similar to by these networks for the coordinate transformation
those obtained by Andersen and Zipser in recordings task.
from monkeys, and to those developed by the hidden
units of the Andersen-Zipser and the Mazzoni et al. Acknowledgements
models.
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Neuronal signal strength is enhanced by rhythmic firing
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Abstract areas. In particular, frequency and phase of neural fir-
ing have been proposed as candidate codes for this pur-

Recent discoveries of rhythmic firing pat- pose (Perkel & Bullock, 1968; Malsburg, 1981; Dama-

terns in cortex suggest the brain might use sio, 1989).
phase locked oscillations to coordinate activ- Recent discoveries of phase locked oscillations in vi-
ity in separate areas (Gray & Singer, 1989). sual cortex suggest that these speculations may indeed
Theoretical studies have suggested mecha- be true (Gray & Singer, 1989; Gray, K6nig, Engel &
nisms by which these rhythms might prop- Singer, 1989). If they are true a number of questions
agate through cortex (Lytton & Sejnowski, come to mind. First, what advantages does this coding
1990). This paper presents preliminary re- mechanism offer over other coding mechanisms? An-
suits from a study of the biophysical effects other question might be how this mechanism relates to
of rhythmic signals at the single cell level, attention. (Crick, 1984) suggests the thalamus might
The work presented here considers the trans- be responsible for guiding an inner "attentional search-
missibility of rhythmic signals and suggests light" (Treisman, 1982). (Crick & Koch, 1990a) sug-
their efficacy is increased by their rhythmic- gest that this locus of attention might correlate with
ity. This is demonstrated by simulations in the presence of the phase locked oscillations.
which a train of regularly spaced synaptic in-
puts at an appropriate frequency causes a In this paper we consider the advantages rhythmic
neuron to fire more often than an irregu- firing patterns might have for an attentional mecha-
larly spaced train does. The reason is the nism. We present preliminary results from a biophysi-
arhythmic signal is diminished by transient cal study of cortical pyramidal neurons which suggest
after-hyperpolarizations. Some recent at- that a rhythmic signal induces a more powerful cellu-
tentional phenomena (Spitzer, Desimone & lar response than does an arhythmic signal. We re-
Moran, 1988, Wise & Desimone, 1988) are late this to attention by suggesting that this enhanced
discussed in light of these results. signal strength might account for competitive effects

observed in visual area V4.

1 INTRODUCTION 2 SIMULATION OF A CORTICAL

Our brains process information in many forms: visual, PYRAMIDAL NEURON
auditory, olfactory, and somatic, to name a few. Dis-
tinctly different regions of the brain receive these dif- We modeled the soma of a realistic pyramidal neu-
ferent forms of information. How does the brain know ron using data from (Lytton & Sejnowski, 1990). We
that these separate pieces of information are related? simulated the three major voltage gated channels for
Conversely, how is the brain able to represent several sodium (Ij ,), delayed rectifying potassium (IK) and
pieces of information simultaneously without confus- a transient non- inactivating potassium (I,,). The
ing them? In the sensory domain this first question has soma was a cylindrical compartment 10 /mi in ra-
come to be known as the "binding problem" (Stryker, dius by 22 pm in length with a total surface area of
1989). In the cognitive domain Norman has ilenti- 1382.3 pm 2. The maximal conductance of sodium was
fled the second as the "type-token problem" (Norman, 0.1 S/cm2 with a recrsal potential of 45 inV. The
1986). A possible solution to both problems is for the maximal conductance of the potassium rectifier was
brain to use timing relationships to organize pieces of 0.12 S/cm' with a rexersal potential of -90 inV The
information that are reptesented in physic.ally di -Aimct naximial cunductawt- of tihe nomiinactixating potas

369
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sium was 0.2 S/cm2 wvith a re~eib a potential uf receptive field might be stimulated by a red dot and
-77 nU. (The different reversal potentials for the by a green (lot, in different spatial locations. Under
two potassium currents is a restlt of tie diffuient selec- normal circumscances the neurons foi both of these
tive permeabilities of the two tpes Uf JLannels). The features %%ill fire. But if attentioi is paid to the red
membrane capacitance was 1 itF/c'-n. S',iaptic (un- dot the corresponding neuron fires at a higher rate,
ductance gs :,a.e was.modeled by an alpha function while the neuron for the green dot stops firing.
with a peak at 2.5 ins and reversal potential 45 ml/
At. peak conductance .g~,nap.e was 9 uS. The leak This phenomenon coul be explained if attention were
Atpakconductance sy0.79 p.S/cm9 with a reversal able to boost. a driving signal that led to a competi-conductance was 0.79 x 10- tion among all of the stimulated neurons. If we posit
potential of -64.72 mV. The input impedance was that attention correlates highly with rhythmic firing,
16 MQ2 measured with current injections of 0.01 nA then the a(Ivantages of rhythmic coding should accrue
and 0.05hA for 100 ins. to attended information (Crick & Koch. 1990b). The

We stimulated the soma for 1000 mo %ith a bignal work cited in the introduction suggests that rhythmic
whose average frequency was 40 Hz. For the rhyth- firing patterns might originate in primary visual cor-
mic case ke scheduled exiititory syniaptic potentials tex, and that these rhythmic patterns can piopagate
every 25 ins. For the arhythinic ,.e %e geneiated through cortical tissue to higher areas such as V4. Our
four uniforni!y distributed random schedules of 40 EP- simulations have shown that these rhythniic signals
SPs within 1000 ii-s. Table 1 pie.aeiita one of the four might reach '4 more forcefully than %ould unattended
arhythnuc schedules. VV- simulated all four schedules arhythmic :ignals. If attention were responsible for
and counted the resulting ation potentials. Simlla- creatiig the hy thinic firing patterns the signals from
tions used 2nid order Runge-Kulta ittgration %ith d the attended part of the visual field would propagate
fixed step size of At = 0.01 ins. Abbreviated sunu- forcefully through cortex. This might then account for
lations %ere run with smaller step S,,os with no dis- the abilit% of attention to determine the winner of the
cernible differences. Simulations were programmed in competition wit h receptive fields of V4.
Dynarnica, a dynamical system modeling environment In conclusion, our simulations with a biophysically re-
developed by the first author. alistic model of a cortical neuron shows that regu-

Figures 1 & 2 tell the story. the rhythic EPS? sched- larly spaced input can be more effective than irreg-
ule produced 40 action potentials, I for each EPSP, ular input. In this stuly the effect was due to cellu-
while the arhythmic schedules produced an average of lar adaptation leading to prolonged afteihyperpolar-
28.25 spikes, a ratio of I to 1.12. Upon closer examinea- ization. Other mechanisms which limit the efficacy
tion we concluded that. the 1,A current %as responsible of irregularly spacrd s,,naptic input are also possible.
for this effect. The -l channels closed slowl) due to For example, a series of ver% closely spaced presynap-
the low er bound on Wa. 'hen an initial EPSP was fol- tic action potentials would induce a sulinear postsy-
lowed too closely by another, the result iig depolarizing naptic conductance response, due to saturation of the
synaptic current was overwhelmed by th iesidual IA. synaptic cunductance Further detailed simulaticns of

cortical neurons are needed to bear out the robustness
In order to verify this conclusion we ran a control ex- of these and similar phenomena.
periment in which we slowed the A channel by increas-
ing the lower bound on r by approximately 50% (from
0.28 to 0.45). This had the paradoxical effect of retard- 4 APPENDIX: SIMULATION
ing gA and thus reducing the A current.. An arhythmic
schedule of 40 PEPSPs in 1000 ins produced 37 actionschentils oFigure 3 shows the trajectories of the currents andpotentials. the membrane voltage during the first 10 ins fol-

lowing an EPSP at resting potential. The dynam-
3 COMPETITIVE EFFECTS IN ic. of the nodel follow a standard Hodgkin- Huxleyformalism with three types of voltage gated chan-

VISUAL ATTENTION nels: fast sodium (Na); rectifying potassium (K);

and non-inactivating potassium (A). The channel pa-
How do these results relate to attentiGn? (Spitzer, rameters foi .svdiumi and delayed rectifying potassium
Desimone & Moran, 1988, Wise & Desimone, 1988) were taken from (Lytton & Sejnowski, 1990) modi-
have demonstrated that attention can enhance coin- fled from (Traub, 1982). The parameters for the non-
petitive effects in area V4 of visual cortex. V4 con- inactivating potassium channel were from (Lytton &
tains cells with very large rec,_ptive fields. The recep- Sejnowski, 1990) miodified from (Borg-Graham, 1987)
tive fields of cells overlap considerably and thus a given to ginc a niomivtoiiically increasing current-frequenc)
stimulus might excite multiple cells with the same re- relati nship Thiewc par rieters are non-standard. Te
ceptive field. When this happens attention appears chmineol d. namics are gvverned by the gating variables
to create a competition which is on Iby the cell rep- in, h, n imd a ,iid correspoidng time constalits T.
resenting the attended feature. For examiple, a given The total i mnbraiie eaparitaice C,%.is 0.0138 nF.



Neuronal Signal Strength is Enhanced by Rhythmic Firing 371

Figure 1: V vs. t at 40 Hz (regular). Horizontal axis shows time from 0 to 1000 ins- Vertical axis represents
-100 to +100 mV. A dot overhead indicates an EPSP.

Figure 2. V vs. t at 40 Hz (arhythnic). Horizontal axis shows time from 0 to 1000 is. Vertical axis represents
-100 to +100 mV. A dot overhead indicates an EPSP.
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0 3.97 10.56 33.27 41.51 108.98 113.96 121.43
165.17 195.78 217.20 219.43 274.79 335.15 355.72 406.20
426.80 444.29 451.03 474.90 536.97 549.18 564.35 599.72
604.76 661.67 671.26 685.54 698.23 700.34 720.02 764.40
810.91 815.49 827.63 839.53 923.25 949.92 952.61 959.53

Table 1: Arhythmic EPSP schedule used in figure 2

Ileak

Isynapse

hNa I

IA

_._- .-- Vrest

Figure 3: from top: currents Iec~; I',nape; IN. (downward), IK (upward), IA (very small upward); andmembrane voltage V during first 10 ms following an EPSP. Horizontal axis shows time from 0 to 10 ms. Lowerhorizontal line shows resting potential Vr,,, = -65 mV. Ilcak and Isyape are offset from zero and multiplied
by 10 for visibility.
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The resting membrane potential'is -65 mV. x (pS E.(mVL
Na 13.823 45

DV -1 K 16.58 -90-t = Z (INa + IK + IA + ynapse + Ilcak) (1) A 27.646 -77
leak 1.0915110- 3  -64.72

INa = m3 hgNa(V - EN.) (2) synapse 0.009 45

Table 2: maximal conductances and equilibria

IK = 4 gK(V - EK) (3)

IA = a4DA(V - EA) (4)

Iynapse = ga napse(At)(V - Eynape) (5)

Ileak = gieak(V - E .k) (6)

Figure 4 shows the channel gating variables m, h, n, a
versus voltage. The horizontal axis shows V from-100
to +100 mV. The vertical axis runs from 0.0 to 1.0. Figure 4: m ,honoaw vs. V.
Figures 5-8 show the r versus voltage. The horizontal
axis shows V from -100 to +100 mV. The vertical
axes differ and are indicated in the captions for each
figure. The gating variables were updated in the stan- f0n = 500e -'14r (15)
dard way, illustrated below for m. Lower bounds were
placed on the r equal to approximately 10% of their
peak values. aa 0.2e(V+46) °.106 (16)

M am + 13m (7. 0.2e - (v+46).0271 (17)

Tm = Mo (8) Synaptic conductance is modeled by an alpha function:

gD ynapse(t) = 0.009te,' 6 (18)Dmmc- (9)
Tt Tmj Acknowledgements
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Abstract ological mechanism that helps solve the cocktail party
problem. Their model segments features of the sen-

This paper presents the design of an analog sory input and groups together those features which

CMOS VLSI chip we have fabricated to im- are related to each other. These feature groups are
plement a "neural cocktail party processor" then available as input to higher levels of the system
(Malsburg - Schneider, 1986). The job of which select the group(s) to attend to. Their model
this processur is to bind relaied components accomplishes the segmentation task based on infor-
of an auditory stream for later selection by an mation present in the auditory signal, preattentively,
attentional mechanism. The binding is repre- without any direction by higher level processes.
sented by phase correlation: feature neurons The model works by "learning" on very short time
which are deemed 'related' are forced to fire scales of milliseconds to seconds. The model's inputs
at common phase and frequency. The model are feature neurons which represent the presence of
is based on realistic anatomical features of specific components of the auditory signal. Hebbian
the auditory system with the addition of hy- synapses, known as "Malsburg synapses" (Crick, 1984)
pothetical "Malsburg synapses". The chip learn to bind together feature neurons which are ac-
contains elements to represent feature neu- tive at similar times. When the synapse between a
rons, a common inhibitor pool, and Malsburg pair of feature neurons is strengthened the neurons
synapses with real time Ilebbian learning, will tend to fire ir common phase. Higher levels of the
This paper explains the model, presents the nervous system can discriminate among different sets
chip design, and discusses some recent the- of feature neurons by using phase as a label. Given
oretical results (Kammen, Holmes & Koch, enough time the entire set of 1tature neurons will par-
1989) which suyg-st refinements to the model tition themselves into a handful of differently labelled
and to our next iteration of the chip. grous. Each of these groups can then be perceived as

a unitary object by an attentional mechanism.

1 INTRODUCTION In the remainder of this paper we describe recent evi-
dence about neural coding by phase correlation, some

Imagine you are in a crowded room at a noisy cocktail anatomical features of the auditory system and the

paty. Dozens of people are speaking zimult-ineously Malsburg & Schneider model. We then present our

and you have to strain to hear the words of the person design for an analog CMOS VLSI chip which imple-
standing across from you. Because you want to hear ments the qualitative features of the modei. Finally we

her words you are able to pay attention to them and discuss rcent theoretical results (Kammen, Holmes &

ignore the other speakers around y-u. This is what Koch, 199) which explain the dynamics of the model
psychologists have called the "cocktail party problem": and suggc;t refinements to it.
the ability for an attentional mechanism to discrimi-
nate among the multitude of sensory inputs with which 2 BINDING BV PHASE
it is bombarded, a"d to track certain inputs to the ex-
clusion of others. CORRELATION

(Malsburg & Schneider, 1986) present a model for a bi- Electrical oscillations in cortex have been reported for

*Present address: Computat;on and Neural ' tens several years (Freeman, 1978; Eckhorn et. al, 1988)
Program, California Institute of Technology, .16-76, as well as reports of correlated neural firing (Schnei-
Pasadena, Cii 9;125 der, Eckhorn & Reitb6ck, 1983). Most recently this
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Figure 1: Our first implementation fabricated on a MOSIS "tiny chip". Labels identify. (A) a feature neuron;
(13) a Malsburg synapse; (C) the inhibitory pool, (D) a network of 3 feature neurons and Malsburg synapses.

correlation has been shown in primary visual cortex Malsburg synapses auid a feedback pathway in the neu-
to correspond to the presence of a visual stimulus and ral netwo~k. Their original model considered only the
further, the correlations depend on gobal properties of frequency inputs froiz- the cochlea. We have chosen to
the stimulus (Gray et al ,1989) These developments include directional information based on psychophysi-
are consi-.ent with speculations about th represen- cal evidence that it is important for speech segmenta-
tcIX- -'information in the brain (von der Malsburg, tion (Dannenbring& Bregman, 1978, Darwin & Gard-
1981, Cak 1984; Damasio, 1989). These specula- ner, 1986; Darwin, 1990).
tions suggest that correlation of phase is used by the Frmailstdewekoth uioyssemp-
nervous system to bind related pieces of information, forms a considerable amount of feature extraction on
According to this "labeling hypothesis" (Stryker, 1989; the auditory signal between the ear and the wtditory
Baldi & Atiya, 1989), for example, representations of cortex: The ear receives the physical sound wvaveba.nd
color and texture for a common object are linked in c
separate areas of visual cortex by common phase of transforms them into neural pulses. In the ear the
neural firing. A similar principle might cperate within cochlea (inner ear) produces an instantaneous spec-

th 0uioysse.Ms eety(rc oh tral decomposition of the frequencies present in the
the0audCricky&syoch,.1Mosb'reavetsuggested thatcat auditory signal It is this decomposition which is pro-
tenton ay erelate o9b the este of ha locke c#ssed by later stages of the auditory system. The
oscltions.yb eae t h rsne fpaelce cochlear nucleus performs further feature extraction

oscilatins.on the auditory signal, for example, detecting stimu-
lus onset and measuring stimulus duration. Most in-

3 THE MALSBURG & SCHNEIDER ferestingl), ti~o substructures, the medial and lateral

MODEL superior olives, detect the spatial location of the ori-
gin of each spectral component of the auditory signal,

The alsurg Scneidr mdel sesphas core- in the horizontal and vertical planes with respect to

lation to bind related features of the auditory sig- tase to erThe coatiolaund from there ttei
naI. The mechanism by which this binding occurs uses pasdtteacuichlmsanfrmhreote
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Figure 2: Elemen ts of the network and their interconnections. From left. 3 analog (dendritic) input, lines NO.IN,
Ni.IN, N2.JN; the inhibitory pool (figure 6), 3 feature neurons (figure 4),,3 analog (axonal) output lines NO-OUT,
NIOUT, N2_OUT; 6 unidirectional Malsburg synapses (figure 5).

auditory cortex. and have never been investigated experimentally. Al-

In addition to this feedforward path into cortex there though their existence cannot be assumed they are not
are fedbacktti e paths inthreeloctin. Firstex wthe inconsistent with known physiology. In the Malsburgare feedback paths in three locations. First, within & Schneider model the feature neurons are completely
the path from ear to thalamus there is feedback from interconnected by Malsburg synapses. In the audi-

the inferior colliculus back to the dorsal cochlear nu-

cleus. Second, the auditory cortex sends projections tory system these synapses might be assumed to ex-
ist in the dorsal cochlear nucleus or the auditory cor-back to the acoustic thalamus, which is believed to tex. lMalsburg & Schneider, 1986) suggest that the

be concerned with attention. Finally, there is exten-

sive recurrence within the auditory cortex itself. These synapses should learn on the order of a few millisec-

sfeecurrnc pa th lay auirole ithe model. onds roughly the time period of a single action poten-
feedback paths play a crucial role in ttial, and that this learning should decay over a period
To summarize, the auditory system extracts frequency of seconds.
information, direction o: sound source, and time of
stimulus onset. It passes this information to the audi-
tory cortex through a pathway that includes at least 3.2 NETWORK ARCHITECTURE
three major avenues for recurrent feedback. Our in-
stantiation of the Malsburg & Schneider model will use Figure 2 -s a diagram of the network architecture. In
frequency and direction information flowing through addition to the recurrent network of feature neurons
similar pathways in a recurrent network. there is a pool of inhibitory neurons which are excited

by the teature neurons. This inhibitory pool feeds back
an excitation level which reflects the total n,'mber of

3.1 MALSBURG SYNAPSES feature neurons that are active within the past few mil-
liseconds and which inhibits all of the feature neurons

Crick proposed the term "Malsburg synapse" (Crick, equally. The synapses between the feature neurons
1984) to refer to synapses that perform Hebbian learn- and the innibitory pool are fixed in strength. If the
ing on very short time scales of milliseconds to sec- Malsburg iynapses exist in the cochlear nucleus then
onds. Malsburg synapses are hypothetical entities this inhibitory pool might exist in the inferior collicu-
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Figure 3: Timing diagrams for (left) feature neuron circuit (figure 4) and (right) Malsburg synapse circuit (figure
5). Neuron circuit, from bottom left: charge builds up (bottom) at axon hillock capacitor C1 until threshold is
reached; action potential output A is triggered by positive feedback from sodium channels; timer output T marks
tire from most recent action potential; charge is drained by potassium channels Q1, Q2. Malsburg synapse
circuit. from top right: curves show (top) action potential input Ai, timer input Tj, synaptic strength at GATE,
and propagated excitatory synaptic potential through QI. Sequence of events: (1.5-2.0 me) an action potential
arrives from neuron i while the timer of neuron j is still active, meaning neuron j fired recently; (2.0-2.5 ms)
charge on synaptic weight capacitor Cl falls creating current flow to neuron i; (2.5-3.5 ms, 6.75-8.25 ms) action
potential arrives from neuron i when timer from j has expired, causing increase in charge at Cl thus decreasing
synaptic weight at GATE. No current flows to neuron i.

lus cr the auditory cortex. If the Malsburg synapses a Malsburg synapse (figure 5); and an inhibitory pool
ex::;t in co-rtex then the inhibitory pool must also be (figure 6). The self-resetting neurons represent the fea-
Sthere. ture neurons in the model. They are completely inter-

connected by Malsburg synapses. Since each Malsburg
3.3 -ORIGIN OF THE CORRELATIONS synapse is unidirectional there will be n(n - 1) Mals-

burg synapses for n feature neurons. A single large
An intuitive explanation for the origin of the correla- capacitance represents the inhibitor pool. The output
tions was provided by (Malsburg, 1989). The Mals- of every feature neuron connects to the input of the
burg synapses and the inhibition play opposing role. inhibitory pool and the output of the inhibitory pool

The synapses due to their Hebbian nature tend to draw connects to the input of every feature neuron (see fig-
together neurons that fire close together in time. The ure 2). These connections have fixed strength.
inhibitory pool, since it reflects the combined activ-
ity level of all of the feature neurons, reflects a bias Inputs to the network are digital pulses from two

sources. One source represents frequency input and
in favor of the first neuron in a set that fires within the O e source represents ioqn iputh).: temora widow Ths isbecuseas achsuces- the other source represents spatial location (azimuth).
an hacIn a typical situation several neurons representing fre-
sire neuron fires the level of inhibition rises to reflect
the total activity level. If two neurons fire once with quency would be excited by a signal containing multi-ple frequencies but only one neuron representing spa-
a time delay At between them then they will subse- pl fqcies bol oe eue
quently fire with At + ci, At + C2, ... as the trailing
neuron is repeatedly inhibited more than the leading The digital pulses represent excitatory postsynaptic
neuron. potentials coming from the cochlea and the olivary

structures. At every instant in time every feature neu-
ANALOG VLSI ron either receives a pulse or receives no input. It

4 AN receives a pulse if the corresponding feature is present
IMPLEMENTATION in the auditory stream For example, whenever the

cochlea detects a 120 Hz pitch the feature neuron that
Our implementation of the model has three circuit el- represents 120 Hz receives a pulse. A feature neuron
ements: a self-resetting neuron with timer (figure 4);

'I
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Figure 4. Integrate-and-fire neuron soma with added timer circuit, adapted from (Mead, 1989). From left.
dendritic input IIN, axon hillock C1 and discharge path Qi, Q2, sodium channels Q3, Q4, Q5, Q6, C2 create
feedback which drives the neuron to fire once above threshold, inhibitory drain path NA and action potential
output A, decaying timer subcircuit Q7, Q8, Q9, C3, timer output T. Also pictured. power sources VCC, VLOW,
control points VB, CHARGE, DISCHARGE. See figure 3 for timing diagrams.

receives no current if the corresponding feature is ab- a variable amount of current to flow dep, iding on the
sent. gate voltage. In the digital world this region would

be considered "off", but in reality some current stillEach neuron ums th- current flowing into its input, flows. The advantages of using a transistor in this
and when a threshold i reached it fires both a dig- manner are threefold: power dissipation is extremely

tal pulse represents an action potential, while the de- low; the transistor can act as a current source over a
marks a refractory period during large voltage range; and the exponential nonlinearitycaying timing pulsears psre. erio durons of current flow versus gate voltage is an ideal compu-which Hebbian learning is possible. When two neurons tainlpmive

fire closely together in time, the effect is to strengthen tational primitive.

the synapse between them. When two neurons fire far-
ther apart in time the effect is to weaken the synapse. 4.2 THE SELF RESETTING NEURON
The single inhibitor neuron will affect each neuron
equally by subtracting chaige from the inputs of all The feature neuron (figure 4) is a basic integrate-and
of them. fire neuron, and the core circuitry for it was taken

directly from the self-resetting neuron of (Mead, 1989).
The primary output of this circuit is a digital pulse

4.1 DIGITAL AND ANALOG which represents an action potential. We extended the
TRANSISTORS circuit by adding three transistors (Q7, Q8 and Q9)

both digital and analog and a capacitor (C3) to create a timer output which
This VLSI device emplys bois a slowly decaying pulse used in Ilebbian learning.
transistors. The digital transistors act as switches:
they operate either totally "off" allowing essentially Current from the other neurons and the external in-
no current flow, or totally "on" allowing maximum put is summed at capacitor C1 which represents the
current flow. The analog transistors act as valves, op- axon hillock. When enough charge has accumulated
erating mostly in the subthresli,,ld region and allowing at this capacitor to create a voltage above threshold,
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Figure 5. Malsburg synapse with Hebbian learning. From left. timer Tj and action potential Ai inputs, analog
"AND" subcircl--'t Q2, Q3 controls Hebbian learning; synapse weight C1 (weight c -' ), forgetting circuit
Q8, Q9, NAi; synaptic potential output NAj and generator Q4, QS, Q6, Q7. Also pictured. power source VCC,
control points RESET, CHARGE, BIAS..I.

the neurc- will fire. Capacitor C2 is used to create Transistors Q8 and Q9 form a path to charge Cl. This
positive f&_ Iback which helps the voltage at C1 build path decreases the synaptic weight when neurons z and
up faster c.nze the neuron begins to fire. (Capacitor j do not fire closely together in time. Transistors Q4,
C2 resemble- *,he voltage activated sodium channels Q5, Q6 and Q7 form current sources to supply cur-
in the axon initial segment.) The VB input controls rent to the input of neuron z whenever neuron j fires.
how quickly zharge will leak away from C1 once the The amount of current supplied is determined by the
neuron fires. (This leaking resemb's- the inactivating value on the synaptic weight capacitor Cl at the time
potassium current, and controls how quickly the neu- that neuron jfires, and also by the BIASI input. The
ron will inactive once it fires.) The CHARGE and DIS- BIASI input allows a constant bias current to flow to
CHARGE inputs control how quickly the timer output the input of neuron i every time neuron j fires regard-
rises and falls once the neuron fires, less of the synaptic weight value. This bias circuitry

may or may not be used; it was included to make the

4.3 THE MALSBURG SYNAPSE synapse as flexible as possible.

The Malsburg synapse circuit (figure 5) stores the
value of the synaptic weight and provides the means to
dynamically increase or decrease the synaptic weight 4.4 THE INHIBITOR POOL
between neuron i and neuron j based on how closely
neurons i and j fire together in time The inhibitor circuit (figure 6) feeds back a function of

The most important parts of the synapse circuitry are the total excitation level to every neuron. It inhibits
transistors Q2 and Q3. These two transistors essen- all of the neurons proportional to this excitation level.
tially form an AND gate. When a timer output pulse When any combination of the three self-resetting neu-
from neuron j is present at the gate of Q2 AND a neu- rons in the network are on, transistors Q1, Q2, Q3, Q4,
ron pulse from neuron i is present at the gate of Q3, Q5 and Q6 form a path to charge capacitor Cl. The
the effect is to strengthen the synapse between neuron IKNOB input provides a means to limit the amount of
jand neuron i. The synaptic strength is represented by current charging Cl whenever output pulses from the
the voltage due to the charge stored at capacitor Cl. self-resetting neurons are present. C in turn controls
the lower the voltage, the higher the synaptic weight transistor Q7 in the subthreshold region. When Q7 is
value and vice versa. When both transistors Q2 and on, a leakage path is created from the inputs of the self-
Q3 are turned on (due to timer and neuron pulses at resetting neurons to the LRAIL. The more strongly Q7
their gates), a discharge path from the weight capaci- turns on, the more current is shunted away from the
tor Cl to ground is created, charge leaks off, the volt- self-resetting neuron inputs which inhibits thern from
age is lowered and, therefore, the weight increases, turning on.
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Figure 6. Inhibitory pool circuit. From top. neuron action potentials NAI, lA2, NA3 and summing network Qi,
Q2, Q3, Q4, Q5, Q6, inhibitory capacitance C1 and drain path Q7. Also pictured: power source VCC, control
point IKNOB.

5 PRESENT STATUS AND for example, musical perception, where time constants

FUTURE DIRECTIONS are lower.

Recent theoretical work (Kammen, Holmes & Koch,
We have fabricated our first iterati,,a of the chip (fig- 1989) suggests that a simpler network architecture,
ure 1). It contains an interconnected network of three without Malsburg synapses, can produce correlated fir-
neurons with Malsburg synapses and an inhibitor pool, ing solely as a result of the feedback pathway. In this
as well as isolated instances of each of the compo- simpler architecture an ensemble average activity level
nents. This will allow experimentation with each indi- is fed back to every feature neuron. Each feature neu-
vidual circuit element. As many test points as the 40 ron locally compares this quantity x to its own activity
pin package would allow are connected to device pins. level; and adds some function f(Ax) to its excitation.
These test points represent critical nodes in the cir- For appropriate classes of f the governing rate equa-
cuits. for example, the valu f. he synaptic weights, tions have locally stable phase locked solutions.
the digital pulse and timer cutputs of the neurons, These results suggest that we may be able to simplify
etc. We will view the neuron's digital outputs on an our design by removing the Malsburg synapses, at the
oscilliscope. We are considering more complex repre- expense of slightly more complexity in the individual
sentations of the internal state of the network.

neurons. Since the number of synapses grows quadrat-
Our purpose in fabricating this first chip was to test ically with respect to the number of neurons this will
our circuit designs and the operation of the model. save a tremendous amount of space on the chip and
Subsequent iterations will approach a full scale work- allow us to roughly square the number of neurons.
ing system. We have calculated that a MOSIS "big This possibility is particularly interesting because it
chip" has enough space for approximately 50 neu- might allow us to support devices like the silicon retina
rons, their associated synapses, and the inhibitor. The (Mead, 1989) if the problem of chip-to-chip intercon-
working system is intended as a companion to the sil- nect can be solved. Alternatively, it might make our
icon cochlea (Lyon & Mead, 1988) and the auditory circuit small enough to fit onto an existing chip.
localizer (Lazzaro & Mead, 1989), which perform the
tasks of the cochlea and the superior olives respec-
tively. The major difficulty that we forsee in integrat-
ing these devices is the chip-to-chip interconnect. W Special thanks to Terry Sejnowski, Gary Cottrell andhave not Yet addressed this problem. Seiltak oTrySjosi ayCtrl n

John Lazzaro. Terry and Gary encouraged us in this

Software simulations of the model have shown a piob- project and Te.ry put us in touch with John Lazzaro.
1cm with using Malsburg synapses as presented in John pro- ided circuit design assistance and acted as
(Malsburg & Schneider, 1986). Real speech wavefoims our design and layout reviewer. Without his help we
contain transients that are too brief to be tracked by could never have completed this project. Thanks to
synapses that decay on the order ,f seconds. This Claudia Farb and Joe LeDoux for producing the pho-
model may be useful for other signal procesing tasks, tograph in figure 1. Alan Heirich was supported by



386 Heirich, Watkins, Alston, and Chau

an NSF graduate fellowship. Michael Alston was sup- feedback xersus local coupling, in R.M.J. Cotterill
ported by a National Defense Science & Engineering (ed.), Models of Brain Function, Cambridge. Cam-
fellowship. bridge University Press.

All except the first'author can be reached by elec- J. Kelly. (1985) The Auditory System. In E. Kandel &

tronic mail at "Xgece.ucsd.edu" where X is in the set J. Schwartz (eds.), Principles of Neural Sctence. New
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Abstract as back propagation (Rumelhart et al., 1986a; Rumel-
hart et al., 1986b). Back propagation requires a dif-

Feed-forward neural networks can be used to ferentiable transfer function so that the gradient of an

implement Boolean functions which are spec- error surface can be calculated. It also requires high

ified by a set of training examples. These precision weights which can be updated in small incre-
networks are usually trained with the back ments.
propagation training technique (Rumelhart We wish to design a feed-forward network which can
et al., 1986a; Rumelhart et al., 1986b). Im- be easily implemented in VLSI hardware, including
plementing this training technique in hard- the learning circuitry. Since digital VLSI hardware is
ware is difficult because of the need for sig- reliable and well understood, we restrict the weights
moidal neural transfer functions and real- to the values {-1,0,1} so that they can be easily
valued weights. If step transfer functions and implemented as bit storage cells. Also, the differen-
ternary-valued weights which take on the val- tiable transfer function is replaced with a step or hard-
ues {-1, 0,1} are used instead, hardware im- limiting transfer function. Thus, the individual units
plementations become much simpler. This are familiar linear threshold elements (McCulloch and
modified network can be trained using combi- Pitts, 1943; Rosenblatt, 1962). Their behaviour can
natorial optimization techniques such as sim- be described by the following equation:
ulated annealing (Kirkpatrick et al., 1983;
van Laarhoven and Aarts, 1987), random
local search (Aarts and Korst, 1989), and I if < 0
stochastic tunneling (Day and Camporese, 0i = is (!)
1990). Simulated annealing requires the dif- 1 otherwise

ficult choice of an appropriate cooling sched-
ule while the random local search can become where oj is the output from unit j and Si is the set
trapped in local minima. Stochastic tunnel- of all units which have forward connections to unit i.
ing has the ability to escape from local min- The thresholds can be adjusted by connections to other
ima and it is often faster than simulated an- units whose outputs are always "1". Thus, the network
nealing. In this paper we present an elec- output is a bipolar vector whose components have the
tronic VLSI implementation of the stochastic values +1 or -1. Such linear threshold elements are
tunneling training algorithm, easily implemented in VLSI hardware, but the step

transfer function and restricted weights preclude the
use of conventional back propagation.

1 THE NETWORK MODEL

Layered feed-forward networks with L input units and 2 TRAINING
M output units can be used to map an L-dimensional
Boolean space to an M-dimensional Boolean space. A network with L inputs and M outputs is trained
The output of unit j is connected to an input of unit i to respond to a set of P input vectors i', i2, ..., ip by
in the succeeding layer with a connection weight w,,. producing the target output vectors t1, t 2, ... , t p . Each
Trainingsuch a network involes finding values of these training vectr pair, k, has components il and t, where
connection weights which satisfy the input/output re- j = 1, 2,3,..., L and i = 1,2,3, ..., M. The network
lationships to be learned. These networks are often response to the input vector ik is denoted by oL. Thus,
trained wvith the supervised learning technique known an error function giving the number of erroneous bits
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in the network response to the input ik is distribution in Hamming space with mean I1dist = Wp
1 f and variance a = Wp(1 - p) according to the Cen-

Ek J ok 112 = ' tral Limit Theorem (Devore, 1982). The maximum

4 o = - (2) variance occurs at p = G Given the error of the
and tcurrent network configuration from equation (3), we

and the total number of erroneous bits over all training wish to update the weights with an optimal value of p.
patterns is Three criteria were used to determine an appropriate

E= _E 1 PMrelationship between E and p.

k=1 - i 1 - (3) When the error, E, is zero, the network has success-
The err ffully learned all of the training patterns and p must beThe error function measures how poorly the current zero to preserve this condition. The maximum possible

network weights map the training input vectors to the erors thi condWtish The nate dsibl-
targt rsposes.Thi eror masue i to e mni- error is Em.x = MP. We wish the new state distribu-

target responses. This error measure is to be mini- tion to have the greatest variance when the error is at
mized by altering the values of the weights. Methods its maximum, so we set p = when E = Emax. Thus,
of combinatorial optimization must be used to search on average, half of the weights will be modifed during
for the minimum since the domain and range of the each update when the system error is at a maximum.

error function are not continuous. Randomization al- Finally, when a single bit is in error and E = 1, we

gorithms such as simulated annealing (van Laarhoven set p = 1wW so that an average of one v. 1,t will be

and Aarts, 1987) and random local search (Aarts and modified during each training epoch. If we choose a

Korst, 1989) have been applied to networks with real simple quadratic relationship between p and E which

valued weights (Engel, 1988; Baba, 1989; Bremermann satisfies these three conditions we obtain:

and Anderson, 1990). These techniques are appro-

priate because they are generally easy to implement p ( (2MP(MP E+ W(E- ) (6)
in hardware and they don't require continuous error MP 2W(MP - 1)
functions. The quantity p plays a role like the annealing param-

We have presented a randomization algorithm for per- eter in simulated annealing, and equation (6) imple-
forming this error minimization which is suitable for ments a type of annealing schedule. However, p is a
VLSI implementation (Day and Camporese, 1990). To function only of the current error and network con-
begin, we define a training epoch as one complete cycle figuration. It is not an explicit function of time as is
through the training data set. For each training epoch, usually the case for simulated annealing.
all of the weights are altered with the same probabil- Since the entire perturbation of all the weights is re-
ity, p. The weight is changed to one of its two possible tained only if the error decreases or remains constant,
alternative values with equal probability. Each weight the error can never rise as it does in simulated an-
is updated independently so that no global informa- nealing. Local minima in the error surface can be es-
tion is required. If the resulting total error decreases caped by a tunneling process whereby the network can
or remains constant, the new weights are retained. If move to a distant state of lower error without hay-
the error increases, the previous values of the weights ing to travel through intermediate higher error states.
are restored. Such a method is very inefficient when The probability of tunneling long distances is greater
simulated using a serial computer since every weight in higher error configu -ations since the number of ran-
must be updated during each training epoch. With dom weight changes depends on the current error of
parallel hardware, however, all of the weights can be the system. Such a method allows the network to es-
updated simultaneously so that the time required for cape from any local minimum given a sufficient amount
a training epoch becomes independent of the network of time. The time can still be very long if the local
size. minimum has a low error value and is far away from a
If w is a vector describing the current state of the net- region of lower error.
work weights, the Hamming distance in weight space We call this training procedure stochastic tunneling.
to the updated state w" follows a binomial distribu- Stochastic tunneling succeeds at performing a non-
tion. The mean Hamming distance to the new state is local search of the weight space while maintaining a
given by sense of direction during the entire search. We have

Pdist(P) = Wp (4) shown that stochastic tunneling is often faster than
where W is the total number of weights in the network. simulated annealing when the weight updates are per-
Increasing p causes the mean distance to the new state formed in parallel (Day and Camporese, 1990). Fur-
to increase. The variance of the new state distribution thermore, unlike simulated annealing, the algorithm
is given by 2_ -) doesn't require the choice of a different cooling sched-

ivyst = W 1 -(5) ule for each task.

As the number of weights W in the network increases, Another probabilistic learning technique which has
the binomial state distributiun approaches a gaussian been intensely studied is the Bultzmann learning al-
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gorithm (Ackley et al., 1985, Hinton and Sejnowski, unit, and two hidden layers consisting of a sin-
1986). Boltzmann learning is used with recurrent net- gle unit each. The six training vectors and target
works which have symmetric connectivity (w,, = wj,). responses are shown in Table 1.
The algorithm requires probabilistic neurons whose
outputs can be observed and correlated over time, andmany-valued weights which can be updated in smallncremenTemany-valued weights bedatd to sal Table 1: Training Vectors for the Network Containingincrements. The many-valued weights lead to a large aLolMimua Local Minimum
chip area since the synapses dominate the layout of a
fully connected network. The Boltzmann machine has Input Target
been implemented using electronic VLSI circuitry (Al- -1 -1 1 1
spector et al., 1989). Hardware implementations of -1 1 -1 1
both Boltzmann machines and stochastic tunneling re- -1 1 1 -1
quire the generation of probabilistic signals. 1 -1 - 141 -1 1 -1

2.1 ALTERNATIVE RELATIONSHIPS 1 1 -1 -!
BETWEEN THE GLOBAL ERROR
AND THE WEIGHT CHANGE Both networks were trained using stochastic tunneling
PROBABILITY with the three relationships (6), (7), and (8). These

The relationship between p and E given in equation (6) relationships completely characterize the behaviour of

becomes non-monotonic if the learning algorithm, so there are no additional pa-
rameters to be determined. Figures 1 and 2 show the

2(MP) results from an average of 100 training runs for the
W<2MP - 1 two sets of test data. Learning curves for simulated

annealing and a random local search are also plotted
An increase in the error can sometimes lead to a de- for comparison. The random local search alters a sin-
crease in the weight change probability. A more rea- gle weight chosen at random, and accepts this change
sonable approach is the exponential relationship: only if the error remains the same or decreases. For

1 1 e-KE simulated annealing a new network state is chosen in
= e_ , where K = -In(1 - -) (7) the same way as for the random local search, but stateswhich increase the error are accepted with a proba-

The constant K is chosen so that p = 11W when a bility dependent on a temperature parameter T (van
single bit of the training set is in error. Here the weight Laarhoven and Aarts, 19P' We chose an initial tem-
change probability asymptotically approaches 1 and is perature of To = 1 and u, -d it in steps of 0.2.
a monotonic function of E_ We can also choose a linear At each temperature 1OW w it updates were per-
relationship between p and E: formed, where W is the total number of weights in the

I E if <w network.
2 (8) Figure 2 shows how the random local search gets

if E>- caught in a local minimum of the error function. Sim-
ulated annealing also gets caught, but not as often.

Two network structures and sets of training data were Increasing the length of the cooling schedule would
chosen to investigate the behaviour of the three rela- further reduce this tendency at the expense of longer
tionships (6), (7), and (8). training times. Stochastic tunneling never gets caught

in local minima since the probability of a weight chang-
1. Parity ing is reduced to zero only when a global minimum

The parity problem is a generalized version of has been found. For stochastic tunneling it is appar-

exclusive-OR. The network coLtains four input ent that the precise form of the relationship between

units and a single output unit. The output is p and E has little effect on the required training time.

'I' if the number of '1' inputs is odd, and -I' if For a hardware implementation it would be appropri-

the number of '1' inputs is even. The set of train- ate to use the most easily realizable function.
ing data consists of sixteen four-bit input vectors
and sixteen single-bit output vectors. The net- 3 HARDWARE REALIZATION
work topology contains two hidden layers consist-
ing of five units each. A VLSI implementation of the network architecture

2. Local Minimum has been designed which performs the learning directly
This network and set of training patterns was de- on the chip. For a 20-neuron network with 100 training
signed to have a lo.al minimum in its error func- patterns the hardware will be approximateb 20,000
tion. There are three inpat units, a single output time. faster than the serial simulations, allowing for
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single network layer is implemented on a single chip,
so a multilayer network will be comprised of multiple

Parity Network chips connected in succession. The design is based on
a 3 micron CMOS process. A neuronal output of "T
is represented by a potential of 5 volts and an output
of "-1" is represented by a potential of 0 volts.

Outputs

2- 01 02 ON

I Neurons
0-t

Training Epoch

Figure 1: Learning Results for the Parity Network. 11
The unlabeled cu! ies are for quadratic (dot), exponen- i2
tial (dash), and linear (solid) relationships between the
global error and the weight change probability. A fur-
ther unlabeled curve (dot-dash) represents the results Synapse
for a random local search. Finally, a curve for shn- Matx y
ulated annealing (SA) is included. All of the curves
except for simulated annealing are virtually identical.

37

Local Minimum Network________ __________

Zs-
Figure 3: Circuit Block Diagram for the Neural Net-
work Chip. The input lines feed into the synapse ma-

2- trix horizontally. An analog summation is performed
for the input of each neuron along a vertical bus in the

2,.5 synapse matrix.

A single synapse is shown in Figure 4. It is based on

Ran6orn Local Soarch a previously published design using separate excita-
o0 tory and inhibitory summation lines (Verleysen et al.,

_SA 1989), but it uses fewer transistors to accomplish the
0. same task. Also, our design uses p-channel rather than

0 Zo n-channel synaptic transistors. The p-channel transis-
Training Epoch tors pass less current and decrease the synaptic power

Figure 2: Learning Results for the Local Minimum dissipation. The weight w,, is stored in memory cells
Network. The unlabeled curves are for quadratic A and B. When the INPUT line is high, representing
(dot), exponential (dash), and linear (solid) relation- a value of 1, the INPUT line is low. Transistor T3 is
ships between the global error and the weight change turned on and the synapse can source current onto the
probability. Learning curves for the Random Local INHIBIT and EXC TE lines depending on the states
Search and Simulated Annealing (SA) are included for of transistors Ti and T2. If cell A is storing a V0O then
comparison, transistor T1 is turned on, increasing the current in the

EXCITE line. This condition represents an excitatory
synaptic connection. An inhibitory synaptic connec-

a more extensive investigation of the network learn- tion is achieved when cell B is storing a "0f', increasing
ing properties. For larger networks the speed-up will the current in the INHIBIT line through transistor T2.
be even greater since the feed-forward evaluation time If cell A and cell B both store a "1" then the synapse
is independent of the network size (assuming a fixed is in the disconnected state where wvj = 0. The state
depth of one or two hidden layers). A block diagram where cell A and cell B both store a 0" is not used.
for one layer of the network is shown in Figure 3. The When the input line is low, representing a value of -1,
neurons implement the hard limiting transfer function transistor T6 is turned on and the current is increased
and their outputs can be fed into the next layer. A in the alternate summation lines. Thus, transistors TI



A VLSI Neural Network with On-Chip Learning 391

INPI~r D

T6 C

SHIFT BIT TS" -".
IN A Ot'Y I------- _ 7E
IN OU- 

T 5

BIT, T3 BiT
SIcr B IN OUT

INrr B vIBIT

wij is stored in registers A and B.

through T6 implement the multiplication of -weightwith an input signaal. The weight is stored in cell Aand B according to Table 2. Figure 5: Synaptic Bit Cell. The primary cell consistsof transistors TI and T2 and inverters A and B. The
secondary cell consists of transistor T4 and inverters C

Table 2: Weight Storage in Registers A and B and D.
Waight A4 B

0 1 :
1 1 0 El:

Memory cells A and B are each implemented by the E3" '
circuit of Figure 5. The circuit contains both a primary
memory cell and a secondary or "backup" memory
cell. In operation, the primary cells store the values of E5 I
the synaptic connections. During the learning phase,
the logic value stored in the primary cells is 'barked :
up" into the secondary cells. The random updates are E6 " "
made to the primary cells in the circuit and if the total
error of the network configuration increases, the pri- Quiescent Backup Reore Shift

mary cells are restored from the secondary cells. Two
of these cell structures are required for each synapse Figure 6. Control Waveforms for the Synaptic Bi Cell
in order to implement both inhibitory and excitatory
connections as discussed above. All of the synaptic bit
cells in the network are connected in the form of a se-
rial shift register with the aid of transistor T3 so that Verleysen (Verleysen et al., 1989), but with the po-

the synaptic values can loaded onto or read from the laity reversed. The output is 5V if the current in
chip serially. Figure 6 shows the control waveforms re- the EXCITE line is greater than the current in the

quired for the quiescent, backup, restore, and shifting INHIBIT line and OV in the opposite case. Thus, if

functions of the cell, there are more active excitatory connections than in-
hibitory connections, the output of the neuron will be

The neurons are implemented by the circuitry shown 5V. If there arc more active inhibitory connections the
in Figure 7 which is similar to a circuit described by output will be OV. If equal numbers of excitatory and
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inhibitory connections are active we want the output sign have performed as expected.
of the neuron to be 5V in order to satisfy equation (1). Compared with an electronic implementation of the
To ensure this condition, an extra synaptic transistor Comae win electr implementation of thewhich is always on is connected to the EXCITE line. Boltzmann machine (Alspector et aL., 1989), our chip
whicis aysor is cthe size of the regular synap- requires much less area for a network of fixed size. ThisThis transistor is half t size overegula synap- area reduction is due mainly to the ternary-valuedtic transistors so that it can be overridden by a single weights which require only two binary storage cells.
inhibitory connection. However, the ternary-valued weights will likely give

our network less representational power than a Boltz-
mann machine of similar topology.

EXCr1T INHIB1T

4 PARALLEL RANDOM NUMBER
GENERATION

T6 V The hardware described above does not take full ad->__ vantage of the parallel nature of the training algo-

OUur rithm. Since all of the weights are updated indepen-
dently, it is possible to perform the updates in par-

T4 TS allel using only local information. A complete ran-
dom number generator must be placed at each synap-
tic site in order to supply update information to all
of the synapses simultaneously. Alspector et al. have

VBIAS ndescribed an analog noise generator based on the am-
plification of thermal noise in the channel of a transis-
tor (Alspector et al., 1989). When many such genera-

[T- tors are placed on a single chip, they tend to influence
one another due to induced fluctuations on the supply
rails and other coupling effects. Thus, it is extremely
difficult to generate uncorrelated noise signals. Also,
Alspector's noise generator requires three stages of am-
plification which consume a large chip area. The large

Figure 7: A Single Neuron. The currents in the EX- area is not a great problem for the Boltzmann machine
CITE and INHIBIT lines are converted into voltages since only one noise generator is required for each neu-
by transistors T1 and T2, and then compared by the ron. The size of these noise amplifiers makes them in-
transconductance amplifier (Mead, 1989) consisting of feasible for our application since we require one noise
transistors T3 through T7. generator for each synapse. Finally, the resolution of

these noise generators is limited by the characteristics
During training with the stochastic tunneling algo- of the transistors which caa be fabricated.
rithm, the current error is obtained by presenting all of We have decided to use digital pseudorandom noise
the training patterns to the network and observing its generators rather than analog devices in order to cir-
outputs. The error signal controls a random bit gen- cumvent the correlation problem. Multi-bit numbers
erator which is used to alter the values of the synaptic must be generated to obtain the required resolution. A
connections. If there are N synaptic connections then single bit cell of a random number generator is placed
the synaptic matrix is shifted circularly N times so at each synaptic site to satisfy the area constraint. The
that the synaptic values will be back in their correct generated bit stream is observed over time in order to
locations when the shifting is complete. The random obtain a random number with any desired resolution.
bit generator is introduced at one point in the circular Increasing the resolution of the generator is accom-
shift chain and alters the value of the synaptic connec- plished by running it for a longer period of time.
tion at that point with a probability dependent upon
the total error of the current network configuration. A binary signal having any desired probability of be-
Thus, a complete update of all of the weights requires ing "1" can be generated from this random bit train as
on the order of W time steps. follows. For n-bit precision, let the random bit train

The neural network chip is approximately 0.5 centime- rt represent the binary expansion of a number Nr be-

ters square. The size of a single synapse is 153 by tween 0 and 1:

112 micons and the chip contains 480 such synapses.

There are 20 neurons fully connected to 24 input lines. Nr = Zr-i2-i 0 < Nr _ 1 - 2-n
The neurons occupy a space of 153 by 122 microns.
Functional and electrical simulations of the final de- The desired probability p can also be represented as
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an n-bit binary expansion of a number between 0 and
i : se . C L K r

p= pi2- ' 0 < p < 1 - 2-'

Now define a binary variable Q with an initial value
of Qo = 0. Q is updated iteratively on the bits of Nr B

and p according to:

Qi+1 =pi-nA(ri-nE)Pi-n) V QiA(ri-n E Pi-.) (9) r

where i = 0,1,...,n - 1. After n updates, Q. will
satisfy:

f 1 ifp > Nr
Q= 0 ifp<Nr

Thus, if Nr is uniformly distributed, the expectedvalue of Qn will be (Q, ) = p. Equation (9) is im- Figure 9: A Single Cell of the Random Number Gener-
pleentd wih bhe circuitry of Eqigure 8 ) T is i- ator. The SEL line to the multiplexor allows the cells
plemented with the circuitry of Figure 8. The bits pi to be connected as a serial shift register so that the

initial random number can be seeded.

INITALIZE
bit sequences, but the correlation dies out over time.
Thus, to avoid correlation the cellular automata can be

RESE updated several times between each set of random bits
which is extracted. Hortensius showed that perform-

CLK ing four updates between each extraction produces
D Q OUTPUT high quality uncorrelated random bit sequences. With

this new circuitry the network can be completely up-

ENABLE dated in a constant time, independent of the number
of weights. An order of magnitude increase in train-
ing speed should be realized for small networks such
as the examples in section 2.1. The speed-up will be
even greater as the sizes of the networks increase.

Pi We plan to fabricate a second version of the chip which
incorporates this parallel random number generation
circuitry. Using the same 3 micron CMOS process we
expect the resulting size of a synapse to double when

Figure 8: Synaptic Update Circuitry. The bits p, rep- compared with the original design. As a result, the size
resent the desired probability for a weight change and of network which can be placed on a single chip will
the bits r, represent a locally generated uniform ran- be approximately halved. To get around this limita-
dom number Nr. tion we are investigating the possibility of fabricating

separate synaptic matrix and neuron chips which can
of the desired probability are supplied sequentially by be used as building blocks for constructing arbitrary
external error measuring circuitry. The random bits ri network topologies.
are generated by a pseudorandom number generator
based on chaotic sequences in cellular automata (Wol-
fram, 1983; Wolfram, 1984; Wolfram, 1985; Wolfram, 5 CONCLUDING REMARKS
1986). A single cell of the cellular automaton is placed
at each synaptic site. Each of the cells is implemented The well known back propagation network can be
by the circuitry of Figure 9. A clock pulse updates modified to permit simple implementation using VLSI
the state of the bit based on its current state and the technology. The units with differentiable (usually sig-
states of its immediate neighbors to the left and right. moidal) transfer functions are replaced with linear
Periodic boundary conditions are applied so that the threshold elements and the weights are rfstricted to
cells effectively form a ring, the values {-1, 0, 1). Unfortunately, these modifica-

have tions preclude the use of back propagation as a trainingThe properties of this random number generator hae technique, but methods of combinatorial optimization

been thoroughly investigated (Hortensius et al., 1989b; mayhbequed itead

Hortensius et al., 1989a). It was shown that adja- may be used instead.

cent cells in the generator produce partially correlated Randomization algurithms such as simulated anneal
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A Code generation 228
A priori knowledge 183 Cocktail party processor 379
A posteriori probabilities 159 Cognitive development 201,228

AR.P units 363 Cognitive map 287
Activation space 287 Cognitive modeling 220,236
Adaptive critic 35,52 Combinatorial optimization 387
Adaptive filter 131 Complexity 105
Adaptive processes 65 Compositional architecture 188

Adaptive reward-penalty units 363 Compression networks 328

Analog VLSI 152,379,387 Concept learning 228
Analogical retrieval 265 Connectivity 3

Annealing 10, 387 Constraint satisfaction 23
Approximation of functions 145 Constructive algorithm 117

Area 7a 363 Convergence of backpropagation 152
Artificial life 65, 81 Continuous functions 145
Asymmetric networks 3 Continuous Hopfield model 10
Attention 236,369 Contrastive Hebbian learning 3, 10
Attention, selective 52, 253, 379 Control 91,319
Auditory cortex 379 Controlled processing 253

Auto-associators 183,328 Coordinate transformation 363
Automata, cellular 387 Cortex, auditory 379
Automatic processing 253 Cortex, visuai 363

Critical mass 201

B
Backpropagarion 105, 131, 152, 188g 243,303, 363 D
Basic-level categories 350 Data compression 328
Basis-function trees 145 Delta net 124
Bayesian discriminant function 159 Deterministic learning 3
Benchmarking 117 Development of nerve connections 338
Binding 253 Dimensionality reduction 141,183,310

Biological modeling 338,363,369 Direct learning method 35
Biophysics 369 Discriminant training procedure 18
Boltzmann machines 3.23 Distributed representations 18
Bucket brigade 52 Dynamic node allocation 188

Dynamic programming 35
Dynamical systems 369,379

C
CART algorithm 145
Cascade-correlation learning 117 E
Category names 228 Ecological learning theory 65
Cellular adaptation 369 Economics of computation 35
Cellular automata 387 Elasic net algorithm 338
Chaotic dynamics 145 Elman networks 287
Child development 201,228 Emotion 328
Circuit limitations 152 Energy minimization 23
Circuitry, mapping 220 Entropy 3
Classification figure of merit 159 Environmental adaptation 65
Classification problem 310 Episodic memory 253,265
Coarticulation 319 Epsilcntiransversalse 173
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Evolution of learning 65, 81 Inferencing 265
Evolutionary psychology 65 Inflectional morphology 201
Evolving controls 91 information retrieval 277
Excess degrees of freedom 319 Integrated circuits 379, 387
Expectation 350 Interactive networks 10
Exploratory projection pursuit 310 internal representations 183

Inversion 319

F
Face recognition 328 J
Feature extraction 310,328 Jordan networks 236,287
Feed-forward network 131,220
Finite difference networks 124
Finite impulse response 131
Filtering, adaptive 131 K
Filtering, nonlinear 145 k-d trees 145
Floating-gate MOS 152 k-nearest reighbor classifier 310
Forward modeling 287 Knowledge composition 188
Free recall 243
Frequency effects 201
Function approximation 145

L
Language 220,265
Language acquisition 201

G Learning. adaptive functions of 65
Gender recognition 328 Learning, deterministic 3
Generalization 159,201.243 Learning. evolution of 81
Genetic algorithm 65, 81, 91 Learning, probabilistic 387
Grounding pr-blem 328 Learning, real-time 379

Learning, self-directed 173
Learning, sequence 236,243
L.rming speed 117

H Legal research 277
Hebbian learning 3, 141,379 Lexical acquisition 228
Hidden Markov models 18 Linear filter 131
Hierarchical organization 183,236 Logic: satisfiability 23
High-dimensional input spaces 145
Higher level vision 350
Hcdkin-Huxiey 369
Holons 328 M
Hopfield networks 10, 23 Mackey-Glass equation 117, 145
Hybrid systems 265, 277 Malsburg synapses 379

Map, cognitive 287
Mapping matrix 220
Mapping, topographic 338

I Markov decision problem 35
Image processing 145 MARS algorithm 145
Imagery, mental 350 Matching process 350
Impulse response 131 Mean field networks 3, 10, 18
Incremental training l Membrane currents 369
Indirect learning mr iod 35 Memory capacity 243
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Memory recall 265 Projection pursuit 310
Memory, short-term 253 Propositional logic 23
Mental imagery 350 Psychological modeling 65
Minimal disturbance 188
MLP classifiers 159
Modularity 183, 188,228
Monocular deprivation 338 Q
Morphology 201 Queries 173
M Eor control 319 Quickprop algorithm 287
Multi-layer perceptrons 159
Multiplicative gating 188

R
Radial basis function 105, 145

N Random local search 387
Naming 228 Real-time learning 379
Navigation 287 Reasonable error measures 159. 173
Nearest neighbor classifier 310 Recall of sequences 243
Neural bucket brigade 52 Receptive fields 328
Neuronal modeling 363, 369 Recruiting 188
Nonlinear filtering 145 Recurrent networks 52,91,124. 141.236.303,328
Non-monotonic logic 23 Reinforcement learning 35,45.52

Relaxation oscillator 124
Reorganization 201
Representation techniques 228

0 Rctinotopic coordinates 363
Object recognition 350 Rhythmic firing 369
Ocular dominance 338 Robot navigation 287
On-chip learning 152 Rote learning 201
On-line learning 3 RTRL nets 124
Optimal queries 172 Rule systems 220
Optimization 338,387
Oscillations 124,369,379
Overfitting 105

S
Satisfiability problem 23
Search 387

P Selective attention 52.253
Paralel mapping 220 Selective sampling 173
Parsing, effects of 236 Self-directed learning 173
Past tense 201 Semantic networks 265,277
PDP-style models 253,287 Sequence learning 236.243
Perceptron 81 Sequence manipulation 220
Philosophical issues 287 Sequence recognition 18
Phoneme recognition 303, 310 Sequential networks 243, 319
Phonology 220 Sharpening schedule 10
Planning 287 Short-term memory 253
Pole balancing 91 Simulated annealing 387
Prediction problems 105, 117, 145 Speech 303,310,319,379
Priming 350 Spreading activation 265
Principal components analysis 141,328 Statistical methods 310
Probabilistic learning 387 Stochastic leaming automata 45
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Stochastic real-valued (SRV) units 363
Structural consistency 265
Subgoal generator 52
Sunspot series 105
Supervised learning 65. 81, 145, 387
Symbol manipulation 253
Symbolic processilg 277

T
Teacher forcing 124
Temporal backpropagation 131
Temporal constraints 319
Temporal difference methods 35.52
Time delay network 131,243
Time series prediction 105,117
Time warping 18
TIMIT database 303
Top-down recognition 350
Topographic mapping 338
Training reinforeent 188
Tre algorithms 145
Trinary bzkpropagation 152

U
Unstable systems 91
Unsupervised learning 65, 141,303. 310

V
Validation 105
Vapnaik-Chervonkifs dimension 173
Verb morphology 201
Visual system 338, 363, 369
VLSI implementation 152,379, 387

w
Weight elimination 105
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